Arabic Keyphrase Extraction: Enhancing Deep Learning Models with
Pre-trained Contextual Embedding and External Features

Randah Alharbi and Husni Al-Muhtaseb
King Fahd University of Petroleum
Minerals (KFUPM)
Dhahran-Saudi Arabia
g201907330, muhtaseb@kfupm.edu.sa

Abstract

Keyphrase extraction is essential to many In-
formation retrieval (IR) and Natural language
Processing (NLP) tasks such as summarization
and indexing. This study investigates deep
learning approaches to Arabic keyphrase ex-
traction. We address the problem as sequence
classification and create a Bi-LSTM model to
classify each sequence token as either part of
the keyphrase or outside of it. We have ex-
tracted word embeddings from two pre-trained
models, Word2Vec and BERT. Moreover, we
have investigated the effect of incorporating
linguistic, positional, and statistical features
with word embeddings on performance. Our
best-performing model has achieved 0.45 F1-
score on ArabicKPE dataset when combining
linguistic and positional features with BERT
embedding.

1 Introduction

Keyphrases are the phrases that best represent a
document. They play an essential role in many Nat-
ural Language Processing (NLP) and Information
Retrieval (IR) tasks, such as indexing, summariza-
tion, categorization, and opinion mining (Merrouni
et al., 2020) (Hasan and Ng, 2014). Manual extrac-
tion of keyphrases is time-consuming and requires
experts’ knowledge; thus, the extraction needs to be
automated (Merrouni et al., 2020). Although many
studies have been proposed to address automatic
keyphrase extraction and generation, the perfor-
mance is still moderate due to the task’s difficulty
(Merrouni et al., 2020). Several approaches have
been proposed; one of the earliest approaches is the
two-step ranking, in which candidate phrases are
extracted with several heuristics and then ranked
using supervised or un-supervised methods (Hasan
and Ng, 2014). Another approach is the classifi-
cation approach, in which candidate phrases are
classified as keyphrases or not (Papagiannopoulou
and Tsoumakas, 2020). A more recent approach

is formulating keyphrase extraction as a sequence
labeling task in which each word in the documents
is labeled as part of a keyphrase or not (Alzaidy
etal., 2019). Another recent approach is to consider
formulating the task as a generation task utilizing
sequence-to-sequence models in order to be able
to generate keyphrases that are not available in the
source text, i.e., keyphrase generation (Meng et al.,
2017).

Word embeddings prove their effectiveness in
many NLP tasks. Several word embeddings are
proposed, such as Word2Vec (Mikolov et al., 2013)
and FastText (Bojanowski et al., 2017). The earli-
est proposed word embeddings generate the same
vector for the word regardless of the word con-
text hence called static word embeddings (Pilehvar
and Camacho-Collados). Recently, several word
embeddings generate different embeddings for the
word depending on its context hence called contex-
tualized word embeddings (Pilehvar and Camacho-
Collados) such as BERT (Devlin et al., 2019), and
ELMo (Peters et al., 2018). Several studies have
utilized various types of word embeddings into su-
pervised and unsupervised keyphrase extraction,
and they positively affect performance.

Arabic has its own characteristics that pose many
challenges on any IR or NLP task (Darwish and
Magdy, 2014) (Habash, 2010). Thus, it is crucial to
investigate the performance of state-of-the-art tech-
niques of keyphrase extraction on Arabic, which
might differ in terms of performance from other
languages. Several datasets are available for Ara-
bic keyphrase extraction; The Arabic keyphrase
extraction Corpus (AKEC) (Helmy et al., 2016),
Arabic Dataset proposed by (Al-Logmani and Al-
Mubhtaseb), WikiAll ! from Arabic Wikipedia doc-
uments, and ArabicKPE (Helmy et al., 2018) .

During our investigation of the keyphrase ex-
traction studies, we have found that studies on

"https://github.com/anastaw/
Arabic-Wikipedia-Corpus

320

Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP), pages 320 - 330
December 8, 2022 ©2022 Association for Computational Linguistics

https://github.com/anastaw/Arabic-Wikipedia-Corpus
https://github.com/anastaw/Arabic-Wikipedia-Corpus

Arabic keyphrase extraction are falling behind in
applying state-of-the-art technologies. For exam-
ple, only a few studies have utilized word embed-
dings; Suleiman et al. 2019a have investigated
using Word2Vec and semantic similarity to gener-
ate keyphrases for three documents only. Helmy
et al. 2018 have investigated using Word2Vec
and Bidirectional-Long Short Term Memory (Bi-
LSTM) in keyphrase extraction. To fill this gap, we
aim to apply deep learning approaches to keyphrase
extraction utilizing the static and contextualized
word embeddings for Arabic keyphrase extraction.
Thus, we have formulated the task as a sequence
labeling task and have used a Bi-LSTM classifier
with token representation extracted from two types
of pre-trained word embeddings. Additionally, we
aim to investigate the effect of incorporating statis-
tical, positional, and linguistic features with static
and contextual embeddings.

In this study, we have used Bidirectional En-
coder Representations from Transformers (BERT)
in Arabic keyphrase extraction and have compared
it to Word2Vec embedding. Additionally, we have
investigated three ways of utilizing BERT for Ara-
bic keyphrase extraction; extracting the output of
the last encoder of the BERT model and using it as
a feature, concatenating the output of the last four
encoder layer of BERT, and Fine-tuning BERT. To
the best of our knowledge, this is the first study in-
corporating contextualized word embedding from
BERT into the Arabic keyphrase extraction task.
We have found that utilizing contextual embed-
dings vastly enhances the performance of Arabic
keyphrase extraction model. Moreover, adding fea-
tures to the Arabic keyphrase extraction Bi-LSTM
model, in general, has a positive effect on the model
performance. The rest of the paper is organized as
follows: we present the related works in section 2,
Section 3 presents our methodology, and section 4
presents experiments results and discussion. Our
conclusion is presented in section 5.

2 Related Work

Keyphrase extraction has two general approaches:
unsupervised and supervised (Papagiannopoulou
and Tsoumakas, 2020). Supervised approaches
are powerful and perform better than unsuper-
vised approaches. However, the unsupervised ap-
proaches are less expensive (Papagiannopoulou
and Tsoumakas, 2020). Several unsupervised
keyphrase extraction studies have been conducted.

(Campos et al., 2020) have proposed YAKE!, an
unsupervised keyphrase extraction system based
on statistical features extracted from a single docu-
ment. Their approach depends on six features; term
frequency within the document, normalized term
frequency, term relative position (sentence index),
term relatedness to context, term case, and how
often a term appears in different sentences (term
different sentence). They have evaluated the system
on 20 datasets in five languages. YAKE! proved its
effectiveness generally compared to other systems
with large text and performed well with shorter
text on different domains and different document
types. Moreover, the frequency feature has a more
positive impact while removing term relatedness
from the context and term different sentence fea-
tures improves performance. Meanwhile, the term
frequency feature is more useful when the docu-
ment size increases, while the position feature is
more beneficial in shorter texts. The case feature is
more useful with mid to larger documents, while
the term different sentence feature is better with
short to mid documents. (Zhang et al., 2020) have
leveraged word embedding for unsupervised graph-
based keyphrase extraction. Their model selects
candidate words based on their Part-Of-Speech
(POS) tag; they have only selected nouns and adjec-
tives. They have built three graphs; a word-word
graph based on the word co-occurrence, a word-
topic graph that connects words to their topics, and
a topic-topic graph that is constructed when the
same word appears in different topics. They have
also proposed a modified random-walk model to
rank candidate words and a new scoring model for
candidate phrases based on the cosine similarity of
the generated word embedding and the modified
page rank score. The top scoring phrases are con-
sidered document keyphrases. Evaluating the type
of word embeddings used shows that their embed-
ding outperforms other embeddings on this task.
They have reported that their model performs the
best on all the tested datasets compared to other
baselines. (Zu et al., 2020) have utilized word em-
bedding with graph-based unsupervised keyphrase
extraction along with document embedding. They
have used a pre-trained Sent2Vec (Pagliardini et al.,
2018) model trained on Wikipedia to create word
embedding. The embedding vector is created by
averaging all document words and n-gram embed-
dings. They have found that using the word as a
node is better when dealing with a short text dataset

321

and using a phrase as a node is better when dealing
with a long text dataset.

Several studies have formulated the keyphrase
extraction task as a sequence labeling task.
(Basaldella et al., 2018) have proposed a deep learn-
ing model for automatic keyphrase extraction us-
ing Bi-LSTM and pre-trained GloVeembedding
(Pennington et al., 2014). Their model outper-
forms CopyRNN (Meng et al., 2017) model on
the same dataset. (Alzaidy et al., 2019) have uti-
lized Bi-LSTM and CRF for keyphrase extraction
from scientific documents using 100-dimension
pre-trained GloVeembedding for embedding ini-
tialization. They have studied the role of each
model layer on the performance and have com-
pared CRF only, forward-LSTM, and Bi-LSTM.
They have found that removing the Bi-LSTM layer
negatively affects the recall, while removing the
CREF layer increases the recall and decreases the
precision. Hence, it indicates that Bi-LSTM can
capture long-distance semantics and cause extrac-
tion of more gold-standard keyphrase. They have
also found that CRF can capture the dependencies
between labels leading to higher model precision.
Combining Bi-LSTM and CRF has the best per-
formance among the three created models. Addi-
tionally, the model outperforms CopyRNN (Meng
et al., 2017). Many studies have used encoder-
decoder architecture to generate absent and present
keyphrases. The most popular study is the work
by (Meng et al., 2017). They have proposed a gen-
erative model for keyphrase generation based on
encoder-decoder architecture. They have used Bidi-
rectional Gated Recurrent Units (Bi-GRU) for the
encoder and forward-GRU for the decoder and in-
corporated attention mechanism (Bahdanau et al.,
2015) (RNN-model) and copy mechanism (Gu
etal., 2016) (CopyRNN-model) to deal with out-of-
vocabulary words. CopyRNN model outperforms
all the models they have compared by an average
of almost 20% (Meng et al., 2017). Moreover, the
CopyRNN model outperforms RNN in predicting
both present and absent keyphrases. (Kehua Yang,
2019) encoder-decoder model is entirely based on
the self-attention mechanism. They have incorpo-
rated semantic similarity between keyphrases. The
model outperforms all baselines in predicting the
present keyphrase. Additionally, it outperforms
CopyRNN in predicting absent keyphrases. Target-
ing the problem of overlapping phrases generated
by sequence-to-sequence models, (Zhao and Zhang,

2019) have proposed (ParaNet). The model con-
sists of two parallel encoders; one to encode the text
and the other to encode the linguistic constraints
introducing coverage attention. They have used
multi-task learning on two parallel decoders to gen-
erate the keyphrase and POS tag for each word in
the keyphrase. They have tested different settings
for combining the vector of the words and their syn-
tactic tags, using the hyperbolic tangent function,
using tree-LSTM, and adding coverage attention
to the previous two. On the evaluation of present
keyphrases, all their model settings outperform the
extraction and generation methods baselines, in-
cluding CopyRNN (Meng et al., 2017). Their best
performing setting is when using tree-LSTM to
combine vectors along with coverage attention.

Several studies have used BERT contextualized
word embedding in two strategies; feature-based
strategy or fine-tuning-based strategy. Word fea-
ture is extracted from the pre-trained BERT in
the feature-based strategy. In fine-tuning based
strategy, BERT model parameters are fine-tuned
with the new smaller dataset for the downstream
task adding one fully connected layer on top of it
(Devlin et al., 2019). (Sun et al., 2020) have uti-
lized BERT embedding in multi-task learning for
keyphrase extraction. (Lim et al., 2020) have fine-
tuned BERT and SciBERT (Beltagy et al., 2019) for
keyphrase extraction. They have found that the best
performance happens within the first three epochs
of fine-tuning and that SciBERT performs better
than BERT on scientific datasets. (Dascalu and
Trausan-Matu, 2021) have experimented with four
neural network architectures based on Bi-LSTM
and multi-head attention on top of the transformer
models BERT and SciBERT. A recent study has
combined graph embedding and BERT embedding
for keyphrase extraction is PhraseFormer (Nikzad-
Khasmakhi et al., 2021). They have concatenated
the resulting graph embedding and word embed-
ding for each word and have used the resulting
encoding as input. Another way of utilizing BERT
for keyphrase extraction using a feature-based tech-
nique is using it in ranking candidate phrases (Mu
et al., 2020). (Ding et al., 2021) have incorporated
different types of features with BERT extracted
features for the Chinese medical keyphrase extrac-
tion. The task is considered as a character-level
labeling task. They have incorporated POS feature
and lexicon feature using two techniques: concate-
nation and feature embedding. They have used

322

the model without feature as a baseline and have
tested the effect of features (POS only, lexicon
only, and their combination) and the effect of dif-
ferent feature incorporation techniques (concatena-
tion, embedding, and their combination). Their
results show that incorporating the lexicon fea-
ture has a more positive impact than the POS fea-
ture, regardless of the incorporation techniques.
Furthermore, the best incorporation technique is
the embedding technique. (Sahrawat et al., 2020)
have utilized contextualized word embeddings and
compared them to static word embedding in se-
quence labeling keyphrase extraction. They have
used Bi-LSTM-CREF and Bi-LSTM architectures
with several embeddings; BERT, SciBERT, ELLMo,
TransformerXL (Dai et al., 2019), OpenAI-GPT
(Radford and Narasimhan, 2018), OpenAI-GPT2
(Radford et al., 2019), RoBERTa (Liu et al., 2019),
Glove, FastText, and Word2Vec. They have found
that contextualized embeddings are better than
static embedding, and BERT is the best among
them since it uses bi-directional training.

Studies on Arabic keyphrase extraction fol-
lowed several approaches. Rule-based approaches
(El-Beltagy and Rafea, 2009) (Rammal et al.,
2015)(Najadat et al., 2016)(Loukam et al., 2019)
(Alotaibi and Ahmad, 2019) (Musleh et al., 2019),
ranking approachs (Basaldella et al., 2017) (Amer
and Foad, 2017), using a graph-based model as a
base for ranking (Halabi and Awajan, 2019) (Al
Hadidi et al., 2019), utilizing bag-of-concept (Awa-
jan, 2015) (Suleiman and Awajan, 2017) (Suleiman
et al., 2019b), machine learning approachs (Ali
and Omar, 2015) (Armouty and Tedmori, 2019)
(Al Etaiwi et al., 2019) and deep learning approachs
(Helmy et al., 2018). (Ali and Omar, 2015) have
combined statistical and machine learning methods
and have formulated the keyphrase extraction task
as a classification task. They have used term fre-
quency, first occurrence, sentence count, c-value
for multi-word nested terms, and TF-IDF statistical
features to construct a feature vector. They have
trained linear logistic regression, linear discrimi-
nant analysis, and support vector machine (SVM)
classifiers. (Armouty and Tedmori, 2019) have
used TF-IDF and the first occurrence weight of the
term with Support Vector Machine (SVM), Naive
Bayes, and Random Forest classifiers. (Al Etaiwi
et al., 2019) have used graph centrality measures
along with term frequency and POS tags as input
features to multi-layer perceptron, Naive Bayes,

Random Forest, and OneR algorithms. (Helmy
et al., 2018) have proposed a deep learning-based
model and a large-scale dataset for keyphrase ex-
traction task. They have used AraVec (Soliman
etal., 2017) to represent each token and a Bi-LSTM
model.

3 Methodology

3.1 Data Preprocessing

The text is tokenized using Stanford Stanza neural
pipeline for Arabic? and processed to remove punc-

tuation, normalize all forms of Alef [\ﬁj] into plain

Alef [\] and decorated kaf [NE] to kaf [47, and

replace numbers’ digits with a token to represent
numbers which is [2,] (number). Moreover, three

types of features are extracted to be incorporated
with the embeddings; linguistic feature (part-of-
speech for each token), positional features (first
occurrence and the sentence order of the first oc-
currence), and statistical feature (Term Frequency-
Inverse Document Frequency-TFIDF). The part-of-
speech tags are extracted using the MLE disam-
biguator of Camel tool (Obeid et al., 2020) and
the TFIDF using TFIDF vectorizer from the scikit-
learn library?. The actual value of the positional
features and statistical feature and the one-hot en-
coding vector of the linguistic feature are concate-
nated to the end of the word embedding. Finally,
the data is processed to be suitable for the sequence
labeling task by converting the document into a
sequence of tokens labeled with 1 if it is part of a
keyphrase and with O if it is out of the keyphrase.
Moreover, the maximum document length consid-
ered is 512 tokens for all models.

3.2 Models’ specifications

A Bi-LSTM token classifier is built with one bidi-
rectional LSTM layer that accepts input from the
embedding layer and has one dense layer to gen-
erate the output label. There are two settings for
the model input; the first is word embedding only,
and the other is word embedding concatenated with
different individual features or combined features.
Figure 1 shows the model architecture. Two types
of pre-trained word embeddings are used; static
word embedding and contextualized word embed-
ding, which are AraVec pre-trained embedding
(Soliman et al., 2017) and AraBERT v2 (Antoun

2https: //stanfordnlp.github.io/stanza/
3https: //scikit-learn.org/stable/

323

https://stanfordnlp.github.io/stanza/
https://scikit-learn.org/stable/

NonKP | | KP|

Fully Connected layer

Bi-LSTM Layer

POS tag hot vector
* W
N
Positional
+
Statistical
Feature for each token concatenated
to the end of token embedding

Embedding Layer

Ladlal || opeell

Word Embeddings from Word2Vec or BERT

Awlpaw

Figure 1: Proposed Model Architecture

Word2vec Embedding dimension|100

BERT Embedding dimension 768

Bi-LSTM hidden unit 150

POS tag embedding dimension |26

Learning rate 1.00E-05

Loss function Cross entropy
loss

Batch Size 1

Optimizer SGD

Epoch for BERT 5

Epoch for Word2Vec 10

AraBERT pretrained Model bert-base-
arabertv02

Word2vec pretrained model full_uni_sg_
100_wiki

Maximum Document length 512

Table 1: Models Specifications

et al., 2020), respectively. We have used precision,
recall, and F1-score metrics to evaluate the model
performance on the level of extracted keywords and
the extracted keyphrases. We have rewarded the
model for each correctly extracted keyword at the
keyword level, even if the model has generated part
of the keyphrase. In contrast, at the keyphrase level,
we have rewarded the model if it has generated the
entire exact keyphrase. We have not stemmed the
keywords before testing.

3.3 Experiments setup

The used dataset is ArabicKPE (Helmy et al., 2018)
with the same splits provided by the authors; 4887
documents for training, 944 for model validation,
and 941 for testing. In addition, Word2Vec and
BERT have been used with Bi-LSTM and different

features combinations. Further experiments with
BERT include concatenating the last four hidden
layers of BERT used as inputs to Bi-LSTM and fine-
tuning BERT for keyphrase extraction on the used
dataset. We have tested each feature independently
and have combined two, three, and four features.
Pytorch library* is used to build the models. The
same hyper-parameters are used for all experiments
as specified in Table 1. The Experiments are con-
ducted using Google Colab Pro+ with GPU. Due to
memory constraints and the large model size, the
batch size is set to 1.

4 Results and Discussion

4.1 Using no features experiments

Table 2 and 3 present the results of using AraVec
(Soliman et al., 2017) and AraBERT (Antoun et al.,
2020) without features and our baseline of using
no pre-trained embedding and no features. The
results clearly show the benefit of using pre-trained
word embedding compared to the baseline. Using
pre-trained word embeddings enhances the model
performance over the baseline in terms of F1-score
for keyphrase level by 0.03 and 0.23 for Word2Vec
and BERT, respectively. Moreover, Contextualized
word embedding (BERT) has vastly enhanced the
performance compared to static word embedding
(Word2Vec) by 0.20.

4.2 Results of different BERT settings

In Table 3, we present the results of different set-
tings of using BERT. The results show that using
Bi-LSTM with embedding extracted from BERT
has a slightly better F1-score than fine-tuning the
BERT model for keyphrase extraction. This might
be due to the ability of the model to learn more
context utilizing Bi-LSTM. Moreover, unlike (De-
vlin et al., 2019) suggestion, using the output of
the last encoder layer has a slightly better effect
on performance than concatenating the output of
the last four layers. This might be attributed to the
difference in the language used to train the BERT
model; different languages might have different be-
havior regarding choosing the best layer from the
twelve encoder layers. Another possible reason is
the difference in the tested downstream task as they
test for the Named Entity Recognition (NER) task.
Hence, for our task and language choice, it is better
to use the output of the last encoder layer only to
reduce the dimensionality of the input vector.

4https: //pytorch.org/

324

https://pytorch.org/

Word2Vec Model Name

Keyword-Wise

Keyphrase-Wise

Precision Recall F1-Score Precision Recall F1-Score

Bi-LSTM-Baseline
No added feature
POS
TFIDF
First Occurrence
Sentence Order
POS + TFIDF
POS + First occurrence
POS + Sentence order
TFIDF+ First occurrence
TFIDF+ sentence order
First occurrence + sentence order
TFIDF+ First occurrence + First sentence order
POS+ First occurrence + First sentence order
POS+ TFIDF+ First occurrence
POS+ TFIDF+ Sentence order
POS+ TFIDF+ First occurrence
+ First sentence order

0.50
0.64
0.63
0.65
0.57
0.64
0.69
0.68
0.60
0.63
0.66
0.68
0.65
0.65
0.67
0.65

0.64

0.38 0.43 0.20 0.21 0.20
0.33 0.44 0.28 0.19 0.23
0.33 0.43 0.29 0.19 0.23
0.38 0.48 0.24 0.20 0.22
0.41 0.47 0.30 0.25 0.27
0.42 0.51 0.28 0.25 0.27
0.34 0.45 0.28 0.18 0.22
0.39 0.50 0.31 0.23 0.27
0.49 0.54 0.28 0.30 0.29
0.43 0.51 0.26 0.25 0.26
0.37 0.47 0.24 0.19 0.21
0.40 0.50 0.29 0.24 0.26
0.42 0.51 0.26 0.23 0.25
0.43 0.51 0.29 0.26 0.27
0.38 0.48 0.26 0.21 0.23
0.44 0.52 0.30 0.26 0.28
0.41 0.50 0.27 0.24 0.25

Table 2: Word2Vec Experiments’ results

4.3 Results of adding features:

We have tested the effect of incorporating the raw
positional and statistical features’ values to the
embedding of each token and the one-hot 26 di-
mensions vector of the POS feature to the end of
each word embedding.Table 2 and Table 3 show
the results of adding each feature to Word2Vec and
BERT embeddings respectively.

4.3.1 Independent features

In Word2Vec experiments, the results show that
the positional features have the most impact on
the performance in terms of the F1-score for the
keyphrase level. Moreover, TFIDF has decreased
the performance by 0.01 for the keyphrase level.
Meanwhile, TFIDF has increased the performance
over the no-feature model at the keyword level by
0.04. Adding POS tag features unexpectedly has
no effect on the keyphrase level’s performance and
has decreased the keyword level’s performance. In
contrast, in BERT experiments, all features have
a slightly positive impact on performance over
the no-features model in terms of F1-score and
recall of keyphrase level and recall of keyword
level. Meanwhile, all features have not impacted
performance regarding the F1-score of the keyword
level. This slight improvement or no improvement
in performance might be attributed to the fact that
BERT already learned that information during the

pr-training phase.

4.3.2 Combination of features

325

* Combing two features: In Word2Vec experi-
ments, the best features combined with POS
are the sentence order and the first occurrence.
Combining TFIDF with POS has decreased
the performance in terms of F1-score and re-
call for keyphrase level evaluation. However,
it has increased the performance in terms of
F1-score and recall at the keyword level. Com-
bining numerical features reveals that com-
bining TFIDF with sentence order has de-
creased the performance of the F1-score at
the keyphrase level but has increased it on
the keyword level. The best combination of
two features in BERT experiments is when
combining the POS feature with the first oc-
currence. Like Word2Vec, adding TFIDF to
POS features has decreased the F1-score per-
formance for the keyphrase level. Combin-
ing numerical features does not improve the
performance, unlike when each independent
numerical feature is used. That might result
from combining features without normalizing
them to have the same mean leading to some
noise. Moreover, we can notice that in the con-
text of keyword level evaluation, all F1-score
results can be rounded to 0.60.

BERT Model Name Keyword-Wise Keyphrase-Wise
Precision Recall F1-Score Precision Recall F1-Score

Bi-LSTM-Baseline 0.50 0.38 0.43 0.20 0.21 0.20
No added feature 0.60 0.59 0.59 0.43 043 0.43
Fine-Tuned 0.51 0.67 0.58 0.37 0.49 0.42
No-feature -4layer 0.56 0.59 0.58 0.41 0.44 0.42
POS 0.56 0.63 0.59 0.42 0.46 0.44
TFIDF 0.55 0.64 0.59 0.41 0.48 0.44
First Occurrence 0.53 0.67 0.59 0.40 0.51 0.45
Sentence Order 0.51 0.69 0.59 0.39 0.52 0.45
POS + TFIDF 0.56 0.60 0.58 0.42 0.43 0.42
POS + First occurrence 0.53 0.69 0.60 0.41 0.51 0.45
POS + Sentence order 0.51 0.69 0.59 0.38 0.52 0.44
TFIDF+ First occurrence 0.58 0.60 0.59 0.42 0.43 0.43
TFIDF+ sentence order 0.55 0.62 0.58 0.41 0.45 0.43
First occurrence + sentence order 0.55 0.64 0.59 0.40 0.46 0.43
TFIDF+ First occurrence + First sentence order| 0.58 0.59 0.59 0.42 0.42 0.42
POS+ First occurrence + First sentence order 0.56 0.62 0.59 0.41 0.46 0.43
POS+ TFIDF+ First occurrence 0.56 0.62 0.59 0.42 0.45 0.44
POS+ TFIDF+ Sentence order 0.56 0.62 0.59 041 0.45 0.43
POS+ TFIDF+ First occurrence

+ First sentence order 0.54 0.65 0.59 0.39 0.47 0.43

Table 3: BERT Experiments’ results

* Combining three features: In Word2Vec
experiments, all three features combination
has improved the performance in terms
of Fl-score for keyphrase level except for
(POS+TFIDF-+first occurrence) combination,
which does not change the performance of
keyphrase level but increases the performance
of the keyword level. In contrast, BERT ex-
periments show that the models have the same
performance in terms of F1-score of the key-
word level. While in keyphrase level perfor-
mance, combining (POS+TFIDF+ First Oc-
currence) has slightly increased the perfor-
mance, and combining (TFIDF+First occur-
rence+First sentence order) has slightly de-
creased the performance in terms of F1-score.

* Combining four features: BERT model has
the same results as using no features on both
keyphrase and keyword levels. On the other
hand, Word2Vec has benefited by 0.02 and
0.06 Fl1-score for keyphrase level and key-
word level, respectively, compared to using
no features experiments.

4.4 Comparison with others’ work

Table 4 shows our results compared to (Helmy
etal., 2018). They have used deep learning with Ar-

aVec pre-trained word embedding (Soliman et al.,
2017). Additionally, they have reported their re-
sults on the same dataset at the top 5, 10, and 15
retrieved keyphrases. They have compared the lem-
matized version of the gold keyphrase with the
lemmatized version of the predicted keyphrase. We
have chosen to compare our results to their top 15
results since the maximum number of keyphrases
available on the test set is 13 keyphrases for the doc-
ument, and all of them will be included in our and
their results. Moreover, they have not mentioned
the used stemmer, and we have used ISRIStemmer
from the NLTK library’ to stem keywords. The re-
sults show that using no feature on Word2Vec has
a similar F1-score to their model and that the best
performing model on our Word2Vec experiments
has outperformed their model due to incorporating
features to Word2Vec embedding. Moreover, us-
ing BERT embedding without features and BERT s
best performing model has vastly outperformed
their model by 0.21 and 0.24, respectively.

4.5 Discussion

The best performing model on both level keyword
level and keyphrase level for Word2Vec is when
combining POS with the sentence order feature fol-

5https: //www.nltk.org/

326

https://www.nltk.org/

Model Name Keyword-wise Keyphrase-wise
Precision Recall Fl-score Precision Recall F1-score
(Helmy et al., 2018)@15KP - - - 0.16 0.67 0.26
Word2Vec-no feature 0.68 0.35 0.46 0.30 0.21 0.25
BERT-no feature 0.63 0.62 0.63 0.48 0.47 0.47
Word2Vec -Best 0.63 0.52 0.57 0.32 0.34 0.33
BERT-Best 0.57 0.71 0.64 0.45 0.56 0.50

Table 4: Comparing the results with previous work

lowed by combining POS with TFIDF and sentence
order. Conversely, the model with the least perfor-
mance at the keyphrase level is when combining
TFIDF with sentence order features. In general, it
seems that using the TFIDF feature or combining
it with other features degraded the model learning.
In contrast, the model that has the least perfor-
mance on the keyword level is when using the POS
feature. In General, all BERT experiments have
similar performance in both keyphrase and key-
word levels. The keyphrase level scores differ by
0.03 only and range between 0.42 to 0.45, and all
keyword level scores can be rounded to 0.60. The
best performing models on BERT are when using
first occurrence features alone, sentence order fea-
tures alone, and when combining POS feature with
first occurrence. While the least performing mod-
els are when combining TFIDF, first occurrence,
and sentence order features and combining POS
and TFIDF features. We can notice that the perfor-
mance on the keyphrase level is not affected on 6
features combinations experiments out of 11, i.e., it
is the same as no feature model. This might prove
that BERT can encode linguistic and statistical fea-
tures during pre-training. Further investigation and
model propping are needed to confirm this finding.
Generally, the improvements for both evaluation
levels are aligned in BERT experiments. On the
other hand, some Word2Vec experiments, which
are TFIDF, POS+TFIDF, and TFIDF+Sentence or-
der, have different behavior; the increased perfor-
mance at the keyword level might be accompanied
by a decreased performance at the keyphrase level.
We can notice that TFIDF feature is available in
all these experiments, which suggests that this fea-
ture might be beneficial to identifying the keyword
more than the keyphrase. Comparing the gap be-
tween the scores of keyword level and keyphrase
level on both Word2Vec and BERT, we notice that
the difference between the two levels on BERT is
smaller than the difference between the two levels

on Word2Vec. This can be attributed to BERT’s
ability to generate the correct entire keyphrase due
to more contextual information considered when
giving context-dependent embedding compared to
Word2Vec, which gives the same embedding for
the word in different contexts. It seems that us-
ing Word2Vec enables models to recognize that the
word is part of the keyphrase but could not present
these words in the correct order. Additionally, we
have noticed that different features combinations
have different effects on performance depending
on the embedding type. For example, BERT em-
bedding based models are positively affected by
the combination that includes the first occurrence
feature more than the sentence order feature. In
contrast, Word2Vec embedding based models are
positively affected by the sentence order feature
more than the first occurrence.

5 Conclusion

This study uses two types of pre-trained word
embeddings for Arabic keyphrase extraction
task: static and contextualized word embedding
(Word2Vec and BERT). Several features are incor-
porated into the models to test their effect on per-
formance. We have found that contextualized word
embedding has vastly enhanced the performance
of Arabic keyphrase extraction. Moreover, incor-
porating features with static embedding has more
effect than incorporating features with contextual-
ized embedding. Different features and features
combinations affect the performance differently
depending on the used embeddings. For future
work, we consider trying the effect of adding more
features to the models. Moreover, investigate the
best combination of layers to select from BERT for
keyphrase extraction.

Limitations

First, we have adopted a strict evaluation metric at
the keyphrase level, which only rewards the correct

327

keyphrase with the same keyword order and key-
word numbers, i.e., we do not reward the model
if it over generates a word in the middle of the
keyphrase. This might affect the reported perfor-
mance. Therefore, less strict metrics that consider
stemming or word similarity might be helpful. Sec-
ond, we broadcast the value of the POS for the
unknown words that BERT decides to segment into
sub-words which might introduce some noise to
the training that might affect the performance. Nev-
ertheless, trying not to broadcast the value does not
affect the performance. Third, the randomness in-
troduced on PyTorch run time execution with GPU
setting might affect the ability to reproduce the
same results when repeating the experiments. The
model size and the time needed to model training
have been challenging. Although we are using a
GPU subscription with google colab, the run has
taken a long time, and we have run out of drive
space.

References

Wael Al Etaiwi, Arafat A. Awajan, and Dima Suleiman.
2019. Keywords extraction from arabic documents
using centrality measures. In 2019 Sixth Interna-
tional Conference on Social Networks Analysis, Man-
agement and Security (SNAMS), pages 237-241.

Meran M. Al Hadidi, Muath Alzghool, and Hasan
Muaidi. 2019. Keyword extraction from arabic text
using the page rank algorithm. International Journal
of Innovative Technology and Exploring Engineering,
8(12):3495-3504.

Mohammed Al-Logmani and Husni Al-Muhtaseb. Ara-
bic dataset for automatic keyphrase extraction. In
Second International Conference on Software Engi-
neering (SOEN-2017), pages 217-222.

Nidaa Ghalib Ali and Nazlia Omar. 2015. A hybrid
of statistical and machine learning methods for Ara-
bic keyphrase extraction. Asian Journal of Applied
Sciences, 8(4):269-276.

Fahad Mazaed Alotaibi and Shakeel Ahmad. 2019. Key-
words Extraction from the Text of Holy Quran Using
Linguistic and Heuristic Rules. International Journal
of Computer Science and Network Security, 19(2):82—
87.

Rabah Alzaidy, Cornelia Caragea, and C. Lee Giles.
2019. Bi-Istm-crf sequence labeling for keyphrase
extraction from scholarly documents. In The World
Wide Web Conference, WWW ’19, page 2551-2557,
New York, NY, USA. Association for Computing
Machinery.

Eslam Amer and Khaled Foad. 2017. Akea: An arabic
keyphrase extraction algorithm. In Proceedings of

the International Conference on Advanced Intelligent
Systems and Informatics 2016, pages 137-146, Cham.
Springer International Publishing.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
AraBERT: Transformer-based model for Arabic lan-
guage understanding. In Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection, pages 9—15, Marseille, France. European
Language Resource Association.

Batool Armouty and Sara Tedmori. 2019. Automated
keyword extraction using support vector machine
from arabic news documents. In 2019 IEEE Jordan
International Joint Conference on Electrical Engi-
neering and Information Technology (JEEIT), pages
342-346.

Arafat Awajan. 2015. Keyword extraction from arabic
documents using term equivalence classes. ACM
Trans. Asian Low-Resour. Lang. Inf. Process., 14(2).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Marco Basaldella, Elisa Antolli, Giuseppe Serra, and
Carlo Tasso. 2018. Bidirectional lstm recurrent neu-
ral network for keyphrase extraction. In Digital Li-
braries and Multimedia Archives, pages 180-187,
Cham. Springer International Publishing.

Marco Basaldella, Muhammad Helmy, Elisa Antolli,
Mihai Horia Popescu, Giuseppe Serra, and Carlo
Tasso. 2017. Exploiting and evaluating a super-
vised, multilanguage keyphrase extraction pipeline
for under-resourced languages. International Confer-
ence Recent Advances in Natural Language Process-
ing, RANLP, 2017-Septe(1998):78-85.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615—
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Ricardo Campos, Vitor Mangaravite, Arian Pasquali,
Alipio Jorge, Célia Nunes, and Adam Jatowt. 2020.
Yake! keyword extraction from single documents

using multiple local features. Information Sciences,
509:257-289.

328

https://doi.org/10.1109/SNAMS.2019.8931808
https://doi.org/10.1109/SNAMS.2019.8931808
https://doi.org/10.35940/ijitee.L2614.1081219
https://doi.org/10.35940/ijitee.L2614.1081219
https://doi.org/10.5121/csit.2017.70121
https://doi.org/10.5121/csit.2017.70121
https://doi.org/10.3923/ajaps.2015.269.276
https://doi.org/10.3923/ajaps.2015.269.276
https://doi.org/10.3923/ajaps.2015.269.276
https://doi.org/10.1145/3308558.3313642
https://doi.org/10.1145/3308558.3313642
https://aclanthology.org/2020.osact-1.2
https://aclanthology.org/2020.osact-1.2
https://doi.org/10.1109/JEEIT.2019.8717420
https://doi.org/10.1109/JEEIT.2019.8717420
https://doi.org/10.1109/JEEIT.2019.8717420
https://doi.org/10.1145/2665077
https://doi.org/10.1145/2665077
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.26615/978-954-452-049-6-012
https://doi.org/10.26615/978-954-452-049-6-012
https://doi.org/10.26615/978-954-452-049-6-012
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/https://doi.org/10.1016/j.ins.2019.09.013
https://doi.org/https://doi.org/10.1016/j.ins.2019.09.013

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978-2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Kareem Darwish and Walid Magdy. 2014. Arabic In-
formation Retrieval. Foundations and Trends® in
Information Retrieval, 7(4):239-342.

Cristian Dascalu and Stefan Tradusan-Matu. 2021. Ex-
periments with contextualized word embeddings for
keyphrase extraction. In 2021 23rd International
Conference on Control Systems and Computer Sci-
ence (CSCS), pages 447-452.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Liangping Ding, Zhixiong Zhang, and Yang Zhao. 2021.
Bert-based chinese medical keyphrase extraction
model enhanced with external features. In Towards
Open and Trustworthy Digital Societies: 23rd In-
ternational Conference on Asia-Pacific Digital Li-
braries, ICADL 2021, Virtual Event, December 1-3,
2021, Proceedings, page 167-176, Berlin, Heidel-
berg. Springer-Verlag.

Samhaa R. El-Beltagy and Ahmed Rafea. 2009. Kp-
miner: A keyphrase extraction system for english and
arabic documents. Information Systems, 34(1):132—
144.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li.
2016. Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1631—
1640, Berlin, Germany. Association for Computa-
tional Linguistics.

Nizar Y. Habash. 2010. Introduction to arabic natural
language processing. Synthesis Lectures on Human
Language Technologies, 3(1):1-187.

Dana Halabi and Arafat Awajan. 2019. Graph-Based
Arabic Key-phrases Extraction. In 2019 2nd Inter-
national Conference on new Trends in Computing
Sciences (ICTCS), Amman, Jordan. IEEE.

Kazi Saidul Hasan and Vincent Ng. 2014. Automatic
keyphrase extraction: A survey of the state of the art.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1262—1273, Baltimore, Mary-
land. Association for Computational Linguistics.

Muhammad Helmy, Marco Basaldella, Eddy Mad-
dalena, Stefano Mizzaro, and Gianluca Demartini.
2016. Towards building a standard dataset for arabic
keyphrase extraction evaluation. In 2016 Interna-

tional Conference on Asian Language Processing
(IALP), pages 26-29.

Muhammad Helmy, R.M. Vigneshram, Giuseppe Serra,
and Carlo Tasso. 2018. Applying deep learning for
arabic keyphrase extraction. Procedia Computer Sci-
ence, 142:254-261. Arabic Computational Linguis-
tics.

Wei Zhang Jiging Yao Yuquan Le Kehua Yang,
Yaodong Wang. 2019. Keyphrase generation based
on self-attention mechanism. Computers, Materials
& Continua, 61(2):569-581.

Yeonsoo Lim, Deokjin Seo, and Yuchul Jung. 2020.
Fine-tuning bert models for keyphrase extraction
in scientific articles. JOURNAL OF ADVANCED
INFORMATION TECHNOLOGY AND CONVER-
GENCE, 10:45-56.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Mourad Loukam, Djamila Hammouche, Freha Mez-
zoudj, and Fatma Zohra Belkredim. 2019. Keyphrase
extraction from modern standard arabic texts based
on association rules. In Arabic Language Process-
ing: From Theory to Practice, pages 209-220, Cham.
Springer International Publishing.

Rui Meng, Sangiang Zhao, Shuguang Han, Daqing He,
Peter Brusilovsky, and Yu Chi. 2017. Deep keyphrase
generation. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 582592, Vancouver,
Canada. Association for Computational Linguistics.

Zakariae Alami Merrouni, Bouchra Frikh, and Brahim
Ouhbi. 2020. Automatic keyphrase extraction: a
survey and trends. Journal of Intelligent Information
Systems, 54(2):391-424.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Proceedings of the 26th International Conference
on Neural Information Processing Systems - Volume
2, NIPS’13, page 3111-3119, Red Hook, N, USA.
Curran Associates Inc.

Funan Mu, Zhenting Yu, LiFeng Wang, Yequan Wang,
Qingyu Yin, Yibo Sun, Liqun Liu, Teng Ma, Jing
Tang, and Xing Zhou. 2020. Keyphrase extraction
with span-based feature representations.

Dhiaa Musleh, Rashad Ahmed, Atta Rahman, and
Fahd Al-Haidari. 2019. A novel approach to arabic
keyphrase extraction. ICIC Express Letters, 10:875—
884.

329

https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.1561/1500000031
https://doi.org/10.1561/1500000031
https://doi.org/10.1109/CSCS52396.2021.00079
https://doi.org/10.1109/CSCS52396.2021.00079
https://doi.org/10.1109/CSCS52396.2021.00079
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-3-030-91669-5_14
https://doi.org/10.1007/978-3-030-91669-5_14
https://doi.org/https://doi.org/10.1016/j.is.2008.05.002
https://doi.org/https://doi.org/10.1016/j.is.2008.05.002
https://doi.org/https://doi.org/10.1016/j.is.2008.05.002
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.2200/S00277ED1V01Y201008HLT010
https://doi.org/10.2200/S00277ED1V01Y201008HLT010
https://doi.org/10.1109/ICTCS.2019.8923029
https://doi.org/10.1109/ICTCS.2019.8923029
https://doi.org/10.3115/v1/P14-1119
https://doi.org/10.3115/v1/P14-1119
https://doi.org/10.1109/IALP.2016.7875927
https://doi.org/10.1109/IALP.2016.7875927
https://doi.org/https://doi.org/10.1016/j.procs.2018.10.486
https://doi.org/https://doi.org/10.1016/j.procs.2018.10.486
https://doi.org/10.32604/cmc.2019.05952
https://doi.org/10.32604/cmc.2019.05952
https://doi.org/10.14801/jaitc.2020.10.1.45
https://doi.org/10.14801/jaitc.2020.10.1.45
https://doi.org/10.18653/v1/P17-1054
https://doi.org/10.18653/v1/P17-1054
https://doi.org/10.1007/s10844-019-00558-9
https://doi.org/10.1007/s10844-019-00558-9
https://doi.org/10.48550/ARXIV.2002.05407
https://doi.org/10.48550/ARXIV.2002.05407
https://doi.org/10.24507/icicelb.10.10.875
https://doi.org/10.24507/icicelb.10.10.875

Hassan Najadat, Ismail Hmeidi, Mohammed N. Al-
Kabi, and Maysa Mahmoud Bany Issa. 2016. Au-
tomatic keyphrase extractor from arabic documents.
International Journal of Advanced Computer Science
and Applications, 7.

Narjes Nikzad-Khasmakhi, Mohammad-Reza
Feizi-Derakhshi, = Meysam Asgari-Chenaghlu,
Mohammad-Ali Balafar, Ali-Reza Feizi-Derakhshi,
Taymaz Rahkar-Farshi, Majid Ramezani, Zoleikha
Jahanbakhsh-Nagadeh, Elnaz Zafarani-Moattar, and
Mehrdad Ranjbar-Khadivi. 2021. Phraseformer:
Multimodal key-phrase extraction using transformer
and graph embedding.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl
Eryani, Alexander Erdmann, and Nizar Habash. 2020.
CAMeL tools: An open source python toolkit for Ara-
bic natural language processing. In Proceedings of
the 12th Language Resources and Evaluation Confer-
ence, pages 7022-7032, Marseille, France. European
Language Resources Association.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2018. Unsupervised learning of sentence embed-
dings using compositional n-gram features. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 528-540, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Eirini Papagiannopoulou and Grigorios Tsoumakas.
2020. A review of keyphrase extraction. Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge
Discovery, 10(2):1-45.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532-1543, Doha, Qatar.
Association for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227-2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
Embeddings in Natural Language Processing: The-
ory and Advances in Vector Representations of Mean-
ing. Springer Cham.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Mahmoud Rammal, Zeinab Bahsoun, and Mona Jab-
bour. 2015. Keyword extraction from arabic legal
texts. Interactive Technology and Smart Education,
12:62-71.

Dhruva Sahrawat, Debanjan Mahata, Haimin Zhang,
Mayank Kulkarni, Agniv Sharma, Rakesh Gosangi,
Amanda Stent, Yaman Kumar, Rajiv Ratn Shah, and
Roger Zimmermann. 2020. Keyphrase extraction as
sequence labeling using contextualized embeddings.
In Advances in Information Retrieval, pages 328-335,
Cham. Springer International Publishing.

Abu Bakr Soliman, Kareem Eissa, and Samhaa R. El-
Beltagy. 2017. Aravec: A set of arabic word embed-
ding models for use in arabic nlp. Procedia Com-
puter Science, 117:256-265. Arabic Computational
Linguistics.

Dima Suleiman and Arafat Awajan. 2017. Bag-of-
concept based keyword extraction from Arabic doc-
uments. ICIT 2017 - 8th International Conference
on Information Technology, Proceedings, pages 863—
869.

Dima Suleiman, Arafat A. Awajan, and Wael al Etaiwi.
2019a. Arabic text keywords extraction using
word2vec. In 2019 2nd International Conference on
new Trends in Computing Sciences (ICTCS), pages
1-7.

Dima Suleiman, Arafat A. Awajan, and Wael Al Etaiwi.
2019b. Arabic Text Keywords Extraction using
Word2vec. 2019 2nd International Conference on
New Trends in Computing Sciences, ICTCS 2019 -
Proceedings.

Si Sun, Chenyan Xiong, Zhenghao Liu, Zhiyuan
Liu, and Jie Bao. 2020. Joint keyphrase chunk-
ing and salience ranking with bert. CoRR 2020,
abs/2004.13639.

Yuxiang Zhang, Huan Liu, Suge Wang, W.H. Ip, Fan
Wei, and Chunjing Xiao. 2020. Automatic keyphrase
extraction using word embeddings. Soft Computing,
24:1-16.

Jing Zhao and Yuxiang Zhang. 2019. Incorporating
linguistic constraints into keyphrase generation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5224—
5233, Florence, Italy. Association for Computational
Linguistics.

Xian Zu, Fei Xie, and Xiaojian Liu. 2020. Graph-based
keyphrase extraction using word and document em
beddings. In 2020 IEEE International Conference
on Knowledge Graph (ICKG), pages 70-76.

330

https://doi.org/10.48550/ARXIV.2106.04939
https://doi.org/10.48550/ARXIV.2106.04939
https://doi.org/10.48550/ARXIV.2106.04939
https://aclanthology.org/2020.lrec-1.868
https://aclanthology.org/2020.lrec-1.868
https://doi.org/10.18653/v1/N18-1049
https://doi.org/10.18653/v1/N18-1049
https://doi.org/10.1002/widm.1339
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/(https://doi.org/10.2200/S01057ED1V01Y202009HLT047)
https://doi.org/(https://doi.org/10.2200/S01057ED1V01Y202009HLT047)
https://doi.org/(https://doi.org/10.2200/S01057ED1V01Y202009HLT047)
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.1108/ITSE-11-2013-0030
https://doi.org/10.1108/ITSE-11-2013-0030
https://doi.org/https://doi.org/10.1016/j.procs.2017.10.117
https://doi.org/https://doi.org/10.1016/j.procs.2017.10.117
https://doi.org/10.1109/ICITECH.2017.8079959
https://doi.org/10.1109/ICITECH.2017.8079959
https://doi.org/10.1109/ICITECH.2017.8079959
https://doi.org/10.1109/ICTCS.2019.8923034
https://doi.org/10.1109/ICTCS.2019.8923034
https://doi.org/10.1109/ICTCS.2019.8923034
https://doi.org/10.1109/ICTCS.2019.8923034
https://arxiv.org/abs/2004.13639
https://arxiv.org/abs/2004.13639
https://doi.org/10.1007/s00500-019-03963-y
https://doi.org/10.1007/s00500-019-03963-y
https://doi.org/10.18653/v1/P19-1515
https://doi.org/10.18653/v1/P19-1515
https://doi.org/10.1109/ICBK50248.2020.00020
https://doi.org/10.1109/ICBK50248.2020.00020
https://doi.org/10.1109/ICBK50248.2020.00020

