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Abstract

Most existing proposals about anaphoric zero

pronoun (AZP) resolution regard full mention

coreference and AZP resolution as two indepen-

dent tasks, even though the two tasks are clearly

related. The main issues that need tackling to

develop a joint model for zero and non-zero

mentions are the difference between the two

types of arguments (zero pronouns, being null,

provide no nominal information) and the lack

of annotated datasets of a suitable size in which

both types of arguments are annotated for lan-

guages other than Chinese and Japanese. In

this paper, we introduce two architectures for

jointly resolving AZPs and non-AZPs, and eval-

uate them on Arabic, a language for which, as

far as we know, there has been no prior work

on joint resolution. Doing this also required

creating a new version of the Arabic subset of

the standard coreference resolution dataset used

for the CoNLL-2012 shared task (Pradhan et al.,

2012) in which both zeros and non-zeros are

included in a single dataset.

1 Introduction

In pronoun-dropping (pro-drop) languages such

as Arabic (Eid, 1983), Chinese (Li and Thomp-

son, 1979), Italian (Di Eugenio, 1990) and other

romance languages (e.g., Portuguese, Spanish),

Japanese (Kameyama, 1985), and others (Young-

Joo, 2000), arguments in syntactic positions in

which a pronoun is used in English can be omitted.

Such arguments–sometimes called null arguments,

empty arguments, or zeros, and called anaphoric

zero pronouns (AZP) here when they are anaphoric,

are illustrated by the following example:

يلودلارمتؤمللهتسامحمدعيهشوبنعىرخألاةقرافملا...

...افلتخماعامتجا*ديري،ةيادبلانمشوبنأل،

Ironically, Bush did not show any enthusiasm for the inter-

national conference, because Bush since the beginning, (he)

wanted to attend another conference ...

In the example, the ’*’ is an anaphoric zero

pronoun–a gap replacing an omitted pronoun which

refers to a previously mentioned noun, i.e. Bush.1

Although AZPs are common in pro-drop lan-

guages (Chen and Ng, 2016), they are typically

not considered in standard coreference resolution

architectures. Existing coreference resolution sys-

tems for Arabic would cluster the overt mentions

of Bush, but not the AZP position; vice versa, AZP

resolution systemswould resolve the AZP, to one of

the previous mentions, but not other mentions. The

main reason for this is that AZPs are empty men-

tions, meaning that it is not possible to encode fea-

tures commonly used in coreference systems–the

head, syntactic and lexical features as in pre-neural

systems. As a result, papers such as (Iida et al.,

2015) have shown that treating the resolution of

AZPs and realized mentions separately is beneficial.

However, it has been shown that the more recent

language models and end-to-end systems do not

suffer from these issues to the same extent. BERT,

for example, learns surface, semantic and syntac-

tic features of the whole context (Jawahar et al.,

2019) and it has been shown that BERT encodes

sufficient information about AZPs within its layers

to achieve reasonable performance (Aloraini and

Poesio, 2020b,a). However, these findings have

not yet led to many coreference resolution mod-

els attempting to resolve both types of mentions in

a single learning framework (in fact, we are only

aware of two, (Chen et al., 2021; Yang et al., 2022),

the second of which was just proposed) and these

have not been evaluated with Arabic.

In this paper, we discuss two methods for jointly

clustering AZPs and non-AZPs, that we evaluate

on Arabic: a pipeline and a joint learning architec-

ture. In order to train and test these two architec-

tures, however, it was also necessary to create a

1We use here the notation for AZPs used in the Arabic
portion of OntoNotes 5.0, in which AZPs are denoted as * and
we also use another notation which is *pro*.
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new version of the Arabic portion of the CoNLL-

2012 shared task corpus in which both zeros and

non-zeros are annotated in the same documents. To

summarize, the contributions of this paper are as

follows:

• We introduce two new architectures for resolv-

ing AZPs and non-AZPs together, the pipeline

and the joint learning architecture. One of

our architectures, the joint learning, outper-

forms the one existing joint end-to-end model

(Chen et al., 2021) when resolving both types

of mentions together.

• We create an extended version of the Ara-

bic portion of CoNLL-2012 shared task in

which the zero and non-zero mentions are rep-

resented in the same document. The extended

dataset is suitable for training AZPs and non-

AZPs jointly or each type separately.

2 Related Work

Most existing works regard coreference resolu-

tion and AZP resolution as two independent tasks.

Many studies were dedicated to Arabic coreference

resolution using CoNLL-2012 dataset (li, 2012;

Zhekova andKübler, 2010; Björkelund andNugues,

2011; Stamborg et al., 2012; Uryupina et al., 2012;

Fernandes et al., 2014; Björkelund and Kuhn, 2014;

Aloraini et al., 2020; Min, 2021), but AZPs were ex-

cluded from the dataset so no work considered them.

Aloraini and Poesio (2020b) proposed a BERT-base

approach to resolve AZPs to their true antecedent,

but they did not resolve other mentions.

There have been a few proposals on solving the

two tasks jointly for other languages. Iida and

Poesio (2011) integrated the AZP resolver with

a coreference resolution system using an integer-

linear-programming model. Kong and Ng (2013)

employed AZPs to improve the coreference resolu-

tion of non-AZPs using a syntactic parser. Shibata

and Kurohashi (2018) proposed an entity-based

joint coreference resolution and predicate argu-

ment structure analysis for Japanese. However,

these works relied on language-specific features

and some assumed the presence of AZPs.

There are two end-to-end neural proposals about

learning AZPs and non-AZPs together. The first

proposal is by Chen et al. (2021) who combined

tokens and AZP gaps representations using an en-

coder. The two representations interact in a two-

stage mechanism to learn their coreference infor-

mation, as shown in Figure 5. The second pro-

posal, just published, is by (Yang et al., 2022), who

proposed the CorefDPR architecture. CorefDPR

consists of four components: the input representa-

tion layer, coreference resolution layer, pronoun

recovery layer and general CRF layer. In our ex-

periments, we only compared our results with the

first proposal because the second system was only

evaluated on the Chinese conversational speech of

OntoNotes2 and the model is not publicly available

which makes it difficult to compare our results with

theirs.

3 An Extended Version of the CoNLL

Arabic dataset with AZPs

The goal of the CoNLL-2012 coreference shared

task is to learn coreference resolution for three lan-

guages (English, Chinese and Arabic). However,

AZPs were excluded from the task even though they

are annotated in OntoNotes Arabic and Chinese.

This was because considering AZPs decreased the

overall performance on Arabic and Chinese(Prad-

han et al., 2012), but not on English because it is

not a pro-drop language (White, 1985). So in order

to study joint coreference resolution for explicit

mentions and zero anaphors, we had to create a

novel version of the CoNLL-2012 dataset in which

AZPs and all related information are included. The

CoNLL-2012 annotation layers consists of 13 lay-

ers and they are in Appendix A.

Existing proposals evaluated their AZP systems

using OntoNotes Normal Forms (ONF)3. They are

annotated with AZPs and other mentions; however,

they are not as well-prepared as CoNLL-2012. To

create a CoNLL-like dataset with AZPs, we ex-

tract AZPs from ONF and add them to the already-

existing CoNLL files. The goal of the new dataset

is to be suitable for clustering AZPs and non-AZPs,

and can be compared with previous proposals that

did not consider AZPs and as well as with future

works that consider them.

To include AZPs and their information (e.g., Part-

of-Speech and parse tree) to CoNLL-2012, we can

use ONF. However, while adding AZPs to the clus-

ters, we realized that there is one difficulty:some

2The TC part of the Chinese portion in OntoNotes.
3The OntoNotes Normal Form (ONF) was originally meant

to be an human-readable integrated representation of the mul-
tiple layers in OntoNotes. However, it has been used by many
as a machine readable representation–as it is also more or less
true–to extract annotations, primarily zeros that are typically
excluded from the traditional CoNLL tabular representation.
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Figure 1: A screenshot of OntoNotes Normal Forms (onf). Chain 71 is not considered part of a CoNLL-2012 shared

task because the cluster would become a singleton when we remove the AZP (denoted as *).

coreference chains only exist in ONF, but not in

CoNLL-2012. These are clusters consisting of only

one mention and one AZP, as in the example illus-

trated in Figure 1. Chain 71 has two mentions, an

AZP (denotedwith *) and amention. Since CoNLL-

2012 does not consider AZPs in coreference chains,

this cluster would only have a single mention be-

cause CoNLL-2012 removed AZPs (these clusters

are known as singletons, contains only one men-

tion). Our new dataset includes AZPs; therefore,

such clusters should be included. To add them to

the existing CoNLL-2012, we have to assign them

a new cluster. We did this by writing a script that

automatically extracts AZPs from ONF and adds

them in CoNLL-2012 following these steps:

1. Finds all clusters that have AZPs in ONF and

extracts AZPs.

2. Each extracted AZP is either:

(a) Clustered with two or more mentions:

For this case, CoNLL has already as-

signed a coreference-chain number and

we assign the AZP to the same number.

(b) Clusteredwith only onemention: We cre-

ate a new cluster that include the single

mention and the AZP.

3. Adds the AZP and writes other relevant infor-

mation, such as, Part-of-Speech, syntax, and

all the annotation layers.

Adding AZPs to CoNL-2012 is beneficial to

learn how to resolve them with other mentions or

can be useful for future CoNLL-shared tasks and

any other related NLP task. After preparing the

new CoNLL dataset as discussed, we used it to

train the joint coreference model. This new version

Category Training Development Test

Documents 359 44 44

Sentences 7,422 950 1,003

Words 264,589 30,942 30,935

AZPs 3,495 474 412

Table 1: The documents, sentences, words and AZPs of

the extended version of CoNLL-2012. We follow the

same split as in the original CoNLL-2012 for training,

development and test.

of Arabic OntoNotes will be made available with

the next release of OntoNotes. The distribution

of documents, sentences, words, and AZPs of this

extended dataset are in Table 1.

4 The Models

Earlier proposals resolved AZPs based on the an-

tecedents that are in the same sentence as the AZP

or two sentences away (Chen and Ng, 2015, 2016;

Yin et al., 2016, 2017; Liu et al., 2017; Yin et al.,

2018; Aloraini and Poesio, 2020b). However, it

has been shown that learning mention coreference

in the whole document is beneficial for AZP res-

olution (Chen et al., 2021). Therefore, we apply

two novel methods for resolving AZPs using clus-

ters and coreference chains. The pipeline resolves

AZPs based on the output clusters from the coref-

erence resolution model while the joint learning

learns how to resolve AZPs from the coreference

chains, we show an example of these two in Figure

2. In the example, the pipeline resolves AZPs to

clusters, instead of mentions and the joint learning

finds the coreference chains for mentions, including

AZPs. Earlier proposals suffered from two main

problems. First, they consider a limited number

of candidates (i.e mentions in two sentences away
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from the AZP) as possible true antecedents; how-

ever, the true antecedent might be far away from

the AZP. Second, other mentions can share salient

context as the true antecedent which can introduce

more noise to the learning. Our methods mitigate

these problems by considering all mentions in the

document and employing more relevant informa-

tion. The pipeline resolves AZPs based on clusters

which decreases dramatically the number of AZP

candidates. The joint learning resolves AZPs us-

ing coreference chains which incorporates broader

context for AZPs, insufficient contexts results in

many errors (Chen and Ng, 2016).

4.1 The Pipeline Model

In a pipeline setting, the inputs are the extended

version of CoNLL, the one we described in Section

3. Each file consists of multiple sentences and we

follow the same splits in CoNLL-2012 (Pradhan

et al., 2012) for train, development and test. We

initially fed the documents for training into two

models: coreference resolution and AZP identifi-

cation. We used the Arabic coreference resolution

by (Aloraini et al., 2020) and the proposed AZP

identification by (Aloraini and Poesio, 2020a). The

outputs of coreference resolutions are clusters and

each one has its own mentions. The outputs of the

AZP identification are the predicted gap positions

of AZPs. The AZP resolution model by (Aloraini

and Poesio, 2020b) learns how to resolve the iden-

tified AZPs with their clusters. We show how we

represent the input in the following:

The input is a document with sentences separated

with periods, and has a total of n words. The input

does not consider AZPs initially, they are masked.

𝑖𝑛𝑝𝑢𝑡 = (𝑤1, 𝑤2, 𝑤3, ..., 𝑤𝑛) (1)

We first feed the input into the coreference res-

olution model which outputs the mention clusters,

𝑐1, 𝑐2, to the last cluster index, k.

𝑜𝑢𝑡𝑝𝑢𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 𝑐𝑜𝑟𝑒𝑓_𝑟𝑒𝑠(𝑖𝑛𝑝𝑢𝑡) (2)

𝑜𝑢𝑡𝑝𝑢𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = (𝑐1, 𝑐2, ..., 𝑐𝑘) (3)

After finding the coreference clusters, the AZP

Identification model predicts the AZP positions in

two steps. First, the AZP identification uses a Part-

of-Speech tool to tag words and mark gaps after

verbs as potential AZPs. Second, AZP identifica-

tion classifies these marked gaps as AZPs or not.

Therefore, not every gap between words has an

AZP. For example, in (5) there is no AZP between

the words 𝑤2 and 𝑤3, but there is one between 𝑤1
and 𝑤2 (i.e. 𝑎𝑖). We find AZP locations and extract

their positions.

𝑖𝑛𝑝𝑢𝑡_𝑤𝑖𝑡ℎ_𝑎𝑧𝑝 = 𝐴𝑍𝑃_𝐼𝑑(𝑖𝑛𝑝𝑢𝑡) (4)

𝑖𝑛𝑝𝑢𝑡_𝑤𝑖𝑡ℎ_𝑎𝑧𝑝 = (𝑤1, 𝑎𝑖, 𝑤2, 𝑤3, ..., 𝑤𝑛) (5)

𝐴𝑍𝑃 𝑠 = (𝑎𝑖, ..., 𝑎𝑘) (6)

𝑠𝑠 = 𝑠𝑎𝑚𝑒_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒(𝑎𝑖, 𝑐𝑗) (7)

𝑐𝑑 = 𝑎𝑧𝑝_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑎𝑖, 𝑐𝑗) (8)

𝐴𝑍𝑃𝑖 = (𝑎𝑖_𝑝𝑟𝑒, 𝑎𝑖_𝑛𝑒𝑥𝑡, 𝑠𝑠, 𝑐𝑑) (9)

We follow the same representation for AZPs as

(Aloraini and Poesio, 2020b):

• embeddings for previous word to AZP.

• embeddings for next word to AZP.

• Whether the AZP and the candidate entity (rep-

resented either as the last mention or first men-

tion) are in the same sentence or not.

• The distance between the AZP and its cluster

representation.

The four features are concatenated, as shown in (9).

Clusters can be represented in different ways,

including, e.g, the representation of the first men-

tion or the last mention. We found empirically that

representing clusters with the nearest mention to

the AZP (the last added mention to the cluster) pro-

duces better results.

𝑐𝑖 = {𝑚1, 𝑚2, ..., 𝑚𝑧} (10)

𝑐𝑖 = {
𝑚1 the first mention to represent 𝑐𝑖

𝑚𝑧 the last mention to represent 𝑐𝑖

(11)

Next, the AZP and cluster representations are

joined together through a concatenation layer. The

variable input contains the concatenated representa-

tion of a mention pair - the AZP and its correspond-

ing cluster. The binary variable AZP res receives

input and is 1 if the AZP and the cluster corefer.

The model also outputs the final clusters.

The following equations specify how the output

of the network is computed:
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Figure 2: The input is a document and the asterisk * represents the AZPs in the text. For AZP resolution, The

pipeline resolves AZPs with the output clusters and the joint learning resolves AZPs based on coreference chains.

𝑖𝑛𝑝𝑢𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑐𝑖, 𝑎𝑗) (12)

𝑖𝑛𝑝𝑢𝑡 = [𝑐𝑖, 𝑎𝑗] (13)

𝑟𝑒𝑠𝑢𝑙𝑡𝑠 = 𝐴𝑍𝑃_𝑅𝑒𝑠(𝑖𝑛𝑝𝑢𝑡) (14)

𝑟𝑒𝑠𝑢𝑙𝑡𝑠 = (𝑟1, 𝑟2, ..., 𝑟𝑠) (15)

The variable results consists of the final clusters of

the resolved AZPs and non-AZPs. We show the

model architecture in Figure 3.

4.2 The Joint Learning Model

Our joint learning architecture learns to resolve

AZPs by using the explicitly represented AZP gaps.

This way, AZPs would be learned as any other overt

mention. In our extended CoNLL-2012 documents,

AZPs have the special identified *pro*. Table 2

shows an example of a CoNLL-2012 original sen-

tence and its extended version. However, we con-

sider AZPs only in the training phase when we

apply the coreference resolution model. At test

time, AZPs are not considered, same as in a real

life application. Instead, we use the AZP identifi-

cation model by (Aloraini and Poesio, 2020b) to

tag AZP gaps. After tagging, the input is ready for

clustering using the trained coreference resolution

model. This is how we represent the inputs for both

training and testing:

The input is a CoNLL-2012 document with many

sentences that has a set of n mentions. A mention

can be a word or an AZP tag (*pro*).

𝑖𝑛𝑝𝑢𝑡 = (𝑚1, 𝑚2, 𝑚3, ..., 𝑚𝑛) (16)

The variable input is fed into the coreference

resolution (coref_res) model which outputs clusters.

The clusters contain mentions and AZPs that refer

to the same entity.

𝑜𝑢𝑡𝑝𝑢𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 𝑐𝑜𝑟𝑒𝑓_𝑟𝑒𝑠(𝑖𝑛𝑝𝑢𝑡) (17)

𝑜𝑢𝑡𝑝𝑢𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = (𝑐1, 𝑐2, ..., 𝑐𝑘) (18)

For the test phase, we assume a document is

not labeled with AZP tags, which reflects real-life

applications. Therefore, we first feed input into

the AZP identification (AZP_Id) which outputs in-

put_with_azp, that is input but with tagged AZPs.

The AZP identification is pre-trained on the train

set of CoNLL-2012 to detect AZP locations.

𝑖𝑛𝑝𝑢𝑡_𝑤𝑖𝑡ℎ_𝑎𝑧𝑝 = 𝐴𝑍𝑃_𝐼𝑑(𝑖𝑛𝑝𝑢𝑡) (19)

𝑖𝑛𝑝𝑢𝑡_𝑤𝑖𝑡ℎ_𝑎𝑧𝑝 = (𝑤1, 𝑎𝑖, 𝑤2, ..., 𝑚𝑛) (20)

After preparing input_with_azp, we feed it into

the trained coreference resolutionmodel which out-

puts the clusters.

𝑟𝑒𝑠𝑢𝑙𝑡𝑠 = 𝑐𝑜𝑟𝑒𝑓_𝑟𝑒𝑠(𝑖𝑛𝑝𝑢𝑡_𝑤𝑖𝑡ℎ_𝑎𝑧𝑝) (21)

𝑟𝑒𝑠𝑢𝑙𝑡𝑠 = (𝑟1, 𝑟2, ..., 𝑟𝑠) (22)
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Figure 3: The input without AZPs is fed into the Coreference Resolution and AZP identification models. The

outputs of the two models are clusters and AZPs respectively. Their representations are concatenated, and then their

coreference information is learned through the AZP Resolution model.

Original CoNLL-2012 sentence هسفنعضولايفاناك

Extended CoNLL-2012 sentence هسفنعضولايف *pro* اناك

Table 2: An example of how we explicitly represent AZPs.

The variable results has the resolved AZPs and

non-AZPs. We show the overall architecture in

Figure 4.

5 Evaluation metrics

5.1 Coreference resolution

For our evaluation of the coreference system, we

use the official CoNLL-2012 evaluation metrics

to score the predicted clusters. We report recall,

precision, and F1 scores for MUC, B3 and CEAF𝜙4
and the average F1 score of those three metrics.

5.2 AZP resolution

We evaluate AZP resolution in terms of recall and

precision, as defined in (Zhao and Ng, 2007):

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝐴𝑍𝑃 ℎ𝑖𝑡𝑠
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑍𝑃𝑠 𝑖𝑛 𝐾𝑒𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐴𝑍𝑃 ℎ𝑖𝑡𝑠
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑍𝑃𝑠 𝑖𝑛 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

Key represents the gold set of AZP entities in

the dataset, and Response represents the predicted

resolved AZPs. AZP hits are the reported resolved

AZP positions in Responsewhich occur in the same

position as in Key.

6 Training Objectives

6.1 Pipeline

The training objective of the AZP identification is

binary cross-entropy loss, as introduced in (Aloraini

and Poesio, 2020a):

L(θ) = − 1
𝑁

𝑁
∑
𝑖=1

[𝑦𝑖 log ̂𝑦𝑖 + (1 − 𝑦𝑖) log (1 − ̂𝑦𝑖)]

(23)

𝜃 is the set of learning parameters in the model.

N is the number of training samples in the extended

CoNLL-2012. 𝑦𝑖 is the true label i and ̂𝑦𝑖 is its

predicted label.

For the AZP resolution, the goal is to minimize

the cross entropy error between every AZP and its
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Figure 4: In the train phase, the model learns how to resolve mentions and AZPs. AZPs are represented with the

*pro* tag and treated like any other mention. The test phase predicts and tags AZPs locations. We use the model

proposed by (Aloraini and Poesio, 2020a) to find AZPs. The pretrained coreference resolution model is used in the

test phase to cluster mentions and AZPs.

Figure 5: Resolving AZPs and non-AZPs in an end-to-end model (Chen et al., 2021).

antecedents, as defined in Aloraini and Poesio’s

(2020b) model; however, we resolve AZPs with

clusters, instead of mentions:

L(θ) = −
𝑛

∑
𝑡∈𝑇

𝑘
∑
𝑐∈𝐶

𝛿(𝑎𝑧𝑝, 𝑐) log(𝑃 (𝑎𝑧𝑝, 𝑐)) (24)

T consists of the n training instances of AZPs,

and C represents the k candidate clusters from the

coreference resolution. �(azp, c) returns whether a

candidate cluster c is the correct one for the azp, or

not. log(P(azp, c) is the predicted log probability

of the (azp, c) pair.

The training objective of the coreference resolu-

tion is to optimize the log-likelihood of all correct

mentions (Lee et al., 2017), as the following :

L(θ) = log

𝑁
∏
𝑖=1

∑
̂𝑦∈𝒴(𝑖)∩G(𝑖)

𝑃 ( ̂𝑦) (25)

G represents the spans in the gold cluster that

includes i.

6.2 Joint Learning

In the joint learning, we only use the (24) for train-

ing. AZPs are treated as any other mention; there-

fore, they become part of the coreference resolution

learning objective. We also do not have to train the

AZP identification model because we only use the

AZP identification in the test phase and we use the

pre-trained one on the original CoNLL-2012 from

(Aloraini and Poesio, 2020a).
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CoNLL

Models
MUC B3 CEAF𝜙4

Average

R P F1 R P F1 R P F1 F1

Pipeline 62.9 70.7 66.5 57.3 65.6 61.2 61.1 64.5 62.7 63.5

Joint learning 65.2 75.5 70.0 62.6 68.3 65.3 64.8 67.7 66.2 67.1

Chen et al. (2021) 62.7 71.1 66.6 58.5 65.7 61.6 61.4 67.2 64.2 64.2

Table 3: Resolving AZPs and non-AZPs together.

7 Results

We compare the results of the pipeline and

joint learning models with the results of Chen

et al. (2021). We followed Chen et al. (2021)’s ap-

proach for hyperparameter tunning, but we changed

the language model to AraBERT-base (Antoun

et al., 2020). We evaluate two tasks. First, we

assess the results at joint coreference resolution of

both AZPs and non-AZPs. Second, we evaluate

AZP resolution only. Unlike previous proposals

that resolve AZPs with their antecedents, the AZPs

of our methods and the Chen et al.’s (2021) model

resolve AZPs differently. The pipeline uses the

output clusters, the joint learning uses the corefer-

ence chains and Chen et al. (2021) uses two scoring

components.

7.1 Resolving AZPs and non-AZPs

In Table 3, we see the results of resolving AZPs and

non-AZPs. Chen et al.’s (2021) model achieves

64.2% F1 score, which is 0.7% more than the

pipeline, but less than the joint learning with

2.9%. Our joint learning approach outperforms our

pipeline and Chen et al.’s (2021) system, achieving

the best F1 average score of 67.1%.

7.2 AZP resolution

Next, we compare the AZP resolution results. For

the pipeline, we used two settings to represent clus-

ters. First, we used the first mention in the cluster to

be concatenated with the AZP representation. Sec-

ond, we used the last-added mention. The pipeline

approach achieves an F1 score of 58.08% when us-

ing the first mention as the cluster representation

and 58.59% when using the last mention. The joint

learning provided better results with an F1 score

of 59.33%. Chen et al.’s (2021) model resolved

more AZPs correctly than the pipeline and joint

learning methods, achieving an F1 score of 59.49%

which is 0.19% more than the joint learning score.

It seems the two components of Chen et al.’s (2021)

model, the Unit Score and Pairwise Score, are able

to distinguish AZPs and mentions effectively for

the AZP resolution. However, for coreference reso-

lution, they have showed the performance is better

when they did not consider AZPs as part of the

coreference resolution.

Training Settings
Test Evaluation

P R F1

Pipeline (CR: FM) 60.34 55.98 58.08

Pipeline (CR: LM) 60.97 56.39 58.59

Joint Learning 61.41 57.40 59.33

Chen et al. (2021) 61.67 57.45 59.49

Table 4: AZP resolution results of pipeline, joint learn-

ing and Chen et al. (2021). FM refers to using the first

mention as the cluster representation while LM refers

to the last mention.

,

8 Discussion

The main difference between our joint learning ap-

proach and Chen et al. (2021) is how AZPs are

detected and learned. In our approach, we detect

AZPs initially before we cluster them with other

mentions, while Chen et al.’s (2021) model learns

clustering AZPs and mentions in an end-to-end sys-

tem. Our results appear to confirm earlier results

that considering AZP identification end-to-end in

the coreference resolution task can negatively affect

the performance on the task (Iida and Poesio, 2011;

Chen et al., 2021) One possible explanation might

be the overall performance of the mention detection

on non-AZPs is better thanAZPs (Chen et al., 2021).

Chen et al. (2021) consider every gap as a candidate

AZP, which increases the space of possible candi-

dates and affects their detection recall. To mitigate

this problem, we use a different neural component

for AZP detection. The AZP identification that we

used in the joint learning and pipeline settings only
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considers gaps that appear after verbs which limits

the number of candidates. Moreover, the AZPs in

the joint learning have explicit tags which might

have resulted in their correct detection, which could

be why the approach achieved better results. The

main limitation of our proposed approaches is if

the AZP identification fails to detect many AZPs in

the test phase, it might have dropped the evaluation

of the coreference resolution and AZP resolution.

Pre-training BERT with AZPs can be beneficial.

Existing language models (LMs) learn by masking

words or perturbing their order (Qiu et al., 2020),

but this is not applicable to AZPs. (Konno et al.,

2021) have shown two approaches to improve LMs

so they work for AZPs, first by introducing a new

pre-training task and second by a new fine-tuning

technique. They showed an increased performance

for AZP resolution for Japanese. In future works,

we intend to pre-train a large-scale LM using their

methods and see if it can improve the performance

of the AZP and coreference resolution tasks.

9 Conclusion

We proposed two architectures to resolve AZPs

and non-AZPs jointly. The first approach is in a

pipeline setting and the second in a joint learning

representation. The joint learning outperformed the

pipeline and another approach (Chen et al., 2021) in

the joint coreference resolution. We also extended

the Arabic portion of CoNLL-2012 to include AZPs

which will be suitable for future works and shared-

tasks that resolves AZPs and non-AZPs together.
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A CoNLL-2012 Annotation Layers

The CoNLL-2012 annotation layers consists of the

following (Pradhan et al., 2012):

1. Document ID: Contains the file name.

2. Part number: Some files are divided into sev-

eral files and this number shows the sentence

number.

3. Word number: Word position in the sentence.

4. Word itself: This represents the tokenized to-

ken.

5. Part-of-Speech: The Part-of-speech of the

word.

6. Parse bit: This is the bracketed structure bro-

ken before the first open parenthesis in the

parse, and the word/part-of-speech leaf is re-

placed with a *.

7. Lemma: Used to show the gold and predicate

lemma.

8. Predicate Frameset ID: This is the PropBank

frameset ID of the predicate in Column 7.

9. Word sense: The word sense.

10. Speaker/Author: The speaker or author name,

where available. Mostly in broadcast conver-

sation and web log data. However, this is not

available for Arabic because all texts are ex-

tracted from newspapers.

11. Named Entities: Named entity for the word.

12. Arguments: Predicted and gold arguments.

13. Coreference: Coreference chain which can be

single or multiple tokens.
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