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Abstract

We present an approach to multi-class classi-
fication using an encoder-decoder transformer
model. We trained a network to identify French
varieties using the same scripts we use to train
an encoder-decoder machine translation model.
With some slight modification to the data prepa-
ration and inference parameters, we showed
that the same tools used for machine translation
can be easily re-used to achieve competitive per-
formance for classification. On the French Di-
alectal Identification (FDI) task, we scored 32.4
on weighted F1, but this is far from a simple
naive Bayes classifier that outperforms a neural
encoder-decoder model at 41.27 weighted F1.

1 Introduction

Sometimes one might find more appealing to re-
use the same code, scripts and infrastructure that
already serve an NLP product for another purpose.

In this case, an eco-system of tools is already
available to train machine translation models and
serve the model with a RESTful API, then we
need some language identification tools. Then, one
might think,

Technically, an auto-regressive encoder-
decoder model that produces a single to-
ken at inference is sort of like a classifier.

Recent works had validated the thought (Li
et al., 2018; Thant and Nwet, 2020; Hadar and
Shmueli, 2021), most notably the “Don’t Classify,
Translate!" (DCT) idea simply re-used an encoder-
decoder machine translation models as a hierarchi-
cal classifier to categorize e-commerce products.

To test the DCT model for language identifi-
cation, we evaluated the approach on the French
Cross-Domain Dialect Identification (FDI) dataset
(Gaman et al., 2022) while participating in a Var-
dial shared task .!

"https://sites.google.com/view/
vardial-2022/shared-tasks
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An example of the input and output of the FDI data
looks as follows:

[IN] : Le SNES compte une importante com-
munauté ukrainienne qui s’éleve a environ 1,3
million de personnes.

[OUT] : BE

where the input text sometimes contains named-
entities and they are masked with the SNE$ token
and the output is a two-char locale code to roughly
represent the dialect.

2 Motivation

Our initial thought was to use the least effort in
script changes to train a machine translation model
to a multi-class classification one. Being frugal,
the secondary objective is to ensure that we do not
spend more than a day’s worth of GPU hours.
Intuitively, we need the decoder to produce
only one token that marks the class label, so we
shouldn’t be needing heavy machinery (i.e. deep
layers) in the decoder. Previous works (Domhan
et al., 2020; Susanto et al., 2019) have also shown
that offsetting decoder layers with more encoder
layers could improve inference latency. Also, when
training encoder-decoder models on small datasets,
deep decoder layers might be an overkill.
Therefore, we decided to re-use a “mini” trans-
former (Vaswani et al., 2017) with 6 encoder, 2 de-
coder layers trained with the Marian NMT toolkit
(Junczys-Dowmunt et al., 2018).2

3 TL;DR (Experimental Setup)

We trained an encoder-decoder machine translation
model using the Marian NMT framework with the
following hyperparameters:

*Using this script from https://github.com/
alvations/myth/blob/master/train-sarah.
sh
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¢ Transformer with 6 encoder, 2 decoder,

8 attention heads

vocabulary size of 8,000

embedding dimension of 1024

transformer feed-forward dim. of 4096

¢ Adam optimizer parameters

— learning rate sets warm-up at 8,000
— max learning rate set to 0.0001

— inverse square root learning rate decay

* Sentencepiece options

— character coverage was set to 100%

— class labels were set as user-defined sym-
bols, viz. BE, CA, CH, FR to repre-
sent Belgian, Canadian, Swiss and France
French varieties.

— the same sentencepiece vocabulary is used
for the source input and target output

* Data limit options

— during training, the maximum length of the
text input were cropped to 1,000 sentence-
pieces

— during validation, the maximum length of
the text input was set to 5,000 sentence-
pieces

— at inference, when applying it to the test
set, the max length was set to 500 sentence-
pieces’

* Other notable hyperparameters

— global dropout regularization was set at 0.1
— beam size was set to 3 during inference

— label backoff when decoder produces output
that is not any of the label

The modified script with the above hyper-
parameter used to train the model is available
on https://github.com/alvations/
myth/blob/master/train-esther. sh.
We refer to this model as DCT mini for the rest
of the paper.

3Cos Because we wanted to keep the inference time
tractable in production, i.e. <300ms
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3.1 How Low Can We Go?

To push the limits of the ‘Don’t Translate, Classify’
approach, we want to see how the smallest possible
model performs on the FDI dataset. We trained a
model with transformer with I encoder, 1 decoder
and 1 attention head. The rest of the hyperparame-
ters are same as the ones described Section 3 above.
We refer to this model as DCT micro for the rest
of the paper.

3.2 Non-neural Baseline

Additionally, to compare our models with a non-
neural baseline, we trained a naive Bayes model
similar to the ones reported in Tan et al. (2014).4.
Sweeping through 1 to 12 character n-grams fea-
tures, the best model based validated on the devel-
opment is based on 6 to 10 character n-grams. We
refer to this model as Naive Bayes for the rest
of the paper.

4 Results

Systems Micro Macro Weighted
Naive Bayes | 45.82 31.19 41.27
DCT Mini 39.14  26.27 32.35
DCT Micro 3421  19.05 24.16
NRC 49.34 34.37 45.81
SUKI 39.18 26.61 34.22

Table 1: Fl-scores of the Systems on the FDI Test Set

Table 1 reports the F1-scores of the systems we
mentioned earlier and the best systems’ results of
the other teams (NRC and SUKI) that participated
in the shared task (Aepli et al., 2022).

The Naive Bayes baseline result is unsurpris-
ingly strong and the DCT approaches were com-
petitive but much weaker at around 10 points F1-
score lower. While we expected a drop in qual-
ity, the drastic F1 score drop from DCT Mini
to DCT Micro is startling. A naive probabilis-
tic model outperforming neural models on clas-
sification task is not a novel finding (Bernier-
Colborne et al., 2019) and sometimes neural mod-
els when trained inappropriately with bad hyperpa-
rameter sets do not outperform the old-school sta-
tistical/probabilistic approaches (Nat, 2016; Zhang
and Duh, 2020).

*Using  script from https://github.com/
alvations/bayesline-DSL/blob/master/
ds1-2019.py
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4.1 A Naive Bayesline

We note a performance difference of the naive
Bayes models between the validation and test data.
In retrospect, evaluating the naive Bayes models on
the test data labels, the best feature is 4 to 6 char-
acter n-grams, and it achieves the 44.98 weighted
F1 score, 34.33 and 47.15 on macro and micro F1
scores. But note that picking the best model based
on such oracle knowledge is unrealistic.

The difference between the model selected based
on the validation results and the test gold standard
reflects possibly a difference in data distribution
and Ng (2016) would suggest to collect more vali-
dation data so that the difference between the vali-
dation and test set is kept to a minimum.

5 Analysis

Figure 1 and 2 presents the confusion matrices for
the DCT mini and DCT micro models.
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Figure 1: Confusion Matrix for DCT mini
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Figure 2: Confusion Matrix for DCT micro

For both models, we observe that the:

* FR label was commonly misidentified as BE
or CH
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* BE label was commonly misidentified as CH
* true positive rate for the CA label is relatively
low compared to other labels

Specific to the DCT mini model, it has higher
false positive rate when wrongly classifying BE
as FR while the DCT micro did not present this
behavior.

5.1 Label Class Distribution

One possible suspicion for the high false positives
on CH and FR in the test set might be due to the
training/validation label distribution. Ideally, a ro-
bust language identification should not be affected
by the label class distribution of the training and
validation data.

But label distribution is not the culprit here, Ta-
ble 2 gives no evidence of the DCT model bias-
ing label classes that resembles training/validation
distribution. This is unlike classical classification
models that requires imbalanced data.

Training | Validation ‘ Test ‘ Predicted

BE 33.93 429 | 4147 33.26
CA 9.48 095 | 2.57 0.57
CH 39.37 29.13 | 26.74 62.33
FR 17.22 27.02 | 29.21 3.85

Table 2: Label Class Distribution of the Training, Val-
idation, Test Data and the Predicted Labels from the
DCT Mini model.

5.2 The FDI Dataset

If you’ve read till now, you would have realized
that we deliberately avoided in-depth exploratory
data analysis before we trained discussed model
training and the results. That is because we know
that there will be issues with any dataset, whether
it is inherent bias added when collecting or cleaning
the data.

Hence, our first-pass proof of concept to validate
the ‘Don’t Classify, Translate’ approach is to trust
the integrity and the quality of the data and partici-
pate in the closed shared task scenario, where only
the data provided can be used to train the model.

Now that we established a baseline model (DCT
mini), compared it to an optimized version and
a non-neural baseline and explored the obvious
hyperparameter optimization options. We want to
dig deeper into the dataset to understand how and
when our model fail.



5.3 Uncertain Labels

Unlike a typical classification model where the last
layer decides the most salient class label that the
input should fall into, the DCT approach has an
interesting by-product where it returns an empty
string or a hallucinated string.

The following examples are some of the inputs
on the FDI test set that DCT mini produced an
empty label.

* identifiez-vous

* Pour aller plus loin
* A lire aussi

e Un entretien

* Mais que l’on peut...

There are a total of 744 empty labels produced
by DCT mini on 22 unique text inputs in the test
sets. It is worth noting identifiez-vous was repeated
714 times in the test set and Pour aller plus loin
repeated 9 times.

These are 3 data points in the test set that pro-
duced hallucinating string as a label, the first ? ? ?
? 7 ? input appeared 8 times in the test data and
the other are singleton occurrences.

* Quel est le seuil minimum d’acceptation pour
que ¢a fonctionne ? + + + + + + + + + + +
+++++++++++++ A+
++ + +

*H+++++++++++++++++++4+
++++++++ A+ +++

To handle the above empty and hallucination
situations, we simply fallback to the FR labels for
these instances.

Technically, we could have looked at the n-best
options produced in our beam search and look for
the next best output that fits one of the label. How-
ever, leaving this bug/feature as is, we can use it to
identify oddities in the training and validation data
to improve the data quality.

5.4 Repetition in the Test Data

Academically, it makes sense to deduplicate the test
set and report accuracy or F1-scores. Unless a test
set is plagued with rampant repetitions, e.g. more
than 30% of the test set are made up of repeats;
from a user-experience perspective, deduplicating
do no good to reflect the actual amount of errors
a user experience when using the tool. It is best to
leave the test data as if without deduplication if it
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is a random sample from the natural distribution of
the full dataset.

Hypothetically, if the natural distribution of the
input data has certain strings that repeats frequent,
a user is more likely to report the error on the lan-
guage label multiple times than sporadic errors that
occurs once or twice. Thus, we view the repeated
instances in the test set as a valid phenomenon
and provide the following statistics solely to un-
derstand which instances are would cause the most
user-dissatisfaction. Such scenario is evident in
Table 3 where it shows 3 unique test instances re-
peating more than 100 times results in 4.2% of the
test data.

No. of Times | No. of Unique | % of
Repeated Instances | Data

1 34,292 | 93.35

2 382 | 2.08

3 20 | 0.16
4-10 11| 0.15

22 1] 0.06

> 100 3| 4.20

Table 3: Test Data Instances with Repeated Occurrences

Table 3 presents some statistics of repeated data
in the test set. Of the 36,733 instances in the test
set, 34,292 of them occurred once and 382 unique
instances occurred twice. There are 3 instances that
repeated >100 times, we have:

* identifiez-vous (714 times)

* ici pour connaitre la suite. déja abonné ?
identifiez-vous (567 times)

* déja abonné ? identifiez-vous (260 times)

Repeating the same exercise on training and de-
velopment/validation dataset, Table 4 and 5 raises
some alarm with 10-20% of the data repeating >50
times.

No. of Times | No. of Unique | % of
Repeated Train Instances | Data

1 234,518 | 65.36

2 40,745 | 22.71

3 1,547 | 1.29

4 497 | 0.23

5-50 75 | 0.30

> 50 172 | 9.83

Table 4: Training Data Instances with Repeated Occur-
rences



No. of Times | No. of Unique | % of
Repeated Dev Instances | Data

1 12,316 | 68.41

2 426 | 2.37

3 246 | 1.37

4 764 | 4.24

5-50 3298 | 18.32

> 50 482 | 2.67

Table 5: Dev Data Instances with Repeated Occurrences

Given this knowledge of the repeated instances,
the natural experiment to test is to deduplicate
and/or remove the instances that >50 times and
retrain the model to see if these data irregularities
affected the weighted F1 performance of classifica-
tion task. But that is out of scope of this report.

6 Related Work

While generic language identification seemed
solved (McNamee, 2005; Lui et al., 2014; Xia et al.,
2010), distinguishing language varieties which are
often lower resourced remains a challenge (Fert-
mann et al., 2014; Tan et al., 2014; Zampieri et al.,
2014, 2015). Hence, the language varieties iden-
tification task is a staple of the evaluation cam-
paigns hosted by the VarDial workshops (Malmasi
et al., 2016; Zampieri et al., 2017, 2018, 2019;
Gaman et al., 2020; Chakravarthi et al., 2021).
Across the many evaluation campaigns, probabilis-
tic models like naive Bayes have often ranked
top on the leaderboard (Bernier-Colborne et al.,
2019; Bernier-Colborne and Goutte, 2020; Bernier-
Colborne et al., 2021).

7 Conclusion

In this paper, we have described our experiments
to reuse encoder-decoder transformer models as a
classifier based on the “Don’t Classify, Translate"
idea. Evaluating on the French Dialect Identifica-
tion (FDI) dataset, we found that a simple naive
Bayes model works better than the 6 layers encoder-
decoder models and a really small neural model
worked even worse. And now, some concluding
remarks:

The encoder-decoder transformer is a
shiny hammer that works fairly well for
many NLP/MT tasks. But note, the ‘your
miles may vary’ (YMMYV) caution. Also,
as a sanity check, a simple non-neural
approach is a good baseline.
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