Phonetic, Semantic, and Articulatory Features in Assamese-Bengali
Cognate Detection

Abhijnan Nath', Rahul Ghosh?, and Nikhil Krishnaswamy'

'Department of Computer Science, Colorado State University, Fort Collins, CO, USA
2Fossil Ridge High School, Fort Collins, CO, USAT
{abhijnan.nath, nkrishna}@colostate.edu

Abstract

In this paper, we propose a method to detect
if words in two similar languages, Assamese
and Bengali, are cognates. We mix phonetic,
semantic, and articulatory features and use
the cognate detection task to analyze the rel-
ative informational contribution of each type
of feature to distinguish words in the two sim-
ilar languages. In addition, since support for
low-resourced languages like Assamese can be
weak or nonexistent in some multilingual lan-
guage models, we create a monolingual As-
samese Transformer model and explore aug-
menting multilingual models with monolin-
gual models using affine transformation tech-
niques between vector spaces.

1 Introduction

Lexical cognates are words that are inherited by
direct descent from a common etymological ances-
tor. Due to sound change and semantic shift, cog-
nates may or may not be easy to detect without
rigorous application of the comparative method.
For example, English “two” is cognate with Arme-
nian erku, as both are descended from Proto-Indo-
European *dwdh;, with *dw->>tw- and *dw-
>>erk- being regular, if non-intuitive, parallel
sound changes.

Unlike loanwords, cognates are inherited and
not borrowed, and are therefore necessarily sub-
ject to diachronic sound change. Application of
the comparative method to cognates can be used
to discern the evolutionary paths of related lan-
guages, making them very useful for historical
linguists, but first cognates must be distinguished
from other classes of words like ordinary transla-
tions or words that simply sound similar.

In this paper we focus on cognate detection
between two closely-related languages: Bengali

TThis work conducted during an internship with the Col-
orado State University Department of Computer Science.
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(ISO code bn) and Assamese (ISO code as). Ben-
gali (262 million speakers) and Assamese (15 mil-
lion speakers) are two languages of eastern In-
dia and Bangladesh. They are both official lan-
guages of India (with most speakers located in the
states of West Bengal and Assam, respectively),
while Bengali is also the national language of
Bangladesh. They share a common descent from
Early Indo-Aryan via Magadhi Prakrit, and are
both typically written using Bengali or Eastern
Nagari script. The Bengali-Assamese languages
(or Gauda-Kamarupa languages) is the subgroup-
ing of Eastern Indo-Aryan that contains both these
languages and related dialects. They share certain
grammatical features like classifying affixes (e.g.,
Asm. -zon, Beng. -dzon, referring to persons),
as well as certain common phonetic innovations
(such as the evolution of Sanskrit /o/—/2/).

Despite the similarities, the two languages have
some important differences, particularly in their
sound patterns. Table 1 shows Assamese and Ben-
gali consonants that are pronounced differently
despite being written with the same letter. For
instance, Assamese lenited Sanskrit /s/ to /x/
whereas Bengali palatalized it to /[/. However
both sounds are now written with the same letters
in their respective languages—31, A, or ¥—usually
transcribed as <s> or <sh>.

Assamese Bengali
8,82, te.te" dz,dz"
tihddb gt dsd,qf/dh
X,1I [.r

Table 1: Assamese-Bengali sound correspondences.

Therefore between these two languages, pho-
netic features, orthographic features, semantic fea-
tures, or alignment of articulatory sequences may
be more or less useful in determining cognate sta-
tus, depending on the specific words in question.
The word 9% (/ek/), meaning “one” in both lan-
guages, is a clear case of common inheritance
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from Sanskrit with the same sound changes ap-
plied; one need only look at the orthographic and
phonetic forms to see this. But for Assamese TP
(/okol/), meaning “only,” the Bengali cognate is
actually Qe (/ekla/). In Bengali, 9 is actu-
ally an Arabic loan meaning “wisdom.”

In this paper we explore the contributions of
phonetic, semantic, orthographic, and articulatory
alignment features to the task of cognate detec-
tion between Assamese and Bengali. We use
heuristic edit distance metrics, embedding vectors
from various large multilingual language models
(MLMs), and neural networks to learn alignments
between phonetic sequences. We also use an
affine transformation technique to augment the em-
bedding spaces of MLMs with Assamese-specific
data. With combinations of features, we are able to
achieve up to ~94% F1 on cognate detection. Our
results also show that embeddings from a smaller
monolingual BERT variant can be mapped using
affine transformations into the embedding space
of larger multilingual models, which can improve
both precision (up to 30%) and recall (up to 20%)
in detecting Assamese cognates in Bengali.

2 Related Work

Cognate detection has been approached from
many angles in the NLP community. Kondrak
(2001) identifies cognates in Algonquian using
phonetic and semantic similarity. Mulloni and
Pekar (2006) infer orthographic changes between
cognates across languages. Jiager (2018) eval-
uates PMI and SVM-based methods in cognate
detection over the Automated Similarity Judg-
ment Project database (Brown et al., 2008). List
(2014) finds relationships between data size and
genetic relatedness in automated cognate detec-
tion between English, German, Dutch, and French.
Bloodgood and Strauss (2017) explore using
global constraints in this task. Dellert (2018) ex-
plores sequence alignment and sound correspon-
dence features in cognate detection in Northern
European languages; these are two of the feature
types we also explore here. Rama et al. (2018)
and Rama and List (2019) explore the application
of automated cognate detection methods to phylo-
genetic reconstruction and inference, and Kanojia
et al. (2021a) utilize WordNets to perform ortho-
graphic similarity-based cognate detection in vari-
ous Indian languages, but notably not Assamese.
Bharadwaj et al. (2016) and Rijhwani et al.
(2019) suggest that phonologically-aware articu-
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latory representations from PanPhon (Mortensen
et al., 2016) can either be used natively as em-
beddings or as features in attention-based neural
models for downstream NLP tasks such as NER
or entity linking for low-resource languages. La-
bat and Lefever (2019) and Lefever et al. (2020)
suggest that adding semantic information to or-
thographic features works well for cognate detec-
tion in resource-rich languages like English and
Dutch (90% F1). Similarly, Kanojia et al. (2021b)
suggests that adding large multilingual model em-
beddings to cognitive features like gaze improves
cognate detection in low-resource languages like
Hindi and Marathi (86% F1). Work in transla-
tion lexicons (e.g., Schafer and Yarowsky (2002))
is also relevant here, for the hybrid approach to
similarity metrics used. We combine multiple ap-
proaches which, to our knowledge, have never be-
fore been used all together. Works such as Gane-
san et al. (2021) and Artetxe et al. (2018a,b) im-
prove bilingual lexical induction using either lin-
ear or non-linear word embedding maps, but they
use non-contextual embeddings like fastText or
word2vec. We extend such research to cognate
detection using contextualized embeddings from
Transformer-based models to leverage additional
monolingual representations in this task.

3 Datasets

Cognates in Bengali and Assamese must share a
common descent from an ancestor language'; the
best-documented of these is Sanskrit. However,
many descendants of Sanskrit make scholarly re-
borrowings from Sanskrit (fatsama) that are fully
reincorporated Sanskrit forms adapted to fit the
modern phonology. These exist alongside tadb-
hava words inherited from Old Indo-Aryan with
concomitant sound changes in the Middle Indo-
Aryan phase.

For this data collection, we turned to Wik-
tionary. Namely, we scraped the categories of the
form [Descendant]_terms_derived_
from_Sanskrit for each of the two descen-
dants.?>. We took the union of these two sets and
then took the subset of the union where both the
Assamese and Bengali forms had the same docu-
mented Sanskrit ancestor. Checking against com-

"We do not adopt the definition of cognate that subsumes
loanwords (e.g., Kondrak (2001)); we use the linguistic defi-
nition that treats loanwords and cognates as distinct.

e.g., https://en.wiktionary.org/wiki/
Category:Assamese_terms_derived_from_
Sanskrit
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mon ancestry filters out loanwords from the cog-
nate datasets. Table 2 shows the number of cog-
nates retrieved for each language. We should note
that despite the union-intersection operations be-
ing symmetrical, this does not result in equally-
sized datasets for the two languages; because Ben-
gali has more overall entries in the English Wik-
tionary, there are more cases where multiple Ben-
gali words have the same ancestor as a single doc-
umented Assamese word.

Descendant Ancestor # Cognates

205
335

Sanskrit
Sanskrit

Assamese
Bengali

Table 2: Cognate pair counts per language.

We then convert every word in every pair to its
phonetic representation in the International Pho-
netic Alphabet (IPA). This is done using the Epi-
tran package (Mortensen et al., 2018). The avail-
able Epitran distribution does not support certain
low-resourced languages, among them Assamese,
but the format is easily extensible, and so we wrote
an Epitran graph-to-phoneme mapping for As-
samese using resources like Omniglot® and Wiki-
wand/Assamese*, as well as native speaker guid-
ance for verification.

Having gathered positive examples of cognates,
we complete the datasets with word pairs that
are not examples of cognates. These may be:
i) hard negatives: phonetically similar non-cog-
nates; ii) synonyms: semantically similar words,
like ordinary non-cognate translations; iii) ran-
doms: pairs where the two words have no dis-
cernible phonetic or semantic relationship.

To collect hard negative examples, we use the
PanPhon package (Mortensen et al., 2016) and cal-
culate six different edit distances between the IPA
transcription of every gathered cognate in one lan-
guage, and the IPA transcription for every lemma
in the other language (the list of lemmas was also
scraped from Wiktionary). For each edit distance,
we select the word that has the lowest edit distance
to the cognate in question. This returns up to six
hard negatives per cognate (less if more than one
edit distance metric returns the same nearest neigh-
bor). Example: Asm. 331 (/kot"a/) “word”, Beng.
301 (/kota/) “how many”.

*https://omniglot.com/writing/assamese.
htm

*nttps://www.wikiwand.com/en/Help:
IPA/Assamese
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To collect synonyms, we adapted our Wik-
tionary scraper to exploit the metadata organiza-
tion of Wiktionary pages, and retrieved synonyms
for each word in the collected cognates list where
available. Example: Asm. ¥ (/kutum/) “fam-
ily”, Beng. RTOmR (/riftadar/) “relatives.”

Finally we generate the randoms pairings by
pairing each cognate with a random word in the
other language. As a final cleanup step, we remove
any intersections between these three datasets and
between these and the cognates dataset.

We then concatenated these subsets into three
different datasets. 1) Assamese-Bengali,
where the Assamese word is the baseline com-
parand to which the Bengali word is compared.
2) Bengali-Assamese, where the reverse is
true. This is a small and subtle difference. The
order of the words in word pairs between this
dataset and the previous one are simply flipped,
so the edit distances are symmetric, but because
alignment score is calculated using a deep neu-
ral network estimator trained on randomized splits
of the data, alignment scores between two re-
versed word pairs are similar but often not identi-
cal. 3) All-languages. This is a bidirectional
dataset consisting of the concatenation of the pre-
vious two. In training and inference this allows the
final classifier to learn from similarity metrics that
flow in both directions.

The full dataset creation process for data of this
size can be completed within an day, including na-
tive speaker verification. Table 11 in the Appendix
gives the total train and test size of each category.

4 Methodology

Here we discuss the orthographic and phonetic fea-
tures we extract from the data, our methods of
assessing alignment between phonetic sequences,
how we extract semantic similarity features from
various language models, and how these different
features combine in the cognate classification task.

4.1 Orthographic and Phonetic Similarity

Orthographic similarity is simply the Levenshtein
edit distance (Levenshtein et al., 1966) between
two strings. Since Assamese and Bengali use the
same script with small modifications, we want to
explore the importance of a simple string similar-
ity metric as a feature in our classification task.
Because of differences in the sound patterns of
the two languages (see Sec. 1), phonetic distance
is also important. We calculate phonetic similar-
ity using 6 different edit distances from PanPhon


https://omniglot.com/writing/assamese.htm
https://omniglot.com/writing/assamese.htm
https://www.wikiwand.com/en/Help:IPA/Assamese
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over the IPA transcriptions of the word pairs in our
dataset. These edit distances are: Fast Levenshtein
Distance, Dolgo Prime Distance, Feature Edit Dis-
tance, Hamming Feature Distance, Weighted Fea-
ture Distance, Partial Hamming Feature Distance,
all normalized by the maximum length of the two
words in the pair. We hypothesize that these dis-
tance metrics collectively capture some important
information about phonetic similarity between As-
samese and Bengali cognate pairs.

4.2 Alignment-Scoring Network

To account for different phonotactics, epenthesis,
elision, and metathesis between Assamese and
Bengali, we build a model to align phonemes in
the pair. This provides a more informative mea-
sure than simple edit distances.

We convert the IPA transcriptions to 21 sub-
segmental articulatory features using PanPhon’.
These features include place and manner of artic-
ulation, voicing, etc., and the feature vectors were
padded to the maximum length of a vector in the
cognate pair. The features for word pairs in our
datasets were then concatenated for input to the
alignment-scoring network.

The alignment network is a two-layer deep feed-
forward neural network with 512 neurons in each
layer, all with ReLU activation and followed by
10% dropout. We trained for 5,000 epochs on
the aforementioned concatenated features of the
All-languages dataset (see Sec. 3), using a
80:20 train/validation split. The network was
trained against the cognate/non-cognate binary la-
bel. This is not to predict cognate status directly,
since we do not include any semantic information
at this step, but the label acts as an rough indica-
tor of “phonetically aligned” or not. A positive
prediction means the model predicts that the two
words in the pair are strongly phonetically-aligned
according to the articulatory features. During in-
ference, we get the pre-sigmoid logit value as a
holistic alignment score between the two words.

4.3 Semantic Similarity

Even though cognates do not need to have simi-
lar meaning, many do preserve semantic similar-
ity.  Work such as Turton et al. (2021) suggest
that contextual semantic information at the word
level can be extracted from BERT and variants as
embeddings. As such, we extract semantic infor-

SPanPhon does not contain suprasegmental or tonal in-
formation but both Bengali and Assamese are non-tonal lan-
guages.
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mation from both word-level and sentence-level
embeddings from large multilingual Transformer-
based models such as XLM-R (Conneau et al.,
2020) and MBERT (Devlin et al., 2018), as well as
from some smaller, Indian language-focused mod-
els: IndicBERT (Kakwani et al., 2020) and Muril
(Khanuja et al., 2021).

XLM-R (100 languages) and MBERT (104 lan-
guages) are trained on multiple languages from
across the globe. MBERT includes Bengali in
its training data but not Assamese. XLM-R was
trained with data from both languages but the As-
samese training data size is a relatively small 5
million tokens, whereas the Bengali training data
is over 100 times larger (and the training data
of a well-resourced language like English is 100
times larger still). IndicBERT and MuRIL are fo-
cused on Indian languages and so have a larger
relative training data size for languages like As-
samese and Bengali. IndicBERT and MuRIL also
outperform XLM and MBERT against several se-
mantic downstream NLP task benchmarks like In-
dicGLUE (Kakwani et al., 2020), cross-lingual
XTREME (Hu et al., 2020), etc.

4.3.1 Monolingual Assamese Model
In order to provide our cognate classifier with a
potentially stronger representation of Assamese
semantics, and to investigate how much infor-
mation a much smaller monolingual Transformer
model might be able to contribute, we trained a
“light” ALBERT (albert-base-v2) model for
305,700 epochs with a vocabulary size of 32,000
on four publicly-available Assamese datasets: As-
samese Wikidumps6, OSCAR (Suarez et al.,
2019)7, PMIndia (Haddow and Kirefu, 2020)%
and the Common Crawl (CC100) Assamese cor-
pus (Conneau et al., 2020)° (in total, after prepro-
cessing, around 14 million Assamese tokens) with
the BERT Masked Language Model (Devlin et al.,
2018) loss function. See Table 5 in the Appendix
for model configuration.
4.3.2 Affine Transformations Between
Embedding Spaces
Since embeddings are vectors that preserve sim-
ilarity relations across dimensions, only embed-
dings retrieved from the same model architecture
are guaranteed to be directly comparable. Absent
this condition, differences in training data, training

®https://archive.org/details/aswiki-20220120
https://oscar-corpus.com
8https://paperswithcode.com/dataset/pmindia
*https://paperswithcode.com/dataset/cc100



regime, and model architecture mean that embed-
dings retrieved from different models are likely to
be orthogonal in most dimensions.

However, recent work in the vision com-
munity (McNeely-White et al., 2020, 2022)
has demonstrated that by fitting affine matrices
Ma_,p and Mp_, 4 between paired features de-
noting equivalent samples extracted from models
A and B, features from one embedding space can
be transformed to another embedding space with
high fidelity. This entails solving for a mapping
function f(x; W) where W € R%4 x R?5, be-
tween equivalent information samples (i.e., paired
embedding vectors) from two models, using ridge
regression. The aforementioned work has been ap-
plied to CNN architectures, and here we use this
task to explore the application of similar principles
to Transformer architectures.

The paired vectors we use to compute mappings
between embedding spaces come in the form of
word-level and sentence-level embeddings from
the aforementioned large language models: In-
dicBERT, XLLM-R, MBERT, MuRIL, and our As-
samese ALBERT variant (Sec. 4.3.1).

Sentence-sensitive embeddings We took our
list of extracted cognates and had a native speaker
of each language manually create simple sen-
tences for each word that were direct translations
of each other. Sentences were of a form that was
appropriate for the part of speech, left the sense of
the word as unambiguous as possible, and were as
simple as possible (e.g., see Table 3).

Language Sentence TPA
Bengali  aft a0 TR eti ek{i ay
Assamese (0T 9TT @R eitv eta they
English This is a foot/leg

Table 3: Sample equivalent sentences with cognate
words (and English translations) underlined.

Two additional special tokens (<m> and </m>)
were added to the models’ vocabularies. Be-
fore getting the sentence embeddings, the cognate
words were surrounded by these tokens to account
for subword tokenization potentially breaking up
the cognate words. We then generate binary vec-
tors for the cognates using the indices of the spe-
cial tokens in the sentence. Our model attends
to these binary maps by an element-wise tensor
multiplication in the forward function and outputs
a contextual representation of the word. For in-
stance, when preprocessed, the Bengali sample
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sentence “this is a valley” is input to the model
as b @36 <m>TBRPI</m>. Sentence-sensitive
embeddings were generated only from MBERT
and our ALBERT variant, as the other models all
have at least some support for Assamese already.

Word-level embeddings For each of the five
models, we input a “sentence” formatted as
[CLS]<word>[SEP] and use the [CLS] to-
ken’s last_hidden_state to get represen-
tations for each token in each sequence of the
batch from the last layer of the model, which of-
ten encodes more semantic information. Jawahar
et al. (2019) and Tenney et al. (2019) suggest that
BERTS later layers encode comparatively more
high-level semantic information than the middle
layers. The [CLS] token here serves the same pur-
pose as the <m> tokens in the sentence-sensitive
embeddings: to account for potential subword tok-
enization effects.

Having extracted the different embeddings from
each model, we use the native embeddings from
each model to find cosine similarities between the
words in every pair in the data. These cosine simi-
larities are input features into the final evaluation.

Affine mapping procedure Native model em-
beddings are independently useful for downstream
NLP tasks, but their utility may be degraded when
the language model does not robustly support the
language in question. E.g., in the case of MBERT,
which was not trained on Assamese, many As-
samese words may be treated as out of vocabulary
items and broken up into subwords that do not cap-
ture the semantics of the original word. Therefore
in this case, we explore if and how linearly map-
ping one set of embeddings from its native space
to a target model space can still act as an effective
feature in this cognate detection task.

To construct the mapping, we take the word or
sentence embeddings from one model as inputs,
and equivalent word or sentence embeddings from
another model as outputs, and fit them to each
other using scikit-learn’s ridge regressor. The re-
sulting d 4 X d g transformation matrix!? computed
from a set of paired vectors serves as a bridge
transformation from one embedding space to an-
other by minimizing the distance between paired
points in R%4 x R?5 feature space that share equiv-
alent semantics. Multiplying a source embedding
by this precomputed bridge matrix should result

0All embeddings used here are 768 dimensions, except
embeddings from XLM-R, which are 1280 dimensions.
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Figure 1: Cross-embedding space mapping pipeline resulting in directly comparable vector representations

(MBERT—ALBERT used as example).

in approximately the same semantics in the target
embedding space, meaning that a transformed em-
bedding and one native to the target embedding
space are now directly comparable using metrics
like cosine similarity. Fig. 1 shows this procedure.
We construct bridge matrices between the four
MLMs mentioned previously, and our Assamese
ALBERT variant. Like the word and sentence-
sensitive embeddings, the cosine similarities be-
tween embeddings of word pairs after the mapping
transformations are added to the dataset as input
features to the final classification task, so we can
examine all semantic similarity computations.

4.4 Evaluation

Having collected a variety of phonetic, seman-
tic, and articulatory alignment metrics for all the
paired words in our datasets, our task is now to
train a classifier model to discriminate cognates
from non-cognates in the data, using these features.
We train two types of classification models: a lo-
gistic regressor (LR) and a neural network (NN).
The NN consists of 3 layers of 512, 256, and 128
hidden units respectively, all with ReLU activation
and followed by 10% dropout, and a final sigmoid
activation, and is trained for 5,000 epochs with
Adam optimization and BCE loss. The LR is more
interpretable but the NN is better performing.

We train three versions of the model: one
trained on the All-languages dataset,
and evaluated on the test splits of that
dataset and of the Assamese-Bengali
and Bengali-Assamese datasets; and
one each trained and evaluated only on the
Assamese—-Bengali/Bengali-Assamese
datasets (pair-specific models, which are herein
denoted in tables and charts with an asterisk (*) or
additional label train_ewv).

We trained all classifiers multiple times using
different feature combinations to assess the contri-
bution of different types of features. Table 4 shows
the abbreviations we use in the following discus-
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sion for the different classes of features.

Abbr.  Features

ped Phonetic Edit distances (PED)

dl DNN logits (alignment score)

ed PED with textual Levenstein dist.
b All native MLMs (BERT variants)
m All mappings w/o native MLMs
ab-am All MLMs w/ word-level maps
ab-sm All MLMs with sentence maps
sm Sentence maps

Table 4: Abbreviations for feature combinations.

*sm - sentence maps from MBERT to ALBERT space.
*b - native MLM embeddings without cross-embedding
space mappings (word or sentence).

*ab-am - includes native MLM embeddings along with
word embedding maps without sentence maps

S Results and Discussion
We achieve 94% F1, 93% recall, and 95% preci-
sion when using all features. The alignment score
feature provides the greatest single boost, and we
find that adding semantic information to phonetic
features provides as much additional performance
as adding orthographic features, though specific
false positives and negatives diverge significantly.
Fig. 5 shows positive precision, recall, and F1
for the neural network classifier using all features.

all bn-as as-bn bn-as* as-bn*
P(+) 95 97 94 90 90
R(+) 93 94 92 88 87
F1(+) 94 95 93 89 88
Table 5: NN classifier results (as %) for the

ed-dl-ab-am feature combination (full feature set).

We can also see that the classifier performs very
slightly better using Bengali as the baseline lan-
guage than using Assamese. Similar results hold
for other feature subsets: using the “bidirectional”
All-languages model, feature sets ed—d1-m,
ped-dl-ab-am, and ed-d1l-b all show 94%



F1(+) for Bengali-Assamese but 93% F1(+) for
Assamese-Bengali.

One possible reason for this is that Bengali
forms are on average somewhat more conservative,
tending to preserve consonant clusters more than
Assamese, and in fact if we look at the false nega-
tives for this result, we find many cases where one
cognate has a consonant cluster and the other does
not (see Table 6). Another possible reason may
be the slightly higher number of Bengali baseline
pairs in the dataset (see Sec. 3).

Bengali Assamese

sfial (/fadz"/) 3% (/xond"ija/)
#r%1 (/[ikkta/) PRI (/xikuwa/)
R (/mifti/) ¥ (/mita/)

Table 6: Sample false negatives.

We also see that the model trained on the bidi-
rectional data outperforms in each direction mod-
els trained on that direction alone.

The NN classifier outperforms the LR by ~4%
in all metrics. This suggests that for detecting
bilingual cognates using multiple feature types,
the non-linear decision boundary of a multi-layer
perceptron system is better-suited to this task than
the linear decision boundary of the LR.

5.1 Influence of Features

By comparing the performance of different feature
subsets we can expose what features are most im-
portant to the cognate detection task and when. We
also add a layer of interpretability to the results by
cross-checking against the weights assigned to the
different features by the LR classifier.

5.1.1 Alignment Features

The alignment score (dl) is the singular fea-
ture that most increases performance (Table 7).
Adding alignment scores to just edit distances (ed)
causes performance to rise approximately 17%.
The logistic regressor for the ed—d1 feature set
gives the alignment score feature a weight of ~3.2,
making it strongly correlated with cognate status.
It also performs best using the bidirectional data;
with addition of alignment score, the pair-specific
models perform about 4-6% lower.

5.1.2 Phonetic vs. Orthographic Features
When using only phonetic edit distances (ped),
performance drops to 43% F1 in most evalua-
tions (51% on the Assamese-Bengali pair-specific
model). This is because many times Assamese-
Bengali cognates are pronounced differently even
if spelled similarly. Adding a textual Levenshtein
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Feat. all bn-as as-bn bn-as* as-bn*
ed 76 76 76 76 76
ed-dl 93 93 92 86 88
ped 43 43 43 42 51

Table 7: F1(+) as % with and without alignment score
(d1) and Levenshtein distance features.

0.9
=
(]

D10

F1 Scores

05 o

ped-dl-m-sm

04
ped-b ped-m ped-m-sm

Feature Abbreviations

ped-ab-sm ped

Figure 2: Influence of different semantic feature sets
compared to phonetic edit distance baseline (ped).

distance metric (ed) can identify correspondence
where phonetic edit distance struggles. The ed
LR classifier gives textual Levenshtein distance a
weight of ~-2.7, a strong inverse correlation.

5.1.3 Semantic Features

Addition of all the available semantic features to
the ed-d1l feature set results in a performance
boost of only a few percentage points (cf. Tables 5
and 7). Nonetheless, by conducting further abla-
tion tests, we can show where the semantic fea-
tures actually provide important information.

Fig. 2 shows the effects of different subsets of
semantic features—cosine similarities between na-
tive MLM embeddings, and between embeddings
mapped from Assamese ALBERT to each MLM
embedding space at the word and sentence level—
compared to the lowest performing feature set,
phonetic edit distances.

Adding any semantic information to phonetic
features alone substantially improves performance
of the neural network classifier on cognate detec-
tion. For instance, adding cosine similarities from
the different pretrained MLMs (ped-b) brings
performance back up to ~76%, or on par with the
inclusion of textual Levenshtein distance. For this
feature set, XLLM cosine similarity has the highest
weight: ~1.0, while MBERT cosine similarity is
next: ~0.4 (MuRIL: ~0.3; IndicBERT: ~0.06).

In terms of overall performance, adding seman-
tic similarly to phonetic edit distance is as good as
adding textual edit distance, but the specific mis-
classified examples in each case are quite differ-
ent. Table 8 shows the breakdown of false pos-



itives by negative example type using these two
different feature sets. Feature set ed has a much
higher false positive rate, and also that in most
cases when semantic information is used instead
of textual edit distance, the proportion of false pos-
itives that are synonyms goes down, suggesting
that including semantic information from MLMs
improves cognate detection by mitigating misclas-
sification of synonyms. The exception to this is in
the ped-b feature set for the Assamese-Bengali
pair-specific model, where 60% of false positives
are synonyms, pointing to the relative weakness of
Assamese semantic representations in MLMs.

all bn-as* as-bn*

ed ped-b ed ped-b ed ped-b
HN 18 12 12 11 6 4
Syn. 18 5 8 1 5 6
Rnd. 4 1 2 0 1 0

Table 8: Number of false positives using ed vs. ped-b
feature sets broken down by negative example type
(hard negative, synonym, random). Bidirectional and
pair-specific models shown.

Word-level mappings Adding cosine similar-
ities taken after mapping Assamese ALBERT
word-level embeddings into the embedding spaces
of the MLMs (ped-m) also improves perfor-
mance, but the effect is more nuanced than when
using native cosine similarities. For most data
splits, the performance boost is not as pronounced
(e.g., an appreciable but modest increase from
43% to 54% F1 on the bidirectional model eval-
uated against Bengali-Assamese data), but a dra-
matic increase in performance is seen on the
Assamese-Bengali pair-specific model, where pos-
itive F1 rises to 76%, equaling the performance
of the same model using the native MLM simi-
larities. We see that the LR weight assigned to
cosine similarities between the mapped Assamese
ALBERT embeddings and Bengali XLLM embed-
dings is ~1.0 while the equivalent weight for As-
samese ALBERT-Bengali MBERT mappings is
~0.4. These weights are nearly the same as
those assigned to the native XLM and MBERT
cosine similarities; this and the similar NN per-
formance indicate that these mappings are con-
tributing the same level of information. However,
weights assigned to mappings into IndicBERT or
MuRIL space are both close to 0. This may be
due to the larger size of the MBERT and XLM
training corpora. The resultant embedding vec-
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tors in MBERT/XLM space are more dispersed,
and perhaps closer to isotropic (Ethayarajh, 2019),
whereas IndicBERT and MuRIL vectors appear to
be clustered in a tight high-dimensional cone. This
means there is more “space” in MBERT and XLM
to transfer in useful semantic information through
techniques like affine mapping. This is particu-
larly interesting in the case of MBERT, which did
not train on Assamese data, yet the embedding
space appears able to accommodate meaningful in-
formation from Assamese embeddings.
Sentence-level mappings Adding MBERT-
Assamese ALBERT cosine similarities computed
after mapping the MBERT embeddings into
ALBERT space using the sentence-level trans-
formation matrix (ped-m-sm) gives a further
slight boost to the neural network model. The
Assamese-Bengali pair-specific model reaches
77% F1. Adding sentence-level mappings alone
to phonetic edit distances increases performance
over ped by only ~6%; the combination of word
and sentence-level mappings is what provides
this final small boost to the Assamese-Bengali
pair-specific models. Adding sentence-level
mapping information also further boosts the other
data splits and models by a small amount.
Examining the effect of adding sentence map-
pings to ped-b (ped-ab-sm), we see that
this time the two pair-specific models see an
appreciable improvement from 76% to 78%
(Assamese-Bengali_train_ev) and 79%
(Bengali-Assamese_train_ev), suggest-
ing that similarities computed after sentence-level
mappings can help language-specific models more
than language-agnostic or multilingual ones.
Table 9 shows the breakdown of false positives
by type of negative example using these two fea-
ture sets. Table 10 shows the breakdown of false
negatives for ped, ped-m and ped-m-sm.

bn-as* as-bn*
ped pm psm ped pm psm
HN 31 48 45 47 10 15
Syp. 0 4 4 6 8 6
Rnd. O 7 2 0 2 0

Table 9: Number of false positives in pair-specific
model outputs using ped, ped-m (pm), and
ped-m-sm (psm) feature sets broken down by neg-
ative example type (hard negative, synonym, random).

When compared to the phonetic edit distance
baseline, the Assamese-Bengali model sees a dra-



bn-as* as-bn*
ped pm psm ped pm psm
FN 212 140 138 182 106 100

Table 10: Number of false negatives (undetected
cognates) in pair-specific model outputs using ped,
ped-m (pm) and ped-m-sm (psm) feature sets.

matic reduction in false positives, mostly due
to reduction in misclassified hard negatives (pho-
netic neighbors). Since hard negatives are seman-
tically distant from their phonetic-neighbor cog-
nates, introducing Assamese semantic information
helps semantically disambiguate cognates from
hard negatives. Adding mapped sentence-sensitive
embedding similarities slightly increases the num-
ber of hard negative false positives, while also
slightly reducing synonym false positives, elimi-
nating random false positives, and further reduc-
ing false negatives. The Bengali-Assamese model
actually sees more false positives with mappings
added. This model’s overall performance boost
is due to fewer false negatives, while with sen-
tence mapping the Assamese-Bengali model re-
duces both false positives and negatives.

The trends in Tables 8-10 show that us-
ing semantic similarities from models with rela-
tively strong support for Bengali helps Bengali-
Assamese performance, while adding mapped em-
bedding similarities help Assamese-Bengali per-
formance by bringing in more Assamese-specific
information through affine transformation.

6 Conclusion and Future Work

We have presented here a method for detecting
cognates between Bengali and Assamese that uses
a mixture of phonetic, orthographic, articulatory
alignment, and semantic features. The choice of
these languages was motivated by their related-
ness and the relative dearth of NLP work partic-
ularly on Assamese, but we believe the methods
presented herein are applicable to cognate detec-
tion and other types of heterogeneous similarity-
based tasks on potentially any language pair.

We found that our articulatory alignment score
was by far the most informative feature. We also
introduced a technique to map representations be-
tween embedding spaces and used it to introduce
semantic features from a monolingual Assamese
model into four large multilingual models. Adding
semantic features to phonetic features alone is
interesting on multiple levels—particularly using
mapped instead of native embeddings.
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Our ablation tests on different types of semantic
representations suggest that i) linearly transform-
ing vectors from one model’s embedding space
to another’s carries certain semantic information
with high fidelity, and ii) a model trained on a
low-resource setting can be mapped to a richer
model’s space. If these hypotheses hold, trans-
formed embeddings from a low-resourced LM can
not only reduce the computational cost involved
in training large multilingual language models but
also improve downstream NLP tasks.

NLP for minority languages may benefit from
being able to detect cognates in better-resourced
languages, both for computational historical lin-
guistics, and for corpus building. For instance,
other languages of Assam (e.g., Mishing, Bodo)
are not Indo-Aryan, but have loanwords cognate to
Indo-Aryan words, alongside vocabulary cognate
to other families, like Sino-Tibetan. Our phonetic
and alignment techniques may facilitate creating
semantic models for these severely low-resourced
languages unsupported by LLMs.

Collecting putative cognates is an essential step
in most applications of computational historical
linguistics, allowing finding regular sound cor-
respondences (for which our alignment method
could be adapted, e.g., by training individual atten-
tion weights over a sequence), identifying shared
innovations, and reconstructing earlier word forms
that could be used to reconstruct proto-languages
ala Bouchard-Coté et al. (2013) and Jager (2019).

The affine mapping technique we use warrants
more exploration. Not every affine map is a linear
map, and other techniques like shear and rotation
mapping may expose how simple a transformation
can be used. Other semantic techniques we wish
to explore include pairwise scoring of cognate pair
embeddings using a neural network. This has been
shown to work well for coreference resolution and
may be applicable for cognate detection. Lastly,
we would like to improve our monolingual As-
samese ALBERT model and evaluate it on other
downstream tasks like question answering.
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A Appendices
A.1 Sample Breakdown by Label

Table 11 gives breakdown of the Assamese-
Bengali and Bengali-Assamese train/test splits
based on their labels. Since we distinguish cog-
nates from loanwords but otherwise do not sin-
gle out loanwords in our datasets, loanwords may
exist in the other categories. Given the phonetic
similarity between loanwords and their sources,
where loanwords do exist in our data, they are over-
whelmingly likely to be in the hard negative cate-

gory.

as-bn bn-as
train test train test
Cog. 306 303 306 300
HN 776 769 721 716
Syn. 329 327 317 316
Rnd. 304 301 304 299
Total 1715 1700 1648 1631

Table 11: Number of Hard-Negatives (HN), Synonyms
(Syn.), Cognates (Cog.), and Random pairs (Rnd.)
in Assamese-Bengali and Bengali-Assamese train/test
sets.

A.2 ALBERT (Monolingual Assamese
Configuration)

Table 12 gives configuration details of the mono-
lingual Assamese Transformer model that we
trained for this research.

A.3 Further Details on Effects of Phonetic
Features

Of the 6 phonetic edit distances we used, Ham-
ming Feature Distance (divided by maximum
length) and Partial Hamming Distance (divided by
maximum length) appear to be the most correlated
with cognate status according to the weights as-
signed to them by the logistic regressor. This sug-
gests that Hamming distance’s (Hamming, 1950)
focus on using the minimum number of substitu-
tions to transform one string into another works
well for similar languages like Assamese and Ben-
gali where most individual phonemes are largely
preserved between cognate words.

Interestingly, the Dolgo Prime Distance variant
gets a low (usually negative) weight in almost all
feature combinations. This is interesting and sug-
gests that Dolgo Prime Distance is not useful here
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due to it unduly conflating multiple phonemes into
the same class. The Dolgopolsky-inspired stable
phoneme classes used by PanPhon places /[/ in
the “coronal fricatives” class, while /x/ is in the
“velar/postvelar obstruents” class. The unvoiced
velar fricative /x/ is unique to Assamese and rare
among Indian languages (Sarma and Sarma, 2014)
and we know well that Bengali and Assamese have
a regular /[/-/x/ sound correspondence. So, as
Dolgo Prime distance splits these up into differ-
ent classes, when using this metric cognate words
containing these corresponding sounds will have
phonetic distance added to them when in fact they
are regularly corresponding.



Parameters Config
architecture AlbertForMaskedLM
attention_probs_dropout_prob 0.1
bos_token_id 2
classifier_dropout_prob 0.1
embedding_size 128
eos_token_id 3
hidden_act gelu
hidden_dropout_prob 0.1
hidden_size 768
initializer_range 0.02
inner_group_num 1
intermediate_size 3072
layer_norm_eps 1e-05
max_position_embeddings 514
num_attention_ heads 12
num_hidden_groups 1
num_hidden_layers 6
position_embedding_type “absolute”
transformers_version “4.18.0"
vocab_size 32001
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Table 12: ALBERT Model configuration trained on monolingual Assamese corpus.



