Punctuation and case restoration in code mixed Indian languages

Subhashree Tripathy
Reverie Language Technologies,
Bengaluru
subhashree.tripathy
@reverieinc.com

Abstract

Automatic Speech Recognition (ASR) systems
are taking over in different industries starting
from producing video subtitles to interactive
digital assistants. ASR output can be used
in automatic indexing, categorizing, searching
along with normal human readability. Raw tran-
scripts from ASR systems are difficult to in-
terpret since it usually produces text without
punctuation and case information (all lower,
all upper, camel case etc.), thus limiting the
performance of downstream NLP tasks. We
proposed an approach to restore the punctua-
tion and case for both English and Hinglish
(i.e Hindi vocabulary in Latin script) languages.
We have performed a classification task using
encoder-based transformers which is a mini
BERT consisting of 4 encoder layers for punc-
tuation and case restoration instead of the tradi-
tional Seq2Seq model considering the latency
constraint in real world use cases. It consists
of a total number of 15 distinct classes for
the model which includes 5 punctuations i.e
Period(.), Commay(,), Single Quote(‘), Double
Quote(“) & Question Mark(?) with different
combinations of casing. The model is bench-
marked on an internal dataset which was based
on user conversation with the voice assistant
and it achieves a F1(macro) score of 91.52%
on the test set.

1 Introduction

Raw transcripts from ASR systems are difficult
to interpret and not very user friendly for display
purposes.To make the ASR transcripts more read-
able and interpretable, we need to include appro-
priate punctuation and segmentation at word and
sentence level. We have experimented and pivoted
to a unique word level classification approach with
certain techniques of model optimizations making
it useful in real time.

Punctuation are marks used in printed and written
documents to separate sentences and clauses and to
help make the meaning of sentences more clear.The

Ashis Samal
Reverie Language Technologies,
Bengaluru
ashis.samal
@reverieinc.com

standard English punctuation is as follows: period,
comma, apostrophe, quotation, question, exclama-
tion, brackets, braces, parenthesis, dash, hyphen,
ellipsis, colon, semicolon.
Auto punctuation and capitalization is a way to au-
tomatically add punctuation and restore casing to
a sentence thereby making it suitable to read for
users.

Example 1:

Raw text : lets eat shyam

Converted text : Let’s eat, Shyam.

Example 2:

Raw text : shyam khaane chalein

Converted text : Shyam, khaane chalein?

Example 3:

Raw text : hello astor how are you

Converted text : Hello Astor, how are you?
Implementing auto-punctuation and capitalization
on ASR output can improve its readability, have bet-
ter display and help improve several downstream
NLP tasks such as,

* Neural Machine Translation
* Sentimental Analysis
* Text summarization

* Named Entity Recognition

2 Motivation

In recent years, studies on ASR have shown out-
standing results but there are still difficulties in
standardizing the output of ASR[1] such as capi-
talization and punctuation restoration for speech
transcriptions. The problems restrict readers to
understand the ASR output semantically and also
cause difficulties for natural language processing
models such as NER, POS and semantic parsing.
In this paper, we propose a method to restore the
punctuation and case for ASR transcription.

Most of the punctuation and case restoration mod-
els work in Seq2Seq (Encoder-Decoder) neural

Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-10S), pages 82 - 86
December 7, 2022 ©2022 Association for Computational Linguistics

network architectures like TS5, BART, GPT etc.
Although these models are very good at generat-
ing long text sequences based on the task they are
trained and fine tuned for, this comes with a chal-
lenge of high latency, which is a bottleneck for real
time ASR systems. To address this challenge, we
have framed the task as a classification problem.

3 Experiment details

We have approached the punctuation and case
restoration task as a text classification problem
where there are a total of 18 possible combina-
tions of punctuation and casing, out of which we
have considered 15 unique classes. Currently, our
model supports 5 types of punctuation i.e period
(represented as P), comma (C), question mark (?),
single quote (SQ) and double quote (DQ) & 3 types
of casing i.e lower cased (represented as OTH-
ERS), upper cased (ALL_CAP) and sentence cased
(CAP_INIT).

We have given a few examples of each category as
mentioned in Table 1.

4 Model Architecture

Our base model is a pre-trained bert-mini model
which has 4 bert encoder layers. We have wired
two linear layers on top of it as a classification head
for the word level text classification. This could
process a maximum 256 tokens in one sequence of
text[2].

The main purpose of using BERT-encoder is, it is
faster in comparison to any Seq2Seq model and
the context of words is learnt better which helps us
understand the patterns of the language. A glimpse
of how BERT[3] works is shown in Figure 1.

Prediction {

Class
Label

Token Labels

Neural
Networks

Tokenization

Input Text

Figure 1: Bert architecture

The training of the task is done in two phases : -

1. Pre-training : The original sentence is usu-
ally passed to BERT and then tokenized us-

&3

ing the word piece encoder, which generates
contextual - embeddings i.e the embeddings
depend on the context . Transformer reads
the entire sequence of words based on its
surroundings from both directions simultane-
ously instead on left to right/ right to left[4].

. Fine-tuning : In order to fine tune the pre-
trained BERT, we added a few layers at the
end as well where the model learns to perform
downstream tasks. The proposed methodol-
ogy to our problem statement is a token clas-
sification approach where it predicts the punc-
tuation mark associated with the given word.
just as shown below.

E.g : For the sentence, "i have a pen do you",
the corresponding punctuation labels for it is
predicted as, "CAP_INIT, OTHERS, OTH-
ERS, P, CAP_INIT, Q" respectively.

S Training Details

For model training purposes, textual data from
publicly available NCERT textbooks along with
prepared in-house data was used. Approximately
500000 sentences were used as training data which
were cleaned and formatted to get rid of noisy data
and make it suitable for a machine learning model.
It consists of 15 unique labels i.e ’ALL_CAP’,
"ALL_CAP_C’,”ALL_CAP_P’,’ALL_CAP_Q’,
"ALL_CAP_SQ’, C, "CAP_INIT’,
"CAP_INIT_C’,’CAP_INIT_P’, "CAP_INIT_Q’,
"CAP_INIT_SQ’, ’OTHERS’, ’P’,’Q* & ’SQ’.
Since we are using a supervised learning technique,
input data (lower case with removed punctuation)
and their corresponding labeled data were fed
to the model. We have performed the complete
experiment in one Tesla V100 GPU system, which
got 16 GB of memory.

Some of the hyper-parameters used in the training
are as follows:

* Epochs : 15

* Warmup_steps : 500
% Train_batch_size: 128
* Learning_rate: 0.0001

It took around 4 hours of time to complete the train-
ing process. The accuracy of the model improves
significantly with consistent training. Class wise
distribution of different labels is in the Figure 2

Category Example Category Example
CAP_INIT Dial, What, Hey DQ “he, “said”
OTHERS possible, there, hot Q person?
ALL_CAP IPL, SBI, FM C here,

P done., here. ALL_CAP_P JIO.

SQ teacher’s/ teacher ALL_CAP_SQ CSK’s/’CSK

ALL_CAP_DQ “JIO/”JIO”
ALL_CAP_Q JIO?, ICICI?
ALL_CAP_C JIO,

CAP_INIT_P Hello., Fine.

CAP_INIT_SQ Jio’s/ ’Jio
CAP_INIT_DQ *“Jio
CAP_INIT_Q Jio?
CAP_INIT_C Jio,

Table 1: Labels with their examples

below. The y and x axis represent the labels and
count of the labels respectively. The objective is

ALL CAP |18406
ALL_CAP.C 527

ALLCAP P 3024
ALL_CAP_Q 803
ALL CAP SQ 239

c I38917

avnrc [past
cap_nmp [Josos
CAP INIT Q |11697

e nmsq [fes2s7

Q .106584

sqQ |30975

0.0 0.5 Lo 15 20
Figure 2: Class wise count of training data

to make the model output be as close as possible
to the desired output or ground truth values. Dur-
ing model training, the model weights are adjusted
iteratively to minimize the loss.

Cross entropy loss is popularly used in classi-
fication tasks both in machine learning and deep
learning[5]. Cross-entropy is defined in Figure 3.

n
Leg = — Za‘,i log(p;i), for n classes,

i=1

where ¢; is the truth label and p; is the Softmax probability for
the i*" class.

Figure 3: Cross entropy loss function

6 Model optimization

Model optimization helps us in achieving below
objectives.

84

— Smaller storage size : Smaller models oc-
cupy less storage space on the deployed de-
vices

— Less memory usage : Smaller models use
less memory when they are running during
inference

— Latency reduction : Latency is the time it
takes to run a single inference with a given
model. Some forms of optimization can re-
duce the amount of computation required
to run inference using a model, resulting in
lower latency. Latency can also have an im-
pact on power consumption. Latency reduc-
tion is a major concern for us since we are
integrating this with STT (Speech-To-Text)
output and the overall result should not add
more than 50ms latency to speech transcrip-
tions. We have leveraged PyTorch JIT Com-
piler[6], which performs run-time optimiza-
tion on model’s computation. TorchScript
is the recommended model format for doing
scaled inference with PyTorch models. We
use torch.jit.trace and provide model and sam-
ple input as arguments. The input will be
fed through the model as in regular inference
and the executed operations will be traced and
recorded into TorchScript.

7 Results

We prepared an internal testing dataset with 2050
data which was based on user conversation with
the voice assistant. It consists of 15 different
classes with macro-averaged F1- score[7] achieved
is 91.527%.

Class wise precision score, recall score and F1-
score is illustrated below in Table 2.

The class level confusion matrix from the test set

Class Precision Recall F1-Score
ALL_CAP 0.996 0.963 0.979
ALL_CAP_C 1 1 1
ALL_CAP_P 0.857 0.909 0.882
ALL_CAP_Q 0947 0.947 0.947
ALL_CAP_SQ 1 1 1

C 0.181 0.5 0.27
CAP_INIT 0.966 0.992 0.979
CAP_INIT_C 0.571 0.727 0.64
CAP_INIT_P 0.857 0.947 0.9
CAP_INIT_Q 0.883 0.892 0.887
CAP_INIT_SQ 0.987 1 0.993
OTHERS 0.996 0.983 0.990
P 0.944 0.978 0.961
Q 0.984 0964 0.974
SQ 1 0.947 0.972

Table 2: Class level evaluation

performance is shown in Figure 4 below. The x-
axis represents different classes of punctuation and
the y-axis represents the predicted labels by the
classifier. The blue diagonal denotes the percent-
age of true positives, i.e accurately detected classes
which have a mean of 93.9%. The remaining yel-
low cells in the confusion matrix are false positives
with respect to the predicted labels.

ctuation & Capitalization Model

Figure 4: Class level confusion matrix of testing data-
set

On a sentence level evaluation, the performance
of our model on the test set is shown in Table 3.

85

In the table, the correctly predicted sentences is
referred as True and the incorrectly predicted sen-
tences is referred as False which has an accuracy
score of 82%.

True False
1664 370

Sentences
2034

Table 3: Sentence level count

8 Observations

Since our problem statement is framed as a classi-
fication task we have only used the encoders. We
were able to reduce the computational power to half
and reduce the latency significantly. Considering
our model is trained on both English and roman-
ized Hindi, there are some words which are spelled
the same but mean completely different in different
sentences which could cause ambiguity. Here’s an
example below.
Sentence 1 : Do you know me?
Sentence 2 : Do apple chahiye.

Although both sentences start with “Do”, sentence
1 should end with a question mark (‘?’) while
sentence 2 should end with a period(‘.”). We have
trained the model with sentences using maximum
possible ambiguous words in different contexts to
handle these challenges due to the code mix. After
benchmarking our test dataset, we observed that
out of all the labels used, ‘C’ seems to be difficult
to predict and place in the right position which
could be due to less training data with commas. We
could revisit the data preparation phase and include
more sentences with “,” in different positions and
evaluate the model.

9 Limitation

There are a few limitations to our model. First
being, not able to evaluate our model on any public
dataset due to lack of resources in Hinglish data for
auto-punctuation domain. Due to lack of hardware
resources, our current model is limited to 32 tokens
which is approximately 25 words in Hindi.

10 Future work

We would improve our existing model through the
following steps.

— For better accuracy, we would add quality and
diverse data to our training and validate our
model on a public domain dataset and release

our Hinglish testset for more research and col-
laboration.

— We would optimize our model by further re-
ducing the latency.

— We would include more punctuation types like
exclamation marks, brackets (braces, paren-
thesis, square), dash, hyphen, ellipsis, colon,
semicolon in further training.

— We would extend our language domain as well
by including native and romanized versions
of different Indian languages.

— In future, we plan to overcome the token count
limitation so we can extend our model for
longer sentences as well.

11 Conclusion

We present an approach to restore punctuation and
case of the raw output obtained from the ASR
system with significantly reduced latency. Cur-
rently our model is trained on English and Hinglish
(i.e Hindi vocabulary in English script) data and
achieves expected performance under different con-
ditions.

Acknowledgements

Our research would not have been possible without
the exceptional support from our colleagues from
Speech team who helped us with suitable in-house
resources to train and test on auto-punctuation and
capitalization. Their valuable insights assited our
research significantly and is highly appreciated.

References

[1]Attila Nagy, Bence Bial, Judit Acs,
Automatic punctuation restoration with BERT-
models, January 2021, URL: https://
www.researchgate.net/publication/
348618580_Automatic_punctuation_
restoration_with BERT models

[2]Hugging Face Bert-mini.
//huggingface.co/prajjwall/
bert-mini

[3]Google AI Blog A Fast
Piece Tokenization System
//ai.googleblog.com/2021/12/

https:

Word-
https:

[4]Jacob Devlin, Ming-Wei Chang, Kenton Lee,
Kristina Toutanova, BERT: Pre-training of Deep
Bidirectional Transformers for Language Under-
standing, October 2018, URL: https://arxiv.
org/abs/1810.04805

[5]Machinelearningmastery : A
Gentle Introduction to Cross-Entropy
for Machine Learning https://
machinelearningmastery.com/

cross—entropy-for-machine-learning/

[6]PyTorch Tutorial : TORCHSCRIPT FOR
DEPLOYMENT https://pytorch.org/
tutorials/recipes/torchscript_
inference.html

[7]Towardsdatascience Multi-Class Met-
rice Made Simple, Part II: the Fl1-score
https://towardsdatascience.com/

multi-class—-metrics-made-simple-part—-ii-the-

a-fast-wordpiece—-tokenization-system.

html

https://www.researchgate.net/publication/348618580_Automatic_punctuation_restoration_with_BERT_models
https://www.researchgate.net/publication/348618580_Automatic_punctuation_restoration_with_BERT_models
https://www.researchgate.net/publication/348618580_Automatic_punctuation_restoration_with_BERT_models
https://www.researchgate.net/publication/348618580_Automatic_punctuation_restoration_with_BERT_models
https://huggingface.co/prajjwal1/bert-mini
https://huggingface.co/prajjwal1/bert-mini
https://huggingface.co/prajjwal1/bert-mini
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://machinelearningmastery.com/cross-entropy-for-machine-learning/
https://machinelearningmastery.com/cross-entropy-for-machine-learning/
https://machinelearningmastery.com/cross-entropy-for-machine-learning/
https://pytorch.org/tutorials/recipes/torchscript_inference.html
https://pytorch.org/tutorials/recipes/torchscript_inference.html
https://pytorch.org/tutorials/recipes/torchscript_inference.html
https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1
https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1

