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Abstract
In this paper, we specifically look at the
image-text retrieval problem. Recent mul-
timodal frameworks have shown that struc-
tured inputs and fine-tuning lead to consis-
tent performance improvement. However,
this paradigm has been challenged recently
with newer Transformer-based models that can
reach zero-shot state-of-the-art results despite
not explicitly using structured data during pre-
training. Since such strategies lead to increased
computational resources, we seek to better
understand their role in image-text retrieval
by analyzing visual and text representations
extracted with three multimodal frameworks:
SGM, UNITER, and CLIP. To perform such
analysis, we represent a single image or text
as low-dimensional linear subspaces and per-
form retrieval based on subspace similarity.
We chose this representation as subspaces give
us the flexibility to model an entity based on
feature sets, allowing us to observe how inte-
grating or reducing information changes the
representation of each entity. We analyze the
performance of the selected models’ features
on two standard benchmark datasets. Our re-
sults indicate that heavily pre-training models
can already lead to features with critical in-
formation representing each entity, with zero-
shot UNITER features performing consistently
better than fine-tuned features. Furthermore,
while models can benefit from structured in-
puts, learning representations for objects and
relationships separately, such as in SGM, likely
causes a loss of crucial contextual information
needed to obtain a compact cluster that can
effectively represent a single entity.

1 Introduction

The integration of techniques from Natural Lan-
guage Processing (NLP) and Computer Vision
(CV) has led to the development of multimodal
approaches, which have quickly attracted the
scientific community’s attention. Examples in-
clude tasks such as image captioning (Hossain

et al., 2019), machine translation (Specia et al.,
2016; Elliott et al., 2017), word sense disambigua-
tion (Bevilacqua et al., 2021), and visual question
answering (Antol et al., 2015). Great progress
in these tasks has been made by using massive
amounts of training data with deeper models, lead-
ing to rapidly increasing computational costs.

In this paper, we specifically look at the image-
text retrieval task, where the goal is to retrieve
an image from a text query (image retrieval) or a
text from an image query (text retrieval) from a
database containing images and texts. In this con-
text, we see a line of works encoding local and
global structures to learn representations for both
modalities, extracted using object detectors (Qu
et al., 2020) and large pre-trained language mod-
els (Diao et al., 2021). To further understand the
relationship between such structures, several works
also encoded visual (Shi et al., 2019) and tex-
tual (Wang et al., 2020) scene-graphs or designed
their pipelines to learn such graphs (Schroeder and
Tripathi, 2020).

A more recent trend has been to use Transformer-
based models to learn the representations for each
modality and to model their interaction (Chen
et al., 2020), also making use of such structured
data (Messina et al., 2021; Dong et al., 2022).
While these frameworks have resulted in state-of-
the-art performance in multiple downstream tasks,
including image-text retrieval, the inference is com-
putationally expensive for this task as it requires a
forward pass of each image-text pair in the database
to perform retrieval.

Although structured inputs and fine-tuning have
shown consistent performance improvement across
all the aforementioned models, this paradigm has
been challenged recently with newer Transformer-
based models, such as CLIP (Radford et al., 2021).
This model, for example, can not only reduce the
computational inference overhead by allowing the
images and texts to be processed individually, but
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it also achieves zero-shot state-of-the-art results
for image-text retrieval despite not explicitly using
structured data during its pre-training.

In light of these issues, this paper analyzes vi-
sual and text representations produced by several
multimodal frameworks in the task of image-text
retrieval. We are particularly interested in studying
the ability of these models in encoding relevant in-
formation to perform retrieval in a variety of scenar-
ios, including model fine-tuning versus zero-shot
performance for models that require pre-training,
as well as how the addition or removal of structure
information from images (e.g., scene-graphs) and
texts (e.g., semantic triplets), affects such represen-
tations. We find it pivotal to understand the role of
such strategies as their integration ultimately leads
to increased computational resources.

To perform such an analysis, we set a common
ground by looking at subspace representations in
the context of image-text retrieval. In the subspace
setting, the idea is to represent a single entity, e.g.,
an image or a sentence, as a low-dimensional linear
subspace in the original high-dimensional feature
space and to perform retrieval based on subspace
similarity. Such representation is based on the em-
pirical evidence that patterns of the same entity
(e.g., pictures of the same person) tend to clus-
ter in high-dimensional space (Watanabe and Pak-
vasa, 1973; Iijima et al., 1974). We expect features
from the same entity learned by such multimodal
frameworks also form these compact clusters, and
therefore their distribution can be represented by
linear subspaces. Furthermore, as most image-text
retrieval frameworks rely on the cosine similarity
between feature vectors to compare two entities,
the subspace similarity comes in handy as it is
equivalent to cosine similarity when we have one-
dimensional subspaces (i.e., a single vector repre-
senting an entity). Finally, subspaces give us the
flexibility to model an entity based on a set of vec-
tors, e.g., a set of object embeddings in an image or
set of entities in a sentence, allowing us to observe
how integrating more information by fine-tuning or
adding structure data, changes the representation
of each entity.

This paper focuses on frameworks that ex-
plicitly incorporate or capture structured inputs,
either from the visual or textual side. Con-
cretely, we evaluate and compare the text-image
retrieval performance using the subspace represen-
tation of features extracted using three frameworks:

SGM (Wang et al., 2020), UNITER (Chen et al.,
2020), and CLIP (Radford et al., 2021). We chose
these three models based on the distinct way they
treat multimodal data: SGM, a scene graph-based
model, heavily relies on structured data, generating
object-level and relationship-level cross-modal fea-
tures; UNITER, a pre-trained Transformer-based
model that generates joint visual and textual em-
beddings relying on objects detected on the input
images; and CLIP, a pre-trained contrastive model
which is trained by simply pairing whole images
with complete sentences and without making ex-
plicit use of structure, which also allows us to ex-
tract of image and text embeddings individually in
a zero-shot fashion, overcoming the limitations of
previous models such as UNITER.

We analyze the performance of feature sub-
spaces of selected models on two standard bench-
mark datasets, COCO (Lin et al., 2014) and
Flickr30k (Young et al., 2014; Plummer et al.,
2015), focusing on the tasks of image-to-text and
text-to-image retrieval. Furthermore, we observe
how results change when modeling pre-trained and
fine-tuned features from UNITER and introducing
or removing structure information from SGM and
CLIP features. Our results indicate that UNITER’s
pre-training leads to features with critical informa-
tion representing each entity during pre-training,
with zero-shot features performing consistently bet-
ter than fine-tuned features. Moreover, we observed
that learning representations for objects and rela-
tionships separately, such as in SGM, likely causes
a loss of crucial contextual information needed to
effectively represent a single entity, whereas us-
ing only SGM’s object representations led to better
performance. This result might explain why CLIP
features can better characterize entities when fea-
tures are extracted based on global features, where
we observed that explicitly considering local struc-
ture information harms retrieval performance.

2 Background

2.1 Subspace representation

Given a set of entities (i.e., images, sen-
tences) whose representations lie on a rich high-
dimensional feature space, subspace-based meth-
ods aim to encode a set of features representing
a given entity (i.e., CNN features from an im-
age, word vectors from a sentence) by a lower-
dimensional linear subspace in the original feature
space. While there are several ways to obtain the
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subspace representation, we focus on the formula-
tion based on principal component analysis (PCA).
The reason that leads us to consider this method
is that PCA can compactly represent the distribu-
tion of the features in a set based on the directions
of highest variance. Such characteristics lead to a
model that can discard irrelevant information, such
as noise, while effectively representing variations,
e.g., rotation and illumination in images.

Formally, consider a set of N feature vectors
{xi}Ni=1 representing an entity, stacked as the
columns of the matrix X ∈ Rp×N , where p is the
dimension of the original feature space. We apply
PCA without data centering to model a subspace
from this set of features. The orthonormal basis
vectors of the m-dimensional subspace Y are ob-
tained as the eigenvectors with the m largest eigen-
values {λl}ml=1 of the matrix R = XX⊤. The
entity is finally represented as Y = [Φ1 . . .Φm] ∈
Rp×m, which has the corresponding orthonormal
basis vectors as its column vectors. For simplicity,
we will refer to the subspaces by their bases matri-
ces. Such basis vectors can be interpreted as the
main hidden features representing the distribution
of the features in the set.

Though several subspace-based methods have
been developed over the course of the past 50 years,
mainly for image classification, the most relevant
variations for this work are the Subspace Method
(SM) and the Mutual Subspace Method (MSM;
Maeda, 2010), as they establish two important sim-
ilarity measures that we need to perform image-text
retrieval.

Vector-subspace similarity in SM: Consider
we have k reference classes represented as mi-
dimensional subspaces {Yi}ki=1 in a p-dimensional
vector space, where mi < p. SM seeks to clas-
sify an input entity represented by a single feature
vector vin normalized to have norm 1. To mea-
sure the similarity between the input feature vector
vin and a class reference subspace Yi, defined as
Sin,i = v⊤

inPivin, where Pi = YiY
⊤
i is the pro-

jection matrix onto the subspace Yi.

Subspace-subspace similarity in MSM: MSM
is a generalization of SM, where both input and
references are represented as subspaces. Such an
approach has been shown to improve the robust-
ness when applied to image-set classification tasks
(Maeda, 2010; Fukui and Maki, 2015).

In MSM, the input is represented by a subspace

Yin modeled from a set of feature vectors {xi}Ni=1.
To perform classification, it is necessary to cal-
culate the similarity between the input subspace
Yin and the i-th class subspace Yi. This similar-
ity is measured by using the canonical angles be-
tween them (Chatelin, 2012). We can calculate
them by using the singular value decomposition
(SVD) (Fukui and Yamaguchi, 2005).

Consider two subspaces, Yin ∈ Rp×min and
Yi ∈ Rp×mi , with min and mi dimensions re-
spectively, and min ≤ mi. We first calcu-
late the SVD Y ⊤

inYi = UΣV ⊤, where Σ =
diag(κ1, . . . , κmin), {κj}min

j=1 represents the set of
singular values, and (κ1 ≥ . . . ≥ κmin). The
similarity can then be calculated as Sin,i(t) =
1
t

∑t
j=1 κ

2
j , where 1 ≤ t ≤ min. This similarity

is equivalent to taking the average of the squared
cosine of t canonical angles.

Vector-vector similarity: In the special case
where both input and reference subspaces have
only one dimension, i.e., Yin = Φin ∈ Rp×1 and
Yi = Φi ∈ Rp×1, the subspace similarity is equiva-
lent to the cosine similarity Sin,i = Φ⊤

inΦi, where
both Φin and Φi have norm equal to 1.

2.2 Multimodal retrieval frameworks
We used features obtained from three multimodal
frameworks that can generate sets of features repre-
senting each entity in each modality. As all of our
selected models achieve outstanding performance
in image-text retrieval while leveraging different
types of information, we are interested in studying
how varying such input affects the representation
of each entity by assessing their performance when
using the subspace representation. We briefly in-
troduce our selected models below, referring the
reader to the original papers for more details.

2.2.1 SGM
Wang et al. (2020) proposed a scene-graph match-
ing framework (SGM) for image-text retrieval.
Concretely, they encode visual and textual scene-
graphs in a joint embedding space, resulting in a
representation vector for each object and relation-
ship in both modalities. This framework has four
main parts, which we describe below.

Scene-graph parsers: Images are fed to a pre-
trained scene-graph generator, such as MSDN (Li
et al., 2017) and Neural Motifs (Zellers et al., 2018).
The obtained visual scene-graphs contain both ob-
ject and relationship nodes, and each of them has
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a text label. On the textual side, scene-graphs
also contain object and relationship nodes; In ad-
dition, textual scene-graphs also have two types
of edges: Word order edge, which follows the or-
der of the words in the texts; and Semantic edge,
which is obtained by parsing semantic triplets us-
ing SPICE (Anderson et al., 2016), relating objects
by their relationships.

Visual graph encoder: Visual features are ex-
tracted by encoding the image regions into fea-
ture vectors by using a Faster-RCNN. The feature
vectors from object nodes are extracted from its
corresponding image region, and the feature vec-
tors from relationship nodes are extracted from
the union of the image region of the two object
nodes that are connected by the relationship node.
Then, these visual features are fused with the
word embedding corresponding to the node’s la-
bel through a multimodal fusion layer. Finally,
this graph is encoded by a Graph Convolutional
Network, generating one feature vector for each
object and each relationship nodes. This results in
the feature sets O = {hoi}No

i=1 ∈ R1024×No , and
P = {hpi}

Np

i=1 ∈ R1024×Np .

Textual graph encoder: It consists of a word
embedding layer, a word-level bi-GRU encoder,
and a path-level bi-GRU. The word-level bi-GRU
processes the nodes following the word order in the
caption, while the path-level processes the nodes
following the semantic paths. The final feature
vector for each node is obtained by averaging the
representation given by both bi-GRUs, resulting in
the feature sets W = {hwt}Nw

i=1 ∈ R1024×Nw , and
R = {hri}Nr

i=1 ∈ R1024×Nr .

Similarity calculation: Images and texts are
compared based on two similarities: Between the
visual and textual object nodes (So) and between
the visual and textual relationship nodes (Sr), de-
fined in Equations 1 and 2. The final graph-based
similarity is obtained by summing So and Sr.

So =
1

Nw

Nw∑

t=1

max
i∈[1,No]

hT
wt
hoi (1)

Sr =
1

Np

Np∑

t=1

max
i∈[1,Nr]

hT
pthri (2)

2.2.2 UNITER
UNiversal Image-TExt Representation (Chen et al.,
2020) (UNITER) is a Transformer-based large-

scale pre-trained model for joint multimodal em-
bedding. UNITER first goes through a designed
pre-training task and learns generalizable contextu-
alized embeddings for each region in an image and
each word in an input text, and can be further fine-
tuned for image-text retrieval. The model contains
mainly two parts: image and text embedders and
the transformer module.

Image and text embedders: For images, they
first use Faster R-CNN (Ren et al., 2015) to extract
visual features for each image region. Next, they
encode this information along with the location of
the features through a fully-connected layer and
then project them into the joint embedding space.
For text, they tokenize following BERT (Devlin
et al., 2019). Finally, they sum the word embedding
and position embedding to generate the final text
representation on the joint embedding space.

Transformer module: A transformer module
further processes both image and text embeddings,
learning generalizable contextualized embeddings
for each region and word. In our experiments, we
use the output from this module to represent images
and texts.

2.2.3 CLIP
Contrastive Language–Image Pre-training (Rad-
ford et al., 2021) is also a Transformer-based model
which uses a simple contrastive pre-training to pre-
dict which caption matches a given caption. In
this manner, the model can efficiently construct
image and text representations. Natural language
supervision is later used to ask the model to name
learned visual concepts (or describe new ones), al-
lowing zero-shot transfer to downstream tasks with
state-of-the-art performance in many cases.

3 Subspace-based image-text retrieval

The goal of image-text retrieval is to find an image
based on a text query (image retrieval) or a text pas-
sage based on an image query (text retrieval) from
a database containing images and texts. Formally,
given a query entity q in one modality, we seek to
find the most similar entity e in the other modality.

In this paper, we represent entities and queries by
the sets of features extracted from the multimodal
frameworks described in the previous section and
perform retrieval using subspace-based similari-
ties. In doing so, we assume that the entities in
the database are represented as subspaces {Yd}Nd

d=1
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modeled from each entity’s feature set, and that
the query entity is represented by a set of feature
vectors {qi}Nq

i=1, or by its subspace. Then, we com-
pare the query and each database entity subspace
using subspace similarity. We highlight that such
setting is equivalent to comparing two feature vec-
tors based on the cosine similarity when we only
have one feature vector representing each entity.

We explore the two fundamental subspace simi-
larities described in Section 2.1, performing image-
text retrieval in two different ways: Retrieval based
on SM and based on MSM.

3.1 SM-based retrieval
In this case, we use the vector-subspace similarity.
Since SM assumes single vector inputs, we propose
a modification so that the similarity between a set
of features and a subspace is defined by the mean
similarity between the query features {qi}Nq

i=1 and
the database entity subspace Yd:

Sq,d =
1

Nq

Nq∑

j=1

q⊤j Pdqj , (3)

where Pd = YdY
⊤
d is the projection matrix onto

the subspace of entity d in the database.
When using this similarity, we assume each fea-

ture vector of the query is equally important for
retrieval.

3.2 MSM-based retrieval
In this case, we use the subspace-subspace similar-
ity. First, we model the query subspace Yq from its
set of features. Then, we perform the search based
on the subspace similarity defined in section 2.1.

Using this similarity, we find the closest hidden
features in each subspace and measure the angles
between them, i.e., the canonical angles. As PCA
is used to model the subspaces, features that do not
contribute to representing each entity vector set are
considered less important to perform retrieval.

4 Experimental Framework

We experimented with image-text retrieval on two
datasets, Flickr30k (Young et al., 2014; Plummer
et al., 2015) (FLICKR30K) and COCO (Young
et al., 2014; Lin et al., 2014) (COCO). Both
datasets contain 5 captions (i.e., text passages) for
each image. However, they differ in one order of
magnitude regarding the number of examples (ap-
prox. 300K images on COCOand approx. 30K

on FLICKR30K). Because of this reason, in order
to keep computational costs within our budget, we
used FLICKR30K to extensively study multiple set-
tings and selected only the best configurations for
our experiments with COCO.

In all cases, each image and caption is repre-
sented by a single or several feature vectors, and
retrieval is performed using SM and MSM as de-
fined earlier.

Our evaluation is performed based on the R@k
metric, the percentage of queries whose ground-
truth is ranked within the top k, which is the stan-
dard for the task. We experimented using different
subspaces’ dimensions and report the best results.
Below, we give details about how our multi-modal
features are extracted for each model.

SGM With this model, we are particularly in-
terested in understanding how considering objects
and their relationships affects retrieval. To extract
the features, we use the model checkpoints trained
on both datasets provided by the authors. Each
image is represented by one set of visual object
features O ∈ R1024×No , and one set of visual re-
lation features P ∈ R1024×Np . Each caption is
represented by one set of textual object features
W ∈ R1024×Nw and one set of textual relation
features R ∈ R1024×Nr .

Considering we have two sets of features repre-
senting each visual and textual entity, we followed
the same strategy taken by SGM when performing
retrieval by calculating So and Sr based on sub-
space similarity, and then summing both to achieve
the final similarity for the pair So,r. To better under-
stand the role of each set of features in representing
an entity, we also performed retrieval based only
on So, only on Sr, and on Sg, which represents
each entity by the concatenation of the object and
relation features.

UNITER As UNITER’s excellent performance
is due mostly to its extensive pre-training and fine-
tuning, we are interested in comparing the retrieval
performance of pre-trained features versus fine-
tuned features in image-text retrieval. We feed
positive image-caption pairs through the model to
obtain their joint representations (i.e., sequence of
vectors). We split each sequence to obtain one set
of features I ∈ R768×Ni for each image, and one
set of features C ∈ R768×Nc for each caption. For
the captions, we disregarded the representation for
the [SEP] token.

33



While we understand that processing only posi-
tive image-caption pairs is not the ideal approach
to perform retrieval, we reckon this is a limitation
of UNITER, as it requires an image and a text pas-
sage to be fed simultaneously. Ideally, we would
like to be able to forward each image and text only
once and perform a ranking on top of the obtained
representations. We performed preliminary experi-
ments feeding only captions and only images, but
the results showed that this approach does not cre-
ate meaningful representations. Therefore, since
we want to observe the effects of fine-tuning on the
multi-modal representations, we primarily focus
on the performance difference between them rather
than the actual numbers.

We use the pre-trained UNITER released by
the authors and test it on three different settings:
zero-shot (ZS) where we directly use the pre-
trained UNITER to extract our representations;
Fine-tuned (FT), where we further train the pre-
trained model on the downstream dataset with the
default sampling strategy; and another fine-tuned
model where the final training is performed using
an improved technique for hard negative example
mining (FTHN ). We note that the latter strategy
has resulted in the best retrieval performance for
the original model.

CLIP: We use the pre-trained model released
by OpenAI. Different from SGM, CLIP does not
explicitly use structured inputs and represents each
image and text as a single feature vector h ∈ R512.

In this scenario, we seek to understand if process-
ing structured information with CLIP could help
improve retrieval performance. To verify this point,
we use the co-reference chains and manually anno-
tated bounding boxes for each of the images and
captions in the FLICKR30K dataset provided by
Plummer et al. (2017) to input structured informa-
tion and verify how the resulting features perform
in contrast with the original CLIP features.

We follow the standard CLIP pipeline and ex-
tract an image vector vimg ∈ R512 for each im-
age (ImgG), and a caption vector vcap ∈ R512 for
each caption (TextG). Retrieval, in this case, is
performed by using simple cosine similarity. We
further crop the images following the annotated
bounding boxes and process each cropped portion,
which results in a set of vectors I ∈ R512×Ni with
Ni representations of local objects for each im-
age (ImgL). Analogously, we use the annotated
entities in the captions to obtain a set of features

Method Sim Dim Mean R@1 R@5 R@10

Text Retrieval

SGM
So - 85.96 70.40 92.10 95.40
Sr - 2.43 0.40 2.40 4.50
So,r - 86.33 71.80 91.70 95.50

SM

Sg 5 40.40 20.40 45.10 55.70
So

5
38.20 18.80 42.10 53.70

Sr 0.33 0.10 0.40 0.50
So,r 33.80 16.00 37.00 48.40

MSM

Sg 10 59.03 40.20 63.60 73.30
So

5
60.53 40.60 65.70 75.30

Sr 0.80 0.10 0.90 1.13
So,r 20.80 11.10 22.20 29.10

Image Retrieval

SGM
So - 72.54 52.72 78.92 86.00
Sr - 1.74 0.40 1.76 3.08
So,r - 73.20 53.52 79.62 86.46

SM

Sg 5 39.90 18.44 44.12 57.14
So

5
38.48 17.52 42.70 55.24

Sr 1.20 0.28 1.20 2.12
So,r 36.51 16.30 40.34 52.90

MSM

Sg 5 46.08 26.40 50.60 61.24
So

5
47.21 27.70 51.82 61.10

Sr 1.13 0.20 1.20 2.00
So,r 42.00 23.68 46.30 56.02

Table 1: Results with SGM-Subspace on the Flickr30k
dataset. Best results for each method are shown in bold.
Mean denotes the mean of the R@1, R@5, and R@10,
and Dim denotes the dimensions of the subspaces in SM
and MSM. Results for the baseline were taken from our
reproduction of the original model.

C ∈ R512×Nc with Nc textual entities representa-
tions (TextL). In this case, retrieval is performed
based on subspace similarity. We evaluate the per-
formance by using both global (G) and local (L)
features, as well as their combination.

4.1 Choice of subspace dimension
In general, for single modality problems, it is pos-
sible to get an idea of the suitable subspace dimen-
sion by observing the variance contribution ratio
with each additional dimension.

The amount of variance retained by the basis
vectors of the subspace can be determined by using
the cumulative contribution rate µ(m). Consid-
ering that we want to keep a minimum of µmin

of the text variance, we can determine m by en-
suring that µ(m)d ≥ µmin, where µ(m)d =∑m

l=1(λl)/
∑p

l=1(λl). However, preliminary ex-
periments showed us that this metric alone is not
suitable to choose the dimension of subspaces mod-
eled from artificially generated multimodal fea-
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Method Sim Dim Mean R@1 R@5 R@10

Text Retrieval

SGM So,r - 58.56 35.30 64.90 75.50

SM

Sg 5 21.20 7.20 21.20. 35.20
So

1
26.40 9.60 27.6 42.00

Sr 0.40 0.00 0.40 0.80
So,r 16.70 4.80 16.80 28.40

MSM

Sg 5 42.90 24.40 46.40 58.00
So

5
44.90 24.00 50.40 60.40

Sr 0.10 0.00 0.00 0.40
So,r 17.10 10.00 18.00 23.20

Image Retrieval

SGM So,r - 58.90 35.30 64.90 76.50

SM

Sg 5 19.30 4.20 20.20 33.40
So

5
21.10 7.50 22.00 33.80

Sr 0.00 0.00 0.00 0.00
So,r 21.10 7.70 21.80 33.80

MSM

Sg 5 34.30 16.70 37.10 49.00
So

5
35.10 17.40 38.50 49.40

Sr 0.00 0.00 0.00 0.00
So,r 34.50 17.70 37.00 48.60

Table 2: Results with SGM-Subspace on the COCO
dataset. Best results for each method are shown in bold.
Mean denotes the mean of the R@1, R@5, and R@10,
and Dim denotes the dimensions of the subspaces in SM
and MSM. Results for the baseline were taken from the
original SGM paper.

tures. Therefore, in this work we performed a
grid search by assessing the image-text retrieval
performance with different subspace dimensions,
reporting the best results. We refer the readers
to the supplementary material for results with all
tested dimensions.

5 Results and Discussions

SGM-subspace: Tables 1 and 2 show the results
when using SGM features. In this case, the best sub-
space performance was achieved by MSM for both
tasks, which indicates that leveraging the distribu-
tion of the features for both input and references
leads to more robust representations.

Furthermore, we can see that while SGM bene-
fits from considering both So and Sr with So,r, the
subspace-based methods performed better when
considering only the objects (So) or when consid-
ering both globally (Sg), where the information
from relationships helped improve results over So,r.
Such contrast in results could be due to how SGM
calculates the similarity between two entities: It
leverages vector-vector relationships, possibly lead-
ing the model to focus on local structures and ig-

Method Type Dim Mean R@1 R@5 R@10

Text Retrieval

UNITER

ZS⋆ - 91.43 80.70 95.70 98.00
ZS - 91.50 80.80 95.70 98.00

FT⋆
HN - 93.93 85.90 97.10 98.80

FTHN - 93.36 83.10 95.50 98.50

SM
ZS 20 91.60 86.10 93.30 95.40
FT 20 80.80 69.70 84.50 88.30

FTHN 20 44.20 27.70 48.90 56.10

MSM
ZS 1 76.00 63.10 80.10 84.90
FT 5 56.80 0.40 80.60 89.50

FTHN 5 56.20 1.60 79.00 87.90

Image Retrieval

UNITER

ZS⋆ - - 66.16 88.40 92.94
ZS - - 66.14 88.36 92.94

FT⋆
HN - 84.17 75.52 92.36 96.08

FTHN - - 68.02 89.54 94.54

SM
ZS 1 48.00 35.00 51.60 57.40
FT 5 47.40 34.50 51.20 56.50

FTHN 5 28.40 17.10 31.10 37.10

MSM
ZS 1 75.00 63.70 78.60 82.70
FT 15 53.60 32.40 60.50 67.90

FTHN 15 55.30 42.90 58.90 64.10

Table 3: Results with UNITER on FLICKR30K. Best
results for each method are shown in bold. Mean de-
notes the mean of the R@1, R@5, and R@10, and
Dim denotes the dimensions of the subspaces in SM
and MSS, and ⋆ denotes results taken from Chen et al.
(2020).

Method Type Dim Mean R@1 R@5 R@10

Text Retrieval

UNITER
ZS - 81.71 64.10 87.74 93.30

FT⋆
HN - 81.62 64.40 87.40 93.08

SM ZS 10 68.30 51.30 73.60 79.90

MSM ZS 5 58.20 38.60 63.80 72.20

Image Retrieval

UNITER
ZS - 70.45 48.79 76.72 85.84

FTHN - 72.00 50.33 78.52 87.16

SM ZS 1 24.50 17.00 26.30 30.00

MSM ZS 1 38.00 31.20 40.00 42.80

Table 4: Results with UNITER on COCO, on the full
5k images test set. Mean denotes the mean of the R@1,
R@5, and R@10, Dim denotes the dimensions of the
subspaces in SM and MSM, and indicates results taken
from Chen et al. (2020).

nore the global context. However, such contextual
information is crucial for the subspaces to effec-
tively represent the features from the entity, thus
leading to degraded performance.
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Features Method Dim Text retrieval Image Retrieval

Mean R@1 R@5 R@10 Mean R@1 R@5 R@10

TextG & ImgG CLIP - 90.30 77.80 95.00 98.10 76.60 58.10 82.50 89.40

TextL & ImgL
SM 1 47.90 27.30 52.30 64.10 36.80 19.00 40.60 50.70

MSM 1 47.30 27.00 51.70 63.10 35.40 19.90 38.30 47.90

TextL & ImgG 1 61.40 37.40 68.10 78.60 42.00 24.60 45.90 55.50
TextG & ImgL 5 75.70 59.10 81.00 87.00 67.70 46.10 74.50 82.40

TextG & ImgG+L 5 83.70 69.90 87.90 93.30 74.90 54.50 81.30 88.80
TextG+L & ImgG

SM

5 83.40 67.00 89.20 93.90 70.40 49.90 76.30 84.80

TextG+L & ImgG+L
SM 5 70.00 50.30 75.50 84.20 61.90 38.40 68.60 78.70

MSM 1 63.90 44.30 69.70 77.80 61.10 41.10 66.40 75.90

Table 5: Results of our experiments with for CLIP-subspace on FLICKR30K, where the sub-indices G and L
indicate the use of global and local features to represent each image and/or caption.

UNITER-subspace: Tables 3 and 4 show the
best results for retrieval when using UNITER fea-
tures. The best subspace performance was achieved
using SM in caption retrieval and MSM in image re-
trieval. We can observe that while the performance
of the original UNITER increases after fine-tuning,
our best results were achieved using ZS UNITER
features, performing about 33.70% and 19.65%
better in caption and image retrieval, respectively,
in terms of mean R@k compared to hard-negative
features in the FLICKR30K dataset.

We can also observe that the best results for both
FLICKR30K and COCO were achieved using sub-
spaces with dimensions ranging from 1 to 20, much
smaller than the original 768-dimensional feature
space, even when ZS features are used. Such
low-dimensional subspaces could indicate that the
UNITER has already compressed critical informa-
tion to represent each entity during pre-training.

CLIP-subspace: Table 5 shows the best retrieval
results when using CLIP features. Out of the three
chosen models, the original CLIP is the closest to
the subspace-based retrieval, as it is equivalent to
using one-dimensional subspaces of the global G
features and, therefore, direct comparison with the
subspace-based retrieval is adequate.

We can see that using only G features, i.e.,
CLIP’s original performance, leads to the best re-
sults. On the other hand, using only local L features
leads to the worst performance. However, we can
observe that image representation can better ben-
efit from L features than the captions, leading to
the best subspace performance when both G and
L features are used to represent images. While
considering the structure information does not lead
to better performance, this result indicates that G

image features are better aligned with the L im-
age features than text features. This result could
be explained by the fact that processing isolated
textual entities could lead to a loss of context as the
subspace representation cannot handle word order.

6 Conclusions and Future Work

The main goal of this paper was to better under-
stand the role of structured inputs and fine-tuning
in image-text retrieval. We analyzed visual and
text representations extracted with SGM, UNITER,
and CLIP by representing a single image or text as
low-dimensional linear subspaces and performing
retrieval based on subspace similarity. We analyzed
how the performance of the selected models’ fea-
tures changed when considering fine-tuning versus
zero-shot performance for models that require pre-
training, as well as the addition or removal of struc-
ture information from images (e.g., scene-graphs)
and texts (e.g., semantic triplets).

Our results indicate that UNITER’s pre-training
leads to features with critical information represent-
ing each entity during pre-training, with zero-shot
features performing consistently better than fine-
tuned features. Moreover, we observed that using
only SGM’s object representations led to better per-
formance than when considering the relationship
representations. Finally, considering structure in-
formation with CLIP does not improve the retrieval
results. However, we could observe that global in-
formation from the text side seems more critical
than text local information.

A natural progression of this work is to analyze
these features from a geometrical perspective, us-
ing the well-established literature on subspace rep-
resentation.
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A Hardware specifications

For all the experiments conducted in this paper, we
used three different machines:

1. For fine-tuning and extracting features from
UNITER, we used a server machine with an
Intel Xeon E5-2630 CPU, and two NVIDIA
RTX-2080 (Driver 418.56, CUDA 10.1)
GPUs, running Ubuntu 20.04.

2. For extracting features from SGM and run-
ning the experiments with UNITER and SGM
features, we used a machine with an Intel Core
i7-6800K CPU, with one NVIDIA GeForce
GTX 1070 (Driver 471.41, CUDA 11.4), run-
ning Ubuntu 18.04 on Windows Subsystem
for Linux version 2.

3. For extracting and running experiments with
CLIP features, we used a node on large cluster
equipped with a 16-GB NVIDIA V100 GPU
(CUDA 11.3).

However, we highlight that all experiments us-
ing the subspace-based methods can be performed
using the second machine listed above.

B Results using different subspace
dimensions

In Tables 6 to 12, we show the results with varying
subspace dimensions for all three models.

C Replication of original models’ results

In Tables 13 to 14, we show our reproduction of
UNITER and CLIP’s results.
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Text retrieval Image Retrieval
Feature Dim Mean R@1 R@5 R@10 Mean R@1 R@5 R@10

ZS

1 76.00 63.10 80.00 84.90 48.00 35.00 51.60 57.40
5 84.10 74.60 87.20 90.50 44.20 31.60 47.60 53.50
10 90.00 84.10 92.00 94.00 42.20 29.20 45.50 52.00
20 91.60 86.10 93.30 95.40 41.30 28.10 44.60 51.30

FT

1 43.70 29.10 47.20 54.80 39.60 28.30 42.50 48.10
5 71.00 56.80 74.70 81.60 47.40 34.50 51.20 56.50
10 77.40 66.00 80.90 85.40 45.90 33.70 49.20 54.90
20 80.80 69.70 84.50 88.30 44.90 32.40 48.50 53.80

FTHN

1 22.40 12.90 24.20 30.10 13.10 6.10 14.40 18.90
5 43.50 26.50 47.10 56.80 28.40 17.10 31.10 37.10
10 42.50 23.40 46.70 57.50 27.70 16.50 30.10 36.40
20 44.20 27.70 48.90 56.10 28.10 17.00 30.60 36.70

Table 6: Results with UNITER-subspace on the Flickr30k dataset using SM. Best results for each method are shown
in bold. Mean denotes the mean of the R@1, R@5, and R@10, and Dim denotes the dimensions of the subspaces in
SM.

Text retrieval Image Retrieval
Feature Dim Mean R@1 R@5 R@10 Mean R@1 R@5 R@10

ZS

1 76.00 63.10 80.10 84.90 75.00 63.70 78.60 82.70
5 54.40 0.10 75.80 87.40 39.80 23.70 43.50 52.20
10 1.80 0.10 0.80 4.40 60.40 43.70 64.70 72.70
15 1.80 0.10 0.90 4.30 57.20 32.90 64.80 73.90

FT

1 43.70 29.10 47.20 54.80 43.10 32.30 45.70 51.20
5 56.80 0.40 80.60 89.50 18.10 9.60 19.50 25.30
10 2.50 0.10 1.10 6.30 50.10 36.00 54.10 60.10
15 1.90 0.10 1.30 4.30 53.60 32.40 60.50 67.90

FTHN

1 22.40 12.90 24.20 30.10 13.60 7.30 14.90 18.70
5 56.20 1.60 79.00 87.90 22.40 14.60 24.00 28.60
10 1.60 0.10 0.90 3.90 49.30 36.70 52.50 58.50
15 1.80 0.10 1.20 4.00 55.30 42.90 58.90 64.10

Table 7: Results with UNITER-subspace on the Flickr30k dataset using MSM. Best results for each method are
shown in bold. Mean denotes the mean of the R@1, R@5, and R@10, and Dim denotes the dimensions of the
subspaces MSM.

Text retrieval Image Retrieval
Feature Dim Mean R@1 R@5 R@10 Mean R@1 R@5 R@10

ZS
1 52.80 35.30 57.50 65.60 24.50 17.00 26.30 30.00
5 61.10 43.10 66.50 73.70 23.40 16.10 25.10 28.90
10 68.30 51.30 73.60 79.90 22.50 15.40 24.20 28.00

Table 8: Results with UNITER-subspace on the MSCOCO dataset using SM, using all 5k test images. Best results
for each method are shown in bold. Mean denotes the mean of the R@1, R@5, and R@10, and Dim denotes the
dimensions of the subspaces in SM.

Text retrieval Image Retrieval
Feature Dim Mean R@1 R@5 R@10 Mean R@1 R@5 R@10

ZS
1 52.80 35.30 57.50 65.70 38.00 31.20 40.00 42.80
5 58.20 38.60 63.80 72.20 24.90 15.90 26.90 31.90
10 50.70 28.20 56.70 67.10 32.80 22.30 35.40 40.70

Table 9: Results with UNITER-subspace on the MSCOCO dataset using MSM, using all 5k test images. Best results
for each method are shown in bold. Mean denotes the mean of the R@1, R@5, and R@10, and Dim denotes the
dimensions of the subspaces MSM.
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Text retrieval Image Retrieval
Method Dim Sim Mean R@1 R@5 R@10 Mean R@1 R@5 R@10

SM

1

Sg 12.03 4.70 13.20 18.20 31.90 13.08 34.84 47.78
So 17.47 6.10 19.10 27.20 35.04 14.74 38.72 51.68
Sr 1.27 0.40 1.10 2.30 2.28 0.62 2.28 3.96
So,r 13.00 5.50 13.40 20.10 35.53 14.74 39.16 52.70

5

Sg 40.40 20.40 45.10 55.70 39.90 18.44 44.12 57.14
So 38.20 18.80 42.10 53.70 38.48 17.52 42.70 55.24
Sr 0.33 0.10 0.40 0.50 1.20 0.28 1.20 2.12
So,r 33.80 16.00 37.00 48.40 36.51 16.30 40.34 52.90

10

Sg 29.23 13.00 32.10 42.60 31.42 13.08 34.86 56.34
So 32.03 14.80 35.40 45.90 30.36 12.62 33.38 45.08
Sr 0.40 0.00 0.30 0.90 1.19 0.26 1.20 2.12
So,r 27.03 12.40 29.80 38.90 28.80 11.56 31.58 43.26

MSM

1

Sg 0.63 0.20 0.60 1.10 1.21 0.24 1.18 2.22
So 17.57 6.60 18.80 27.30 31.77 15.54 34.70 45.06
Sr 1.23 0.40 1.10 2.20 1.29 0.32 1.36 2.20
So,r 15.50 5.90 16.20 24.40 31.60 15.30 34.60 44.90

5

Sg 58.03 37.20 63.60 75.30 46.08 26.40 50.60 61.24
So 60.53 40.60 65.70 75.30 47.21 27.70 51.82 62.10
Sr 0.80 0.10 0.90 1.40 1.13 0.20 1.20 2.00
So,r 20.80 11.10 22.20 29.10 42.00 23.68 46.30 56.02

10

Sg 59.03 40.20 63.60 73.30 41.71 23.50 45.72 55.92
So 52.20 31.60 57.10 67.90 41.44 23.26 45.52 55.54
Sr 0.87 0.10 1.00 1.50 0.97 0.24 0.84 1.82
So,r 12.00 6.60 13.20 16.20 29.39 14.26 32.38 41.54

Table 10: Results with SGM-subspace on the Flickr30k dataset using SM and MSM. Best results for each method
are shown in bold. Mean denotes the mean of the R@1, R@5, and R@10, and Dim denotes the dimensions of the
subspaces in SM and MSM.
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Text retrieval Image Retrieval
Method Dim Sim Mean R@1 R@5 R@10 Mean R@1 R@5 R@10

Sg 13.10 4.40 14.00 20.80 10.60 0.40 8.50 23.00
So 26.40 9.60 27.6 42.00 20.70 7.40 22.40 32.20
Sr 0.40 0.00 0.40 0.80 0.00 0.00 0.00 0.00

1

So,r 16.70 4.80 16.80 28.40 20.70 7.50 22.30 32.20

Sg 21.20 7.20 21.20 35.20 19.30 4.20 20.20 33.40
So 21.10 7.70 21.80 33.80 21.10 7.50 22.00 33.80
Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5

So,r 16.10 5.20 15.60 27.60 21.10 7.70 21.80 33.80

Sg 12.90 5.20 14.00 19.60 17.00 1.80 17.60 31.80
So 13.30 5.60 12.80 21.60 20.90 7.80 21.80 33.10
Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SM

10

So,r 10.70 4.40 10.00 17.60 21.00 7.70 21.80 33.50

Sg 19.20 6.80 20.00 30.80 21.20 9.10 22.50 32.00
So 26.10 9.60 27.60 41.20 29.20 13.40 31.40 42.80
Sr 0.40 0.00 0.40 0.80 0.00 0.00 0.00 0.00

1

So,r 19.60 4.80 20.80 33.20 29.20 13.40 31.40 42.90

Sg 42.90 24.40 46.40 58.00 34.30 16.70 37.10 49.00
So 44.90 24.00 50.40 60.40 35.10 17.40 38.50 49.40
Sr 0.10 0.00 0.00 0.40 0.00 0.00 0.00 0.00

5

So,r 17.10 10.00 18.00 23.20 34.50 17.70 37.00 48.60

Sg 42.90 22.00 48.40 58.40 33.70 16.70 37.40 47.00
So 39.70 20.40 44.80 54.00 32.80 15.10 36.40 46.80
Sr 0.10 0.00 0.00 0.40 0.20 0.00 0.20 0.30

MSM

10

So,r 6.40 4.00 6.00 9.20 31.80 14.50 35.40 45.60

Table 11: Results with SGM-subspace on the MSCOCO dataset using SM and MSM, using all 5k test images. Best
results for each method are shown in bold. Mean denotes the mean of the R@1, R@5, and R@10, and Dim denotes
the dimensions of the subspaces in SM and MSM.
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Table 12: Results of our experiments with for CLIP-subspace on FLICKR30K, where the sub-indices G and L
indicate the use of global and local features to represent each image and/or caption.

Text retrieval Image Retrieval
Features Method Dim Mean R@1 R@5 R@10 Mean R@1 R@5 R@10

TextG & ImgG

CLIP

- 90.30 77.80 95.00 98.10 76.60 58.10 82.50 89.40
TextL & ImgG - 54.70 29.30 60.40 74.50 42.40 24.80 46.40 55.90
TextG & ImgL - 71.80 55.10 76.10 84.10 57.70 34.20 63.80 75.20

TextG& ImgG+L - 79.10 62.20 84.20 90.90 63.80 40.20 70.50 90.70
TextG+L & ImgG - 74.40 52.10 81.00 90.00 65.80 45.40 71.90 80.20

1 47.90 27.30 52.30 64.10 36.80 19.00 40.60 50.70
5 47.20 21.90 54.30 65.40 35.90 17.40 39.10 51.30SM
10 39.60 20.00 43.10 55.70 35.90 17.60 39.00 51.10

1 47.30 27.00 51.70 63.10 35.40 19.90 38.30 47.90
5 23.40 12.00 24.70 33.60 31.30 14.10 34.70 45.20

TextL & ImgL

MSM
10 26.40 12.60 27.30 39.30 24.10 11.60 25.90 34.80

1 61.40 37.40 68.10 78.60 42.00 24.60 45.90 55.50
5 42.10 23.70 45.10 57.50 35.10 17.40 38.20 49.80TextL & ImgG
10 39.40 21.40 42.30 54.40 34.90 17.30 38.00 49.50

1 70.40 54.00 74.00 83.20 62.00 40.60 68.20 77.00
5 75.70 59.10 81.00 87.00 67.70 46.10 74.50 82.40TextG & ImgL
10 72.40 55.20 77.00 85.10 59.30 37.50 64.90 75.50

1 77.90 60.90 82.90 89.90 68.20 47.50 74.60 82.60
5 83.70 69.90 87.90 93.30 74.90 54.50 81.30 88.80TextG & ImgG+L
10 78.50 61.90 83.60 90.10 66.70 44.40 73.30 82.50

1 77.30 57.00 83.80 91.10 63.80 43.40 69.70 78.40
5 83.40 67.00 89.20 93.90 70.40 49.90 76.30 84.80TextG+L & ImgG

SM

10 78.50 58.20 85.60 91.60 69.80 49.20 75.90 84.30

1 64.70 44.70 70.70 78.80 59.80 37.20 65.70 76.40
5 70.00 50.30 75.50 84.20 61.90 38.40 68.60 78.70SM
10 60.50 40.00 65.80 75.70 61.20 37.60 67.90 78.20

1 63.90 44.30 69.70 77.80 61.10 41.10 66.40 75.90
5 62.10 38.50 67.50 80.40 56.20 34.80 61.70 72.20

TextG+L & ImgG+L

MSM
10 56.40 34.20 62.00 73.00 37.70 21.30 40.80 50.90

Text retrieval Image Retrieval
Dataset Model R@1 R@5 R@10 R@1 R@5 R@10

Flickr30k

ZS 80.70 95.70 98.00 66.16 88.40 92.94
ZS (ours) 80.80 95.70 98.00 66.14 88.36 92.94

Ft⋆ - - - - - -
Ft (ours) 76.40 92.00 96.20 63.00 86.62 91.98

Ft-HN 85.90 97.10 98.80 72.52 92.36 96.08
Ft-HN (ours) 83.10 95.50 98.50 68.02 89.54 94.54

COCO

ZS⋆ - - - - - -
ZS (ours) 64.10 87.74 93.30 48.79 76.72 85.84

Ft⋆ - - - - - -
Ft (ours) 54.22 81.30 88.86 42.97 72.26 82.17

Ft-HN 64.40 87.40 93.08 50.33 78.52 87.16
Ft-HN (ours) 60.64 84.68 91.70 46.42 74.78 84.40

Table 13: Results of our replication of UNITER on the Flickr30k and COCO datasets, where ∗ indicates results not
reported by the original paper.
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Text retrieval Image Retrieval
Method Dim Mean R@1 R@5 R@10 Mean R@1 R@5 R@10

Reported - - 88.0 98.7 99.4 - 68.7 90.6 95.2
Ours - 90.6 78.8 94.9 98.2 77.4 58.8 83.5 90.0

Table 14: Results of CLIP retrieval on the Flickr30k dataset. Reported indicates the result reported in the original
paper, and Ours indicates our replication. Mean denotes the mean of the R@1, R@5, and R@10.
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