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Abstract
Script knowledge is critical for humans to un-
derstand the broad daily tasks and routine ac-
tivities in the world. Recently researchers have
explored the large-scale pre-trained language
models (PLMs) to perform various script re-
lated tasks, such as story generation, temporal
ordering of event, future event prediction and
so on. However, it’s still not well studied in
terms of how well the PLMs capture the script
knowledge. To answer this question, we de-
sign three probing tasks: inclusive sub-event
selection, starting sub-event selection and tem-
poral ordering to investigate the capabilities
of PLMs with and without fine-tuning. The
three probing tasks can be further used to auto-
matically induce a script for each main event
given all the possible sub-events. Taking BERT
as a case study, by analyzing its performance
on script induction as well as each individual
probing task, we conclude that the stereotypi-
cal temporal knowledge among the sub-events
is well captured in BERT, however the inclu-
sive or starting sub-event knowledge is barely
encoded.

1 Introduction

A script is a structure that describes a stereotyped
sequence of events that happen in a particular sce-
nario (Schank and Abelson, 1975, 2013). It allows
human to keep track of the states and procedures
that are necessary to complete various tasks from
daily lives to scientific processes. Taking the task of
Eating in a Restaurant as an example. A classic ex-
ample script for this task may consist of a chain of
subevents, such as Enter→Order→Eat→Pay (and
Tip)→Leave. The script knowledge has shown ben-
efit to many downstream applications, such as story
generation (Li et al., 2013, 2018; Guan et al., 2019;
Zhai et al., 2019; Lin et al., 2022), machine read-
ing comprehension (Tian et al., 2020; Ostermann
et al., 2018; Sugawara et al., 2018), commonsense
reasoning (Ding et al., 2019; Huang et al., 2019;
Bauer and Bansal, 2021) and so on.

Recent large-scale pre-trained language models
(PLMs) (Devlin et al., 2019; Liu et al., 2019; Rad-
ford et al., 2019; Raffel et al., 2019) have shown
competitive performance on many natural language
processing tasks. Abundant studies have demon-
strated that these models either directly capture cer-
tain types of syntactic (Goldberg, 2019; Clark et al.,
2019; Htut et al., 2019; Rosa and Mareček, 2019),
factual (Petroni et al., 2019a, 2020; Bouraoui et al.,
2020; Wang et al., 2020) and commonsense knowl-
edge (Zhou et al., 2020; Rajani et al., 2019; Lin
et al., 2020) during the pre-training or acquire in-
ductive capability to more efficiently induce such
knowledge from natural language text (Pandit and
Hou, 2021; Bosselut et al., 2019). However, as an-
other important type of cognitive and schematic
knowledge describing human routine activities,
scripts are not yet well probed in the language mod-
els by prior studies.

To investigate how well the pre-trained language
models have captured the script knowledge, in
this work, we design three probing tasks and lan-
guage model prompting methods to probe the script
knowledge from PLMs, and further leverage the
language model prompting methods to induce the
scripts given the main events. Specifically, we aim
to answer the following two research questions:

Whether and what script knowledge is cap-
tured by the pre-trained language models. To
answer this question, we design three sub-tasks to
probe the script knowledge, including inclusive
sub-event selection (i.e., whether a sub-event is
included or excluded in a main event or task), start-
ing sub-event selection (i.e., which sub-event is
the start of the script for a particular main event),
and sub-event temporal ordering (i.e., predict-
ing a temporal before or after relation between
two sub-events). On these sub-tasks, we explore
both template-based and soft prompting methods
to query the knowledge from pre-trained language
models. By investigating their performance gaps to
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the fine-tuning results, we find that both the inclu-
sive and starting sub-event selection sub-tasks have
relatively poorer performance than that of temporal
ordering, which is likely due to the lack of rele-
vant objectives to encourage the models to capture
such knowledge during pre-training, and further
suggests future research directions to enhance the
PLMs to better capture the script knowledge.

How to better generate the scripts from these
pre-trained models. With the language model
prompting methods, we can select the inclusive sub-
events of a particular script, the starting sub-event
and subsequent events by predicting the temporal
order among all the inclusive sub-events, which
can ultimately generate a sequence of events as the
script of a main event. Thus, we further design
a benchmark dataset to fine-tune the models for
the three sub-tasks and evaluate their performance
on generating the whole scripts for various main
events from diverse domains and topics.

The contributions of this work can be summa-
rized as follows:
• We are the first to formulate the sub-tasks and

set up benchmark datasets to probe the script
knowledge from pre-trained language models.

• We are the first to research on the generation and
evaluation of the whole scripts from pre-trained
language models.

2 Related Work

Script Knowledge The definition of Script
Knowledge was first proposed in 1981 (Feigen-
baum et al., 1981), which aims to detect the re-
lation between two events. Chambers and Juraf-
sky (2008) created the first unsupervised data-
driven method based on point-wise mutual informa-
tion (PMI) to automatically extract narrative event
chains. Recently, researchers explored deep neural
networks, especially large-scale pre-train language
models to predict the temporal relation between
two events (Pustejovsky et al., 2003; Chambers,
2013; Ferraro and Durme, 2016; Reimers et al.,
2016) or generate the future event (Pichotta and
Mooney, 2014; Jans et al., 2012; Zhang et al.,
2020). Comparing with these studies, our work
focuses more on investigating how well the PLMs
encode or capture the script knowledge from pre-
training and their bottleneck, suggesting possible
directions for future research.

Language Model Probing Probing is a popu-
lar way to detect what knowledge is encoded in

PLMs. At first, probing method is designed for de-
tect morphology knowledge(Belinkov et al., 2017)
,syntactic knowledge (Peters et al., 2018) and se-
mantic knowledge(Tenney et al., 2019). Then re-
searchers began to pay more attention to more
complex knowledge like commonsense knowledge.
The two main standard approaches in probing com-
monsense knowledge is building classifiers(Hewitt
and Liang, 2019) or filling text in the gap(Petroni
et al., 2019b). In our study, we extend the accu-
racy based methods and designed a series of down-
stream tasks specific to Scripts Knowledge.

3 Method

3.1 Script Knowledge Probing

Our first goal is to probe the script knowledge
from pre-trained language models. To do so, we
divide the script knowledge into three categories:
the Inclusive and starting relation between each
sub-event and main event, indicating whether the
sub-event should be included in or the start of the
script of a particular main event, and the temporal
relation (i.e., Before or After) among the sub-events.
To probe these knowledge from PLMs, we design
the following tasks.

Task 1: Inclusive Sub-event Selection As Fig-
ure 1 shows, given a main event, e.g., "Clean laun-
dry", and a candidate sub-event, e.g., "Gather dirty
clothes.", we aim to have the language model to
determine whether the sub-event belongs to the
script of the target main event. To do so, we use
[MASK] to connect them into a whole sequence and
use a PLM to encode the sequence into contextual
representations. In order to predict the Inclusive
relation, we apply a linear function (i.e., a MLM
head) to project the [MASK] into a probability distri-
bution over the whole vocabulary of the PLM. By
exploring many candidate tokens from the target
vocabulary to represent each relation, we finally se-
lect “include” to denote the Inclusive relation and
“except” for Exclusive.

Task 2: Starting Sub-event Selection Given a
main event and a set of sub-events that are predicted
to belong to the script of the main event, we aim to
select the most probable sub-event as the start of the
script. We formulate it as a sequence classification
problem. We concatenate the main event and each
sub-event candidate with a prompt "start with", e.g.,
Taking bus start with finding bus stop, and use a
MLP layer to predict a score indicating how likely
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MLM
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[CLS] Baking a cake [MASK] go to the grocery store and buy a cake mix. [SEP][MASK]

Include

Except

MLM
HEAD

[CLS] Find the local library go to the library. [SEP][MASK]

Before

After

[CLS] Riding on a bus start with getting off the bus. [SEP][CLS]

MLP

Probing with Three Different Tasks

(b) Probing Temporal Knowledge :

(c) Select Start Subevent :

(a) Probing Inclusive Knowledge :

Overall Probing Task

Step1 : Choose all Included Subevents for each main event

Baking a cake : [Fill the cake tray, …………………………., Prepare the cake pan ]

Taking a bath : [Get undressed, ………………………….….., Dry off with a towel ]

Example :

Step2 : Choose the first Subevent from all Included Subevents

Example :
Baking a cake start with Get a cake mix

Taking a bath start with Get undressed

Step3 : Ordering the whole Scripts

All Main Events All SubeventsInput :

Sub-events 1

Sub-events n

score 1

score n

...

Find the one with the highest
score as the start event

Figure 1: Overview of the probing approaches for (1) Inclusive Sub-event Selection, (2) Starting Sub-event
Selection, and (3) Sub-event Temporal Ordering. And an overall evaluation stage for generating scripts
with main events and subevents as input.

the sub-event is the start of the script of the main
event, based on the contextual representation of the
[CLS]. As a result, we use the sub-event with the
highest score as the first sub-event. We design a
margin based loss function to encourage the score
of the positive start sub-event to be higher than
others.

L(s∗, si)=
∑

s̃i∈S̃
max(score(s̃i)+m−score(s∗), 0)

where s∗ represents the positive start sub-event of
a particular script and S̃ denotes the set of other
sub-events from the same script. The margin m is
a hyper-parameter, which is set as 1.0 in our exper-
iment. During inference, given a set of candidate
sub-events, we compare their scores and select the
one with the highest score as the starting sub-event.

Task 3: Sub-event Temporal Ordering This
probing task is to show the capability of the PLMs
on correctly organizing the sub-events into a tempo-
rally ordered event sequence. To do so, we design
a new language model probing approach follow-
ing (Petroni et al., 2019c). As shown in Figure 1,
given two subevents, e.g., "put clothes in dryer."
and "turn on dryer." , we use [MASK] to connect
them into a sequence and use a PLM to encode it.
The temporal relation is predicted by comparing
the probability of tokens “before” and “after” based
on the contextual representation of [MASK].

3.2 Script Induction with PLMs

The second goal in this work is to design a sim-
ple yet effective approach to automatically induce
scripts based on PLMs. Given a particular main
event and a set of candidate sub-events, to induce
the script for the target main event, we design a

pipeline approach consisting of three steps: (1) se-
lecting a subset of inclusive sub-events from all the
candidates; (2) determining the starting sub-event;
and (3) ordering all the inclusive sub-events by pre-
dicting the temporal relation between each pair of
them. These three steps correspond to the three
approaches designed for script knowledge probing.

4 Experiment Setup

We take BERT-base-uncased (Devlin et al., 2019)
as the target PLM to investigate how well it en-
codes the script language via the three probing
tasks. We combine three script datasets, including
DeScript (Wanzare et al., 2016), OMICS (Gupta
and Kochenderfer, 2004) and Stories (Trinh and Le,
2018), where each main event is annotated with 7
to 122 scripts written by different crowd-sourcing
workers. We sample 60 main events as the evalua-
tion set, 39 main events as the development set and
use the remaining 98 main events for training. For
the main events in training and development sets,
we keep all the scripts, while for each main event in
the evaluation set, we only keep the longest script
as the target. Table 1 shows the statistics of each
dataset.

Datasets # Main Events # Scripts
Training 98 4,685
Development 39 1,791
Test 60 60

Table 1: Data statistics for training, development and
evaluation Sets.

To create the training samples for the inclusive
sub-event selection task, for each script, we use all
the ground truth subevents as positive samples and
randomly choose 100 times of negative samples
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from other main events’ scripts. For evaluation, as
the inclusive sub-event selection requires a pool of
all the possible candidate events, we combine the
sub-events of all scripts in the evaluation dataset.
To create the training samples for the start sub-
event selection task, we use the first sub-event of
each script as the positive sample and all the re-
maining sub-events from the same script as the
negative samples. During the inference, we select
the starting sub-event from the inclusive sub-events
predicted by the inclusive sub-event selection ap-
proach. We use accuracy as the evaluation metric.
Finally, for the temporal ordering task, we create
each training sample based on each sub-event to-
gether with one of its following sub-events. We
randomly shuffle the order of each pair of sub-
events and create its corresponding label: "before"
or "after". To evaluate the quality of the temporal
ordering among all the sub-events, we first generate
a script based on the predicted temporal order and
then use ROUGE-L to evaluate the longest com-
mon subsequence between the generated script and
the gold script.

We compare the following approaches for each
probing task as well as the script induction:

BERT Pre-trained: Directly use the pre-trained
BERT model to make the predictions on the evalu-
ation set.

BERT Fine-tuning: Fine-tune BERT with task-
specific training data and evaluate those fine-tuned
models on the evaluation set.

BERT Ptuning: Following the Ptuning frame-
work (Liu et al., 2021), fine-tune the parameters of
both BERT model and prompt tokens.

BERT Ptuning Freeze: Only fine-tune the
prompt tokens while freezing the parameters of
BERT model.

5 Results and Analysis

5.1 Overall Script Induction
We first show the results of end-to-end script in-
duction given each main event and the pool of all
candidate sub-events. As Table 2 shows, without
any fine-tuning, BERT-Pretrained can barely in-
duce any reasonable scripts. The high precision
and low recall indicates that the bottleneck is likely
in correctly selecting the inclusive sub-events for
each main event. However, with fine-tuning either
on the whole BERT parameters or a few prompt

parameters, the script induction performance can
be improved significant, demonstrating that the
pre-trained BERT actually captures certain level
of script knowledge but requires external probes to
induce such knowledge from it. Finally, by analyz-
ing of the performance of fine-tuning approaches,
we notice a more significant improvement on recall.
We conjecture that with fine-tuning, the inclusive
sub-event selection is more likely to be improved.

Method Rouge-L
Rec Prec F-score

BERT-Pretrained 3.25 22.60 4.81
BERT-Finetuning 37.19 28.07 28.73
BERT-Ptuning 48.70 28.78 32.52
BERT-Ptuning-Freeze 85.16 0.41 0.80

Table 2: Performance of script induction

5.2 Probing on Individual Tasks

We further analyze the capability of BERT on en-
coding each type of script knowledge based on the
three probing tasks. To avoid error propagation,
for both starting sub-event selection and temporal
ordering, we use the gold inclusive sub-events of
each main input as input.

As Table 3 shows, for inclusive sub-event se-
lection, without fine-tuning, both BERT-Pretrained
and BERT-Ptuning-Freeze cannot correctly select
any inclusive sub-events. This is likely due to the
discrepancy between the pre-training objectives of
BERT (i.e., MASK language modeling and next
sentence prediction) with the objective of inclu-
sive sub-event selection. With fine-tuning, the
performance of both BERT-Finetuning and BERT-
Ptuning is improved significantly, which is aligned
with our assumption in Section 5.1. Starting sub-
event selection is hard to all the approaches, which
is likely due to two reasons: one is the limited
training samples, and the other is that though we
formulate each sub-task as mask prediction to bet-
ter induce the knowledge from BERT, the pattern
“Main_Event starts with Sub_Event” is less likely
to appear in the unlabeled corpus than other pat-
terns, such as “Main_Event includes Sub_Event”
and “Event_A before/after Event_B”. Finally, all
the approaches show consistently descent perfor-
mance on temporal ordering, no matter whether
BERT is fine-tuned or not, demonstrating that
BERT has well captured the relations among the
events with stereotypical temporal orders, possibly
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Method Inclusive Subevent Selection Starting Subevent Selection Temporal Ordering
Rec Prec F-score Accuracy Rouge-L F1

BERT-Pretrained 7.44 0.64 1.17 18.33 63.79
BERT-Finetuning 33.83 44.71 38.51 21.66 62.87
BERT-Ptuning 31.16 56.24 40.10 20.00 63.62
BERT-Ptuning-Freeze 98.69 0.52 1.03 28.33 66.02

Table 3: Performance on each individual task.

due to the next sentence prediction objective during
pre-training.

6 Conclusion

In this work, we investigate the capability of large-
scale pre-trained language models (PLMs) on cap-
turing three aspects of script knowledge: inclusive
sub-event knowledge, starting sub-event knowledge
and temporal knowledge among the sub-events
from the same script. These three types of knowl-
edge can be further leveraged to automatically in-
duce a script for each main event given all the
possible sub-events. We use BERT as a target
PLM. By analyzing its performance on script in-
duction as well as each individual probing task,
we achieve the conclusions that the stereotypical
temporal knowledge among the sub-events is well
captured in BERT, however the inclusive and start-
ing sub-event knowledge are not well encoded.

7 Limitations

In this paper, we design a three-stages method to
evaluate PLMs’ performance in Scripts Knowledge.
Although we design those three tasks with pre-
prepared candidates as inputs, a more practical con-
dition in real life needs the PLMs to generate scripts
from scratch. We plan to use generate models like
GPT in the next paper to solve open-domain scripts
generation tasks. Moreover, the datasets we used
in this paper mostly focused on daily life which not
include much scrips knowledge in other domains.

References
Lisa Bauer and Mohit Bansal. 2021. Identify, align,

and integrate: Matching knowledge graphs to
commonsense reasoning tasks. arXiv preprint
arXiv:2104.10193.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017. What do neural
machine translation models learn about morphology?
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume

1: Long Papers), pages 861–872, Vancouver, Canada.
Association for Computational Linguistics.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. Comet: Commonsense transformers for auto-
matic knowledge graph construction. arXiv preprint
arXiv:1906.05317.

Zied Bouraoui, Jose Camacho-Collados, and Steven
Schockaert. 2020. Inducing relational knowledge
from bert. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 7456–7463.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In Proceed-
ings of the 2013 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2013, 18-21
October 2013, Grand Hyatt Seattle, Seattle, Washing-
ton, USA, A meeting of SIGDAT, a Special Interest
Group of the ACL, pages 1797–1807. ACL.

Nathanael Chambers and Daniel Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In ACL
2008, Proceedings of the 46th Annual Meeting of
the Association for Computational Linguistics, June
15-20, 2008, Columbus, Ohio, USA, pages 789–797.
The Association for Computer Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019. What does bert look
at? an analysis of bert’s attention. arXiv preprint
arXiv:1906.04341.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Xiao Ding, Kuo Liao, Ting Liu, Zhongyang Li, and
Junwen Duan. 2019. Event representation learning
enhanced with external commonsense knowledge.
arXiv preprint arXiv:1909.05190.

Edward A Feigenbaum, Avron Barr, and Paul R Cohen.
1981. The handbook of artificial intelligence.

Francis Ferraro and Benjamin Van Durme. 2016. A
unified bayesian model of scripts, frames and lan-
guage. In Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, February 12-17, 2016,

91

https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080
https://aclanthology.org/D13-1185/
https://aclanthology.org/D13-1185/
https://aclanthology.org/P08-1090/
https://aclanthology.org/P08-1090/
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12092
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12092
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12092


Phoenix, Arizona, USA, pages 2601–2607. AAAI
Press.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. arXiv preprint arXiv:1901.05287.

Jian Guan, Yansen Wang, and Minlie Huang. 2019.
Story ending generation with incremental encoding
and commonsense knowledge. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6473–6480.

Rakesh Gupta and Mykel J. Kochenderfer. 2004. Com-
mon sense data acquisition for indoor mobile robots.
In Proceedings of the Nineteenth National Confer-
ence on Artificial Intelligence, Sixteenth Conference
on Innovative Applications of Artificial Intelligence,
July 25-29, 2004, San Jose, California, USA, pages
605–610. AAAI Press / The MIT Press.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 2733–2743. Association for
Computational Linguistics.

Phu Mon Htut, Jason Phang, Shikha Bordia, and
Samuel R Bowman. 2019. Do attention heads in
bert track syntactic dependencies? arXiv preprint
arXiv:1911.12246.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos qa: Machine reading com-
prehension with contextual commonsense reasoning.
arXiv preprint arXiv:1909.00277.

Bram Jans, Steven Bethard, Ivan Vulic, and Marie-
Francine Moens. 2012. Skip n-grams and ranking
functions for predicting script events. In EACL 2012,
13th Conference of the European Chapter of the As-
sociation for Computational Linguistics, Avignon,
France, April 23-27, 2012, pages 336–344. The As-
sociation for Computer Linguistics.

Boyang Li, Stephen Lee-Urban, George Johnston, and
Mark Riedl. 2013. Story generation with crowd-
sourced plot graphs. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 27.

Zhongyang Li, Xiao Ding, and Ting Liu. 2018. Con-
structing narrative event evolutionary graph for script
event prediction. arXiv preprint arXiv:1805.05081.

Bill Yuchen Lin, Seyeon Lee, Rahul Khanna, and
Xiang Ren. 2020. Birds have four legs?! nu-
mersense: Probing numerical commonsense knowl-
edge of pre-trained language models. arXiv preprint
arXiv:2005.00683.

Li Lin, Yixin Cao, Lifu Huang, Shuang Li, Xuming Hu,
Lijie Wen, and Jianmin Wang. 2022. Inferring com-
monsense explanations as prompts for future event
generation. arXiv preprint arXiv:2201.07099.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Simon Ostermann, Ashutosh Modi, Michael Roth,
Stefan Thater, and Manfred Pinkal. 2018. Mc-
script: A novel dataset for assessing machine com-
prehension using script knowledge. arXiv preprint
arXiv:1803.05223.

Onkar Pandit and Yufang Hou. 2021. Probing for bridg-
ing inference in transformer language models. arXiv
preprint arXiv:2104.09400.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim
Rocktäschel, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2020. How context affects lan-
guage models’ factual predictions. arXiv preprint
arXiv:2005.04611.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An-
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2019a. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019b. Language models as knowl-
edge bases? In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019c. Language mod-
els as knowledge bases? In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 2463–2473. Association for
Computational Linguistics.

Karl Pichotta and Raymond J. Mooney. 2014. Statis-
tical script learning with multi-argument events. In
Proceedings of the 14th Conference of the European

92

http://www.aaai.org/Library/AAAI/2004/aaai04-096.php
http://www.aaai.org/Library/AAAI/2004/aaai04-096.php
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://aclanthology.org/E12-1034/
https://aclanthology.org/E12-1034/
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.3115/v1/e14-1024
https://doi.org/10.3115/v1/e14-1024


Chapter of the Association for Computational Lin-
guistics, EACL 2014, April 26-30, 2014, Gothenburg,
Sweden, pages 220–229. The Association for Com-
puter Linguistics.

James Pustejovsky, Patrick Hanks, Roser Sauri, Andrew
See, Robert Gaizauskas, Andrea Setzer, Dragomir
Radev, Beth Sundheim, David Day, Lisa Ferro, et al.
2003. The timebank corpus. In Corpus linguistics,
volume 2003, page 40. Lancaster, UK.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain your-
self! leveraging language models for commonsense
reasoning. arXiv preprint arXiv:1906.02361.

Nils Reimers, Nazanin Dehghani, and Iryna Gurevych.
2016. Temporal anchoring of events for the timebank
corpus. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2016, August 7-12, 2016, Berlin, Germany, Vol-
ume 1: Long Papers. The Association for Computer
Linguistics.

Rudolf Rosa and David Mareček. 2019. Inducing syn-
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A Appendix

A.1 Examples of Errors
In this section, we’d like to use a couple of exam-
ples of errors to show that what kind of information
are usually being missed by PLMs. We choose 2
scripts as inputs and test BERT’s(Without Finetun-
ing) ability to choose the right candidates and order
them.
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