
UDConcord: A Concordancer for Universal
Dependencies Treebanks

Lucas Gabriel Mendes Miranda and Thiago Alexandre Salgueiro Pardo

Interinstitutional Center for Computational Linguistics (NILC)
Institute of Mathematical and Computer Sciences, University of São Paulo

São Carlos – SP, Brazil
lucasgmm@usp.br, taspardo@icmc.usp.br

Abstract. This paper presents UDConcord, a concordancer web appli-
cation. The tool is designed to be visual and easy-to-use, working with
treebanks that were annotated using the Universal Dependencies inter-
national model. It allows users to upload a treebank in the CoNLL-U
format. After the upload, users can search for terms and linguistic cate-
gories of interest in the treebank. Because the tool is a concordancer, the
search results are composed of sentences with occurrences of the searched
elements displayed in a concordance list. That means that each sentence
with a matching term will be displayed in a row, with the found term cen-
tralized and highlighted, accompanied with other information selected by
the user to be visualized. UDConcord also allows users to easily modify
sentence annotation. Finally, UDConcord makes it possible for users to
download the treebank’s updated version, with every change made up
until that point.

Keywords: Concordancer · Universal Dependencies · Treebank.

1 Introduction

The Universal Dependencies project (UD) [6, 5] is an initiative that seeks to
standardize dependency-based treebank annotation. The project establishes a
set of guidelines that must be followed during the construction of these types of
treebanks.

One of the UD guidelines states that a treebank must be represented in
CoNLL-U file format. Such files must contain all the sentences in the treebank,
along with its annotation data, which is token/word-based. According to the
guidelines, every word/token in a sentence must have a series of values dis-
tributed over 10 fields (columns), including the word’s part-of-speech tag, lemma,
dependency relation, and other properties.

Those guidelines introduce a series of benefits to treebank annotation and
design, but, to people who are manipulating the CoNLL-U files, they also can
be hard to deal with. Particularly, problems might arise when users are trying
to query a treebank. For example: if a user wanted to search for two consecutive
words with specific part-of-speech tags in a treebank, he/she would not be able



2 Lucas Gabriel Mendes Miranda, Thiago Alexandre Salgueiro Pardo

to do it easily, thanks to the fact that treebanks are formatted in a table-like
manner and that the available search tools are not straightforward to use or to
install.

To help in this front, we present UDConcord, which is a concordancer web
application to simplify search, analysis, and edition of CoNLL-U files. UDCon-
cord seeks to be easy to use and simple (without the need to install the tool or to
learn some kind of search syntax), allowing users to query treebanks, presenting
the query results in a form a concordance. It also allows users to edit sentences’
annotation data easily.

2 Related Work

There are a number of applications that allow users to query treebanks. Unfor-
tunately, most of them have at least one of the following two issues:

– They do not allow users to edit the treebanks. For example, TüNDRA [4]
and Grew-match [2] are both tools for only searching treebanks;

– They have user interfaces that are relatively complex, which makes it harder
for inexperienced users to use them. For example, ConlluEditor [3] is one
of the tools that offer both searching and editing of treebanks. However,
its user interface suffers from an excess of buttons and options, which can
be confusing for new users. Other interesting example to cite is Arborator-
Grew [1], which, besides intended to be more user friendly and to include
more functionalities (allowing to search, edit and visualize trees), requires
the user to master some search syntax and to use an interface with too much
information.

These two problems were considered when designing UDConcord, especially
the second one. Our main goal was to create a tool that is simple, intuitive, and
easy to use, in order to make it friendlier to inexperienced users.

Below, we highlight two tools that are similar to ours and that somehow
inspired us to propose our tool, pointing UDConcord’s strengths in comparison.

Interrogatório [8] is an environment for searching and editing universal de-
pendency-based treebanks. It is written with Python and Javascript. However,
the app is supposed to only run locally and to be accessible with a web browser
through localhost. That could be a problem, because, in order for the user to
use Interrogatório, he/she must install it first, which can be confusing if they
are less experienced. UDConcord does not suffer from this, because it is a web
application accessible through the web.

To make queries with Interrogatório, the user must learn a query language
that is similar to Python code. Again, if the user is unfamiliar with Python,
he/she might experience some confusion in the process of learning the language.
To avoid this possibility during the usage of UDConcord, we implemented the
query feature with the use of a form. That is, to make queries with UDConcord,
users do not need to learn a query language, they only need to fill a form with
their query’s parameters and click on the search button.



UDConcord: A Concordancer for Universal Dependencies Treebanks 3

Another tool very similar to UDConcord is Grew-match [2]. Like Interro-
gatório, it is written in Python and Javascript and allows users to query tree-
banks using a query language, which we already commented that can be confus-
ing for less experienced users.

Like UDConcord, Grew-match is a web application accessible through the
web. However, Grew-match’s users can only query a set of predefined UD-based
treebanks, which is fairly large, while in UDConcord’s users have to upload their
treebanks in order to query them. We believe that this is useful because it offers
more flexibility to users.

Another important distinction between UDConcord and Grew-match is that
the latter does not allow its users to edit the CoNLL-U from the queried treebank,
while UDConcord does.

3 The Architecture of UDConcord

UDConcord is an application with three main components: a back-end, a front-
end, and a reverse proxy. All these three components are installed in different
Docker containers, like shown in Figure 1.

Fig. 1. UDConcord’s Architecture.

In the following subsections, we will specify what exactly each component
does.

3.1 Back-end

The back-end contains code concerned with the search and storage of treebanks.
It is entirely built with Javascript, with the Node.js runtime.

When the user uploads a treebank to our application, the back-end is respon-
sible for parsing it to an array of Javascript objects (with each object being a
sentence from the treebank) and saving it as a JSON file.

When the user searches a treebank, the back-end reads the JSON file that
corresponds to the treebank and looks for sentences that satisfy the user’s search



4 Lucas Gabriel Mendes Miranda, Thiago Alexandre Salgueiro Pardo

conditions. Once they are found, they are sent back to the user. This approach
guarantees queries with reasonable wait times for CoNLL-U files with at least
20 MB of size.

All these functionalities are exposed to the front-end through an API built
with the Node.js framework Express.

3.2 Front-end

The front-end is composed of code concerned with the user interface. More specif-
ically, it contains all the HTML, CSS and Javascript used to build it. It is impor-
tant to note, that, for the Javascript language, we used the Vue.js 3 framework,
which immensely facilitated our work. Furthermore, certain components, like
text inputs, tables, and buttons were taken from the PrimeVue component li-
brary. The front-end communicates to the back-end through HTTP requests to
the API in the latter.

3.3 Reverse Proxy

The reverse proxy is a server responsible to direct users’ requests to another
appropriate server. For example, when the user enters UDConcord’s web address,
he will request the server holding the static files (HTML, CSS, and Javascript
files) to download them. The reverse proxy will receive this user’s request and
direct it to the server running in the client container. Similarly, when the user
makes a request to the back-end API, the reverse proxy will direct it to the
Express server, which will process the request.

Our reverse proxy is configured using NGINX, which is a software commonly
used for this purpose.

4 The Concordancer

UDConcord has four main features:

– The possibility of searching for terms and linguistic categories of interest in
an uploaded treebank;

– To display every sentence with an occurrence of the searched elements;

– The possibility of editing the corresponding CoNLL-U files;

– Enabling the user to download the updated version of the treebank (with all
the made changes);

All of these features are further described in the following subsections.



UDConcord: A Concordancer for Universal Dependencies Treebanks 5

4.1 Searching/querying

UDConcord’s main feature is to let users query a treebank. However, to do that,
they must first upload the treebank to the system. The upload screen is available
on the home page of the app. It is the first thing users see when they enter the
website.

To upload the treebank, users just have to click on the blue button labeled
Choose file and select in their operating system the CoNLL-U file that represents
the treebank.

Simple Searches After uploading the treebank, users will be redirected to the
search screen. In that screen, he/she will have to specify their query parameters
filling out a search input, which is shown in Figure 2.

Fig. 2. Search input.

The selector highlighted in red allows the user to choose between five proper-
ties (all defined in the UD specifications) to search for in the uploaded treebank:
forms, lemmas, part-of-speech tags (POS tags), dependency relations (deprels)
and features (feats).

In addition, the selector highlighted in green allows the user to choose if
he/she wants their search to be made in a case-sensitive or insensitive way. On
the other hand, the input field highlighted in orange is the one where the user
must enter the values that should be searched in the treebank.

The button highlighted in purple shows some options about how the search
results should be displayed. For example, it allows the user to indicate whether
the part-of-speech tag of each token in every sentence should be displayed on
the results page or not.

Note that the whole search input is organized in a way that it forms a sentence
(from left to right). This was done this way to improve usability and to decrease
the user’s learning curve while he/she is learning how to use the tool.

Complex Searches Users can also build complex search patterns with the use
of the logical conditions AND, OR, and NOT. The logical AND and the logical
OR are represented by new rows in the search input, while the logical NOT is
represented by a value in the selectors highlighted in black in Figure 3.

The AND and OR logical conditions can be added to the search by clicking
on any of the buttons labeled AND and OR highlighted in pink in Figure 3. The



6 Lucas Gabriel Mendes Miranda, Thiago Alexandre Salgueiro Pardo

Fig. 3. Search input with logical conditions.

logical condition is added below the row that contains the clicked button. To
delete a logical AND or logical OR, the user must click on the red button that
is on the same row that he/she wants to remove.

Like we mentioned before, the logical NOT is represented by a value in the
selectors highlighted in black in Figure 3. This selector has the following two
possible values:

– “want”: the row will be evaluated without a logical NOT;
– “don’t want”: the row will be evaluated with a logical NOT.

To better clarify this manner of searching, we will describe a short example
below.

Example: searching with logical conditions Suppose a user wants to search
for the following 2-gram in a treebank:

– The first token of the 2-gram has the form “de”;
– The second token of the 2-gram has the form “novo” AND its part-of-speech

tag is not “ADJ”. Alternatively, the token can have a part-of-speech tag of
“NOUN”.

To make this search using UDConcord, users have to fill out their search
input like shown in Figure 3. Three rows of input are necessary. The first is the
initial one and the other two are for the AND and OR logical conditions.

In the first row, we select the “forms” option in the second selector and enter
“de novo” in the text input. That is because we want to search for two tokens,
in that order, with that specific forms. Furthermore, we select the “want” option
in the first selector because we want the found tokens to have their forms equal
to the ones specified in the text input.

In the second row, which defines the logical AND, we select “pos tags” in
the second selector. In the first selector, we choose “don’t want” because we
need the found tokens to have their part-of-speech tags different than the ones



UDConcord: A Concordancer for Universal Dependencies Treebanks 7

specified in the input text. Then, in that input text, we enter “[any] ADJ”. The
“[any]” is a special word in our program that signalizes that a token can have
any value. In the case of our example, the first token can have any part-of-speech
tag value. Note that the “[any]” is not affected by the “don’t want”. In addition,
the “[any]” keyword can also be used to search for skip-grams, by putting it in
the place of the token that should be skipped in the query.

Finally, in the third row, which defines the logical OR, we select “pos tag” in
the second selector. Furthermore, in the first selector, we choose “want” because
we need the found tokens to have their part-of-speech tags equal to the ones
specified in the input text. In that input text, we enter “ADP NOUN”. Then,
we click on the “Search treebank” to start the search.

Note that there is a specific order of precedence in the evaluation of the
logical conditions. First, NOT logical conditions are evaluated, then AND, then
OR.

4.2 Displaying the Results

After defining their search parameters and clicking on the “Search treebank”
button, the search will be made, and the results are going to be displayed on
the screen in the form of a concordance. That means that each sentence with a
matching n-gram will be displayed in a row, with the found n-gram centralized
and highlighted in blue.

Visualization Options: Displaying Part-of-speech Tags As mentioned in
subsection 4.1, the button highlighted in purple (Figure 2) shows some options
about how the search results should be displayed. Clicking on it exposes three
checkboxes with the following options: POS Tags, Dependency relations, and
Features.

These options enable the user to choose a few extra data he/she might want
to be displayed on the results page. For example, if he/she checked the box “POS
tags”, the part-of-speech tags of every token would be displayed in the search
results after a “/” character.

Visualization Options: Displaying Dependency Relations Note that users
can also choose to display dependency relations on the results. In that case, these
dependency relations would be displayed as shown in Figure 4.

Fig. 4. Display of dependency relations in the results.



8 Lucas Gabriel Mendes Miranda, Thiago Alexandre Salgueiro Pardo

The darker blue highlights the matched token/n-gram in the search and
the dependent in the dependency relation. The number between parentheses is
the token’s head’s id. Before the left parenthesis, there is also the label of the
dependency relation. The lighter blue highlights the head of the dependency
relation. So, Figure 4 is indicating that there is a dependency relation of type
“xcomp” between “negociada” (dependent) and “continua” (head). Also, note
that each token has its id subscripted next to it.

4.3 Editing Sentence Annotation

If the user double clicks on a sentence in the results, he/she will be redirected
to the corresponding CoNLL-U. There, they will be able to edit the sentence’s
annotation data.

The editor is organized in a table-like manner, with each line of the sentence’s
CoNLL-U corresponding to one row in the editor. Therefore, a row can have the
sentence’s metadata, or token/word annotation – in that case, the row is divided
into 10 cells: one for each field defined in the CoNLL-U format. Editing a table
cell is the same as editing one value in the CoNLL-U annotation. Currently,
UDConcord does not validate the values entered in the cells.

If the user right-clicks on a row, UDConcord will present the following three
options:

– Add a row below the one clicked;
– Add a row above the one clicked;
– Delete the clicked row.

It is important to note that if the user removes or adds a row, the ids and
the head field values from each row are automatically adjusted.

When the user finished the editing on the CoNLL-U file, he/she just have
to press the button labeled “Save changes” (at the bottom right) to save their
changes. Then, he/she can go back to the results page by clicking on the button
labeled “Go back” (also at the bottom right).

4.4 Downloading the Edited Corpus

UDConcord offers several options to download an uploaded treebank after the
user made changes to it. These options can be found after clicking on the arrow
inside the blue button labeled “Download” located at the bottom right of the
results page:

– “Download treebank (.conllu)”: clicking on it starts the download of the
uploaded corpus, with every change made by the user;

– “Download search results (.conllu)”: clicking on it starts the download of the
CoNLL-U of every sentence returned by the search. This is great if you want
to filter the CoNLL-U of only a few sentences;



UDConcord: A Concordancer for Universal Dependencies Treebanks 9

– “Download search results (.csv)”: clicking on it starts the download of the
search results in a .csv format (not the CoNLL-U, just the sentences them-
selves);

– “Download search results (.txt)”: clicking on it starts the download of the
search results in a .txt format (not the CoNLL-U, just the sentences them-
selves).

5 Caveats

As we previously mentioned, one of UDConcord’s main goals is to provide an
easy-to-use experience to its users. In order to do that, we implemented a query
interface that is simple and intuitive. However, this simplicity come with lim-
itations on the kind of queries that can be made with the tool. For example,
currently, there is no way to search for head-dependent relations, like a NOUN
that is a dependent of the verb “eat” with the “obj” relation. Our tool does
not support this kind of query, because its complexity did not allow it to be
well translated to our query interface in a simple way. For users that want to
make use of a more robust query mechanism that is not covered by UDConcord,
we recommend tools like Grew-match and Interrogatório, which allow them to
search using standard query languages.

6 Final Remarks

UDConcord was designed to be simple and easy to use. We developed it to
ease the task of working with Universal Dependencies-based treebanks. This
is especially useful to non-computer savvy users, who might encounter some
problems when dealing with the CoNLL-U files.

While simplicity is the tool’s main characteristic, we also focused on providing
the necessary features for quality treebank analysis, search, and annotation.

UDConcord is available at https://udconcord.icmc.usp.br/. Other related re-
sources and tools may be found at the web portal1 of the POeTiSA project
(which stands for “POrtuguese processing - Towards Syntactic Analysis and
parsing”). In this project, UDConcord has been used as support to the con-
struction of the Porttinari treebank for Brazilian Portuguese [7].

Acknowledgements

The authors are grateful to the Center for Artificial Intelligence of the University
of São Paulo (C4AI2), sponsored by IBM and FAPESP (grant #2019/07665-4).

1 https://sites.google.com/icmc.usp.br/poetisa
2 http://c4ai.inova.usp.br/



10 Lucas Gabriel Mendes Miranda, Thiago Alexandre Salgueiro Pardo

References

1. Guibon, G., Courtin, M., Gerdes, K., Guillaume, B.: When collaborative treebank
curation meets graph grammars. In: Proceedings of The 12th Language Resources
and Evaluation Conference. pp. 5293–5302. European Language Resources Associ-
ation, Marseille, France (May 2020), https://www.aclweb.org/anthology/2020.lrec-
1.651

2. Guillaume, B.: Graph matching and graph rewriting: GREW tools for cor-
pus exploration, maintenance and conversion. In: Proceedings of the 16th Con-
ference of the European Chapter of the Association for Computational Lin-
guistics: System Demonstrations. pp. 168–175. Association for Computational
Linguistics, Online (Apr 2021). https://doi.org/10.18653/v1/2021.eacl-demos.21,
https://aclanthology.org/2021.eacl-demos.21

3. Heinecke, J.: ConlluEditor: a fully graphical editor for Universal dependen-
cies treebank files. In: Universal Dependencies Workshop 2019. Paris (2019),
https://github.com/Orange-OpenSource/conllueditor/

4. Martens, S.: Tündra: A web application for treebank search and visualization.
In: Proceedings of The Twelfth Workshop on Treebanks and Linguistic The-
ories (TLT12). pp. 133–144. Association for Computational Linguistics (2013),
http://bultreebank.org/TLT12/TLT12Proceedings.pdf

5. Nivre, J.: Towards a universal grammar for natural language processing. In: Pro-
ceedings of the 16th International Conference on Intelligent Text Processing and
Computational Linguistics. pp. 3–16. Springer, Cham, Switzerland (2015)

6. Nivre, J., de Marneffe, M.C., Ginter, F., Hajič, J., Manning, C.D., Pyysalo, S.,
Schuster, S., Tyers, F., Zeman, D.: Universal dependencies v2: An evergrowing mul-
tilingual treebank collection. In: Proceedings of the 12nd International Conference
on Language Resources and Evaluation. pp. 4034–4043. European Language Re-
sources Association, Marseille, France (2020)

7. Pardo, T., Duran, M., Lopes, L., Felippo, A., Roman, N., Nunes,
M.: Porttinari - a large multi-genre treebank for brazilian portuguese.
In: Proceedings of the XIV Symposium in Information and Human
Language (STIL). pp. 1–10. Sociedade Brasileira de Computação,
Porto Alegre, RS, Brasil (2021). https://doi.org/10.5753/stil.2021.17778,
https://sol.sbc.org.br/index.php/stil/article/view/17778

8. de Souza, E., Freitas, C.: ET: A workstation for querying, editing and evaluating
annotated corpora. In: Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations. pp. 35–41. Association
for Computational Linguistics, Online and Punta Cana, Dominican Republic (Nov
2021), https://aclanthology.org/2021.emnlp-demo.5


