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Leveraging Non-dialogue Summaries for Dialogue Summarization

Seongmin Park Dongchan Shin Jihwa Lee
ActionPower

Seoul, Republic of Korea
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Abstract
To mitigate the lack of diverse dialogue sum-
marization datasets in academia, we present
methods to utilize non-dialogue summarization
data for enhancing dialogue summarization sys-
tems. We apply transformations to document
summarization data pairs to create training data
that better befit dialogue summarization. The
suggested transformations also retain desirable
properties of non-dialogue datasets, such as im-
proved faithfulness to the source text. We con-
duct extensive experiments across both English
and Korean to verify our approach. Although
absolute gains in ROUGE naturally plateau as
more dialogue summarization samples are in-
troduced, utilizing non-dialogue data for train-
ing significantly improves summarization per-
formance in zero- and few-shot settings and en-
hances faithfulness across all training regimes.

1 Introduction

Dialogue summarization fundamentally differs
from its non-dialogue counterparts in two ways: the
presence of speaker information and the inherent
abstractiveness that demands any dialogue summa-
rization system to "read between the lines". Conse-
quently, training a dialogue summarization model
requires datasets appropriate for the dialogue do-
main, which often calls for different provisions than
those commonly found in traditional, non-dialogue
summarization datasets.

The bulk of research efforts in summarization,
however, has historically been focused on written
documents. As a result, the research community
faces a shortage of diverse dialogue summarization
data, in contrast to the abundance of non-dialogue
summarization data (Feng et al., 2021; Tuggener
et al., 2021). From such state of the literature,
we identify a strong need for methods to utilize
widely available non-dialogue summarization data
in reinforcing dialogue summarization models.

In this work, we present recipes to transform
non-dialogue data into formats that enable direct

Figure 1: Overview of our proposed method. We trans-
form non-dialogue data into a format exploitable by
dialogue summarization models.

integration into dialogue summarization training.
During the transformation process, we also in-
herit desirable properties that arise from the extrac-
tiveness of non-dialogue summarization datasets.
Factual inconsistency and hallucination are ma-
jor research problems in dialogue summarization
(Maynez et al., 2020; Ladhak et al., 2021; Cao et al.,
2018; Huang et al., 2021). Since extractive sum-
maries naturally remain more faithful to the source
text, we design our transformation schemes to re-
tain such properties when adapting non-dialogue
summary data to the dialogue domain.

Our contributions are as follows:

1. We present formulas to transform non-
dialogue summarization datasets into patterns
usable for dialogue summarization. Summa-
rization models trained with the additional
data produce summaries more similar to gold
reference summaries.

2. We show that utilizing non-dialogue summa-
rization data preserves faithfulness in other-
wise factually-unchecked summaries.

3. We test our data manipulation scheme across
two languages (English and Korean) and on
document summary datasets with different lev-
els of abstraction.
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In Section 2, we first describe existing challenges
in dialogue summarization. In Section 3, we de-
scribe our dataset adaptation methods in detail. In
Section 4, we describe datasets, evaluation metrics,
and experiments used to test our methods.

2 Related works

2.1 Non-dialogue data for dialogue
summarization

Even in high-resource languages like English, di-
versely annotated dialogue summarization datasets
are scarce (Feng et al., 2021; Tuggener et al., 2021;
Zou et al., 2021). The need for a diverse collection
of dialogue summarization datasets is further ex-
acerbated by the fact that dialogue is recorded in
many formats, such as meetings, chats, and sponta-
neous speech.

To appease such a need for more data, several at-
tempts have been made to utilize non-dialogue data
in dialogue summarization (Figure 1). (Zou et al.,
2021) pre-trains a language model with BookCor-
pus (Zhu et al., 2015) to provide training samples
across diverse domains. (Khalifa et al., 2021) pre-
trains BART (Lewis et al., 2020) with unlabeled
dialogue corpora and fine-tunes the language model
with downstream summary tasks.

The focus of such approaches lies in whetting a
model to be more responsive to limited dialogue
summarization data. We suggest a new line of
research that directly manipulates the training data
instead of steering a model’s disposition directly.

2.2 Faithfulness in dialogue summarization

Factual incorrectness is a problem commonly ob-
served in abstractive summarization systems (Cao
et al., 2018; Huang et al., 2021; Tang et al., 2021).
Tang et al. (2021) identifies categories of factual
errors that dialogue summarization models may
generate. To improve the factual consistencies
of generated summaries, the authors corrupt di-
alogue transcripts to create negative samples in a
contrastive-learning scheme.

We employ a similar noising approach. Negative
sample generation in (Tang et al., 2021) requires
accurate token-level operations, such as part-of-
speech extraction and word negation. Our manipu-
lation scheme forgoes such additional components,
relying only on deterministic sentence-level edits.

Figure 2: Extractiveness of reference summaries. Ex-
tractive Fragment Density (Grusky et al., 2018) is the
longest extractive token span from the source data that
matches the reference summary.

3 Proposed method

3.1 Preliminaries
Let

DocSet = {(A0, X0), (A1, X1), ..., (Ai, Xi)}
(1)

be a non-dialogue (document) summarization
dataset, where Ai is the i-th document in the set,
and Xi is the corresponding reference summary. Ai

is a sequence of sentences (a0, a1, ..., am), where
m is the sentence count.

Similarly, we define a dialogue summarization
dataset,

DialSet = {(B0, Y0), (B1, Y1), ..., (Bj , Yj)},
(2)

where Bj is the j-th dialogue transcript in the
dataset, and Yj is the corresponding dialogue sum-
mary. Like any A, Bj consists of ordered sentences
(b0, b1, ..., bn).

We define F = {f0, ..., fk}, a set of transforma-
tion functions to be applied to each Ai in DocSet.
A transformation function is a set of operations
to transform non-dialogue text data into a pattern
usable in dialogue summarization training.

We introduce three such transformation func-
tions: forcing plain text into dialogue format (e.g.
by inserting pseudo-speaker information), shuf-
fling sentence order, and omitting the sentence
with highest extractive overlap with the reference
summary. Each suggested transformation function
is formerly defined in succeeding sections.

Once fk is applied to each Ai in DocSet, each
transformed non-dialogue input text is paired with

2



Table 1: Evaluation metrics for full training. fd (D) transformation is consistently effective in boosting match-based
ROUGE. Even though marginal gain in ROUGE from our method naturally decreases as the size of DialSet
increases, incorporating document summarization data greatly improves summary faithfulness. R1, R2, RL,
Prec., Rec., Faith. respectively stands for ROUGE-1, ROUGE-2, ROUGE-L, Precision, Recall, and Faithfulness.
Underlined values are the highest in each column. Higher is better for all metrics.

Data DialogSum HubDial

R1 R2 RL Prec. Rec. Faith. R1 R2 RL Prec. Rec. Faith.

Original 39.57 15.43 32.97 -3.8962 -4.3175 -4.1101 35.42 16.90 31.11 -9.9774 -9.7934 -8.9965
Naive 39.36 14.89 32.56 -2.9108 -2.9933 -2.5351 35.97 17.68 31.13 -7.8063 -7.6203 -7.9189
D 40.47 16.41 33.89 -2.9085 -2.8702 -2.4615 36.32 17.61 31.79 -7.7715 -7.6190 -7.9202
S 39.94 15.70 33.31 -2.9310 -2.8966 -2.4261 36.08 18.13 31.41 -7.8159 -7.5791 -7.8610
O 39.80 15.97 33.32 -2.9211 -2.8253 -2.4072 35.96 17.51 31.32 -7.7975 -7.6251 -7.8954

D + S 39.87 15.73 33.44 -2.9235 -2.9224 -2.4970 36.03 17.55 31.93 -7.8179 -7.6066 -7.9104
D + O 40.66 16.77 34.15 -2.9044 -2.8073 -2.4196 36.11 17.52 31.92 -7.7776 -7.6245 -7.9395
S + O 40.34 16.33 33.82 -2.9077 -2.8797 -2.4376 35.52 17.21 31.32 -7.8456 -7.6149 -7.9244
D + S + O 39.97 16.00 33.56 -2.9402 -2.8678 -2.4278 36.26 17.29 31.29 -7.8105 -7.5956 -7.9371

its corresponding reference Xi to form a new train-
ing set:

NewDocSet = {(fk(A), X) | (A,X) ∈ DocSet}.
(3)

NewDocSet can be used as additional training
data for dialogue summarization models.

3.2 Arranging text into dialogue format (fd)

Given a plain document, we convert its contents
into transcript format by segmenting the document
into sentences and appending a psuedo speaker:

fd(A) = (concatenate(“Speaker 1 : ”, a))a∈A.
(4)

This operation serves two purposes: we prime our
model to be more receptive of dialogue-formatted
data through prompting (Liu et al., 2021). We
also remove the gap between data patterns in train-
ing and inference by standardizing diverse non-
dialogue document data into the dialogue domain.

The prompt "Speaker 1" was chosen empirically:
multiple configurations, such as varying speaker
numbers and inserting real names, were tested.
Such complex configurations led to only marginal
increases in evaluation metrics and introduced ad-
ditional roadblocks in reliable reproduction (upper
bound in speaker number has to be arbitrarily se-
lected; a dictionary with realistic names has to be
distributed). Both English and Korean datasets
used "Speaker 1".

3.3 Shuffling sentence order (fd)

To combat lead bias commonly observed in tra-
ditional summarization datasets (Grenander et al.,

2019; Zhu et al., 2021), we shuffle the order of
sentences in A:

fs(A) = shuffle(A). (5)

Previous research has shown sentence shuffling
helps in reducing read bias (Grenander et al., 2019).
Since information in dialogues is often dispersed
across multiple utterances, we find sentence shuf-
fling to be more impactful when dealing with dia-
logues, compared to documents.

3.4 Omitting the most extractive sentence (fo)

Among all sentences in a document, we delete the
sentence with the most extractive overlap with the
reference summary. The degree of overlap is cal-
culated by the number of shared character 3-grams
between a single sentence from the source docu-
ment and the whole reference.

fo(Ai) = Ai{aex}, (6)

where aex in Ai has the highest 3-gram overlap
with Xi. By removing the most extractive sentence,
we aim to make DocSet more abstractive and re-
duce copying behavior.

Table 2: Datasets used in the experiment. “Dial." and
“Doc." stand for “dialogue" and “document".

Name Lang. Type Size Abstractive?

DialogSum English Dial. 15,600 Yes
XSum English Doc. 204,045 Yes

HubDial Korean Dial. 16,000 Yes
HubDoc Korean Doc. 334,160 No

3



4 Experiments

4.1 Experiment setup
We conduct comprehensive experiments that apply
transformation functions defined in Section 3.

4.1.1 Our models
First, we create different variants of NewDocSet
by applying functions in F = {fd, fs, fo} both
individually and in combination. Such application
results in 7 different variations of NewDocSet: D,
O, S, D+O, D+S, S+O, D+S+O, where, for
example, D +O = {fd ◦ fo(A) | A ∈ DocSet}.

With newly acquired training data, we train a
BART-base (Lewis et al., 2020; Wolf et al., 2019)
summarizer under three different configurations:

1. Zero-shot: NewDocSet is the training set.

2. Few-shot: Training data consists of
NewDocSet and 100 or 1000 samples from
DialSet.

3. Full training: Training data consists of
NewDocSet+DialSet.

We choose the BART architecture due to its
widespread use and proven track record in summa-
rization (Fabbri et al., 2021; Akiyama et al., 2021;
Zhao et al., 2021).

4.1.2 Baselines
We compare our trained models with two baselines:

1. Original: DialSet is the training set.

2. Naive: Training data consists of DialSet and
DocSet (i.e. fnaive(A) = A).

4.2 Datasets
For English, we use DialogSum (Chen et al., 2021)
as DialSet and XSum (Narayan et al., 2018) as
DocSet. For Korean, we use AIHub Dialogue
Summarization Dataset1 (HubDial) as DialSet
and AIHub Document Summarization Dataset2

(HubDoc) as DocSet. Table 2 contains a brief
description of each dataset.

Transformations fs and fo hinge on the assump-
tion that non-dialogue summarization datasets typi-
cally display considerable lead bias and are more
extractive than dialogue summarization datasets.
To gauge how extractiveness of non-dialogue data

1https://aihub.or.kr/aidata/30714
2https://aihub.or.kr/aidata/8054

effects final summary generation performance, we
conduct experiments on both highly extractive
(HubDoc) and extremely abstractive (XSum) docu-
ment summarization datasets (Figure 2).

4.3 Evaluation metrics

Performance of our model is measured as the
similarity between model summaries and refer-
ence summaries, calculated with standard ROUGE
scores (ROUGE-1, ROUGE-2, and ROUGE-L)
(Lin, 2004). We also measure the faithfulness
of the output summaries to input dialogues with
BartScore (Yuan et al., 2021). BartScore is a state-
of-the-art evaluation metric for factual consistency
and faithfulness in text generation.

Figure 3: Averaged percentage ROUGE-1, ROUGE-2,
and ROUGE-L improvements over dialogue-only train-
ing on HubDial test set. Shaded regions indicate config-
urations that underperform dialogue-only training.

5 Results

5.1 Full training

Both English and Korean summarization models
benefit from additional data curated by our trans-
formation functions. Only naive application of non-
dialogue data fails to improve ROUGE scores com-
pared to dialogue-only training. While marginal in-
crease in ROUGE saturates as more dialogue sum-
maization training samples are added, the addition
of document data significantly enhances factual
consistency of summaries (Table 1).

5.1.1 Abstractive document summary dataset
In terms of ROUGE, models trained with abstrac-
tive document summarization data (XSum) are
most affected by fd (D) transformations. Highest
scoring data transformation combinations mostly
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Table 3: Few-shot results on English DialogSum. Since XSum is already highly abstractive, fd (D) transformation
is the most effective. Almost all maximum values in each category involve a fd transformation. Notations are the
same as in Table 1.

Zero-shot 100-shot 1000-shot

R1 R2 RL Faith. R1 R2 RL Faith. R1 R2 RL Faith.

Original - - - - 31.05 10.55 26.58 -4.4925 35.12 12.23 29.20 -4.7314
Naive 13.64 2.71 11.21 -2.9081 31.05 9.31 25.81 -4.5829 37.97 13.22 31.11 -2.4799
D 15.46 3.18 13.05 -2.7045 34.93 10.74 28.21 -4.4414 38.28 13.23 31.08 -2.4319
S 14.35 3.51 12.11 -2.8926 32.83 09.82 26.80 -2.4675 38.33 13.62 31.45 -2.4146
O 16.41 2.80 13.66 -2.9846 32.89 09.53 27.24 -2.8102 38.28 13.57 31.12 -2.4495

D + S 17.47 4.27 14.56 -2.4899 34.51 10.96 27.96 -2.7527 38.26 13.27 31.21 -2.4494
D + O 14.73 2.88 12.07 -2.9530 34.40 10.76 28.18 -2.6696 38.85 13.55 31.62 -2.3949
S + O 16.69 3.42 13.96 -3.1872 33.84 10.27 27.83 -3.0668 38.55 13.44 31.19 -2.4154
D + S + O 16.36 3.84 13.76 -2.5456 34.65 10.82 28.25 -2.7152 36.80 13.03 30.42 -2.4381

Table 4: Few-shot results on Korean HubDial. Compared to less extractive English summarization, we see fs (S)
and fo (O) transformations resulting in greater marginal increase in ROUGE. Notations are the same as in Table 1.

Zero-shot 100-shot 1000-shot

R1 R2 RL Faith. R1 R2 RL Faith. R1 R2 RL Faith.

Original - - - - 3.41 1.35 3.03 -10.2144 31.42 13.64 26.69 -7.9586
Naive 20.72 8.94 18.34 -7.4637 27.98 12.56 24.24 -7.7524 32.17 14.74 27.34 -7.8893
D 26.34 11.74 22.97 -7.6731 28.48 13.03 24.79 -7.6451 33.05 15.16 28.46 -7.7255
S 21.38 9.43 19.01 -7.3379 28.12 12.42 24.19 -7.9053 32.68 14.91 27.78 -7.8162
O 22.09 9.82 19.73 -7.1363 29.50 13.26 25.01 -7.8737 32.26 14.77 27.85 -7.8357

D + S 24.21 11.31 21.48 -7.8747 28.50 13.06 24.84 -7.8565 31.78 14.62 27.18 -7.7687
D + O 24.81 11.20 22.04 -7.7556 29.71 13.17 25.68 -7.8058 31.67 14.66 27.33 -7.7651
S + O 20.38 9.25 18.50 -7.4731 29.79 13.47 25.62 -7.9142 31.92 14.53 27.16 -7.7673
D + S + O 24.17 11.37 21.46 -7.8234 28.50 13.31 24.48 -7.8908 32.77 15.25 27.96 -7.7934

involve fd. In terms of factual consistency and
faithfulness, fo transformations consistently score
the highest. This is in line with our intention to
introduce an additional in-comprehension under-
standing objective to the model that simple dia-
logue formatting cannot provide.

5.1.2 Extractive document summary dataset
fs (S) and fo (O) transformations are more influen-
tial when used to transform extractive data (Hub-
Doc). Factual consistency is correlated the most
with fs, because of lead bias present in HubDoc.

5.2 Zero- and few-shot training

In zero- and full-shot training, we see significant
improvements in both ROUGE and factual consis-
tency (Tables 3, 4). Figure 3 shows improvements
in ROUGE over DialSet-only training at differ-
ent dialogue DialSet sizes. Naively training with
non-dialogue summarization data yields results no
better than training with only dialogue data. In con-
trast, our suggested transformations provide sig-
nificant gains in both span match and consistency
measures in low-shot training regimes.

Comparative influence of each transformation
function (fd, fs, and fo) show trends similar to
those observed in full training, with fd proving
the most dominant for already abstractive DocSet
(XSum) and fs and fo being more influential in
comparatively extractive DocSet (HubDoc).

6 Conclusion

We present simple but immediately effective meth-
ods to utilize abundant non-dialogue summariza-
tion data to improve dialogue summarization sys-
tems. We evaluate performance gains in similarity
to reference summaries as well as in factual con-
sistency to original transcript input. We find that
our method is especially impactful in low-resource
dialogue summarization.

Our research hints at two possible avenues for
further investigation: reinforcing the three pre-
sented transformation recipes with a more method-
ical generation of prompts (Ghazvininejad et al.,
2021), or introducing new transformations that bet-
ter capture the unique properties of dialogue sum-
marization datasets.
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Abstract

Visual Dialogue (VD) task has recently re-
ceived increasing attention in AI research. VD
aims to generate multi-round, interactive re-
sponses based on the dialog history and image
content. Existing textual dialogue models can-
not fully understand visual information, result-
ing in a lack of scene features when communi-
cating with humans continuously. Therefore,
how to efficiently fuse multi-modal data fea-
tures remains to be a challenge. In this work,
we propose a knowledge transfer method with
visual prompt (VPTG) fusing multi-modal
data, which is a flexible module that can uti-
lize the text-only seq2seq model to handle
VD tasks. The VPTG conducts text-image
co-learning and multi-modal information fu-
sion with visual prompts and visual knowledge
distillation. Specifically, we construct visual
prompts from visual representations and then
induce sequence-to-sequence (seq2seq) mod-
els to fuse visual information and textual con-
texts by visual-text patterns. Moreover, we
also realize visual knowledge transfer through
distillation between two different models’ text
representations, so that the seq2seq model can
actively learn visual semantic representations.
Extensive experiments on the multi-modal dia-
logue understanding and generation (MDUG)
datasets show the proposed VPTG outperforms
other single-modal methods, which demon-
strate the effectiveness of visual prompt and
visual knowledge transfer.

1 Introduction

Cross-modal understanding between vision and lan-
guage has become a challenging field in natural
language processing and computer vision. With
the rapid development of deep neural networks,
researchers have made rapid progress in a series
of visual language tasks, including moment local-
ization with natural language (Zhang et al., 2019a,
2020; Tan et al., 2021; Li et al., 2022b), image

∗These authors contributed to this paper equally.

Multimodal Dialogue Understanding and Generation

STEP1:            To have and to hold, for better or worse, richer or poorer,

Okay, then.

… …

STEP2:            In sickness and health, for as long as you both shall live?

STEP3:            Sure. - By the power vested in me, I pronounce you husband and wife.

STEP4:            Okay, then.

Output:            You may kiss the bride.

To have and to hold, for better or worse, richer or poorer, In sickness and health, for as long as you both shall live? Sure. - By the power vested in me, I pronounce you husband and wife.

Figure 1: Description of the Multi-modal Dialogue Un-
derstanding and Generation (MDUG) task. From step1
to step 3, the video is about a priest, and the subtitles are
snippets of wedding vows. For the response generation
of step 4, supposing that only dialogue text context was
taken, the previous dialog text: “OK, then” is inade-
quate for generating the expected output: “you may kiss
the bride.”

captioning (Vinyals et al., 2015; Chen et al., 2017;
Anderson et al., 2017), visual question answering
(Tang et al., 2018; Chen et al., 2020; Sheng et al.,
2021), etc. The visual dialogue task (Das et al.,
2017) aims to perform multiple rounds of interac-
tive dialogue based on dialogue history and image
content.

Dialogues with multi-modal contexts (visual and
textual) are becoming more and more general in
daily life (Baltrušaitis et al., 2018), such as commu-
nicating messenger tools (e.g. Facebook, WeChat).
Compared with visual question answering, Visual
Dialogue (VD) tasks not only require answering
questions according to visual information but also
require a deep understanding of multiple rounds of
historical dialogues (Schwartz et al., 2019b; Gan
et al., 2019; Chen et al., 2022). In the visual dia-
logue task, researchers have put forward a lot of
relevant datasets, the GuessWhat?! (de Vries et al.,
2016) and the Visdial (Das et al., 2017) set up visual
dialog data sets for images. The MDUG (Wang
et al., 2022b) is based on video scenes to generate
coherent textual responses.
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In this work, we mainly focus on video visual
dialogue such as the Multi-modal Dialogue Under-
standing and Generation (MDUG) dataset (Wang
et al., 2022b). Compared to image captioning and
image visual dialogue, it requires modeling long-
distance image sequences, which is more challeng-
ing and practical. The MDUG task proposes a
multi-modal dialogue task in the video field. It
needs the system to generate a response of the cur-
rent frame based on multi-modal video scene and
historical dialogue information, where historical
video clips frame and text captions are mapped
one-to-one. The video clips and visual images
have much abundant and useful information about
the plot development. It is easy to pick up on their
movements and expressions from visual informa-
tion. For example, in the last frame of Figure 1.
On the one hand, from the body movements of peo-
ple such as they gradually face each other and a
smile on the man’s face, we can observe that the
man is going to kiss his bride, so models can infer
the “kiss” action in generated response. On the
other hand, from the wedding vows context, it’s
easy to infer their roles as bride and groom. There-
fore, this example demonstrates the importance of
combining images and texts for the MDUG task.

Although much attention has been drawn to dia-
logue tasks (Das et al., 2017), neural models have
shown impressive performance gains in textual dia-
logue tasks. But existing text-only dialogue meth-
ods still have limitations in handling video dialogue
tasks in multi-modal scenarios, which may hin-
der further advancement in this direction. In text-
only dialogue tasks, more and more text generation
models are pre-trained in the large-scale corpora
with the development of pre-trained language mod-
els (Brown et al., 2020; Shao et al., 2021). Most
of the dialogue pre-training models are based on
transformers through pre-training in large-scale di-
alogue texts and using a large number of encoder
and decoder layers (Gu et al., 2022; Zhou et al.,
2021; Bao et al., 2021). This can improve the con-
sistency between the generated context and context
and the fluency of the generated text. But the bigger
challenge is based on the non-homogeneity of the
input text-image multi-modal information and the
output text information besides challenges in the
text-only task in multi-modal dialogue generation
tasks.

How to understand and integrate the multi-modal
information, and comprehensively perform text

generation remains to be an unsolved and important
problem. Many efforts have been made to realize
a reliable and accurate multi-modal dialogue un-
derstanding and generation in similar tasks such
as image captioning and video question answering
(Fukui et al., 2016; Sharma et al., 2020; Das et al.,
2017; Shrestha et al., 2019). However, the methods
adopted in that work cannot be directly generalized
to the video visual dialogue task, and the video
visual dialogue task requires multi-level modeling
in a large number of sequence images and dialog
history at the same time (Schwartz et al., 2019a).

To take a significant step in this direction and
fully utilize seq2seq models’ capability, we propose
a Visual Prompt Text Generate (VPTG) method
that can directly provide visual assistance train-
ing for multi-modal language models to tackle the
above challenges. The VPTG framework can ef-
ficiently generate dialogue response that is coher-
ent to both visual images and text dialogue. To
model text-image mapping in the same representa-
tion space, we adopt CLIP contrastive training to
conduct co-learning of image-caption pairs through
a pre-trained language model (Liu et al., 2021a).
We also use the visual prompt to fuse image visual
information into text features. In the training stage,
we input the “image” and “answer text” into the
CLIP (Radford et al., 2021), and input the “image”
feature vector as a visual prompt into the seq2seq
model. In addition, to improve the visual model-
ing ability of language models, we conduct visual
knowledge transfer by transferring visual represen-
tations to visual prompt and using it to prompt the
seq2seq model modeling multi-modal data. Specif-
ically, the “answer text” feature is also provided to
the encoder output “[CLS]” vector of the seq2seq
model for distillation. We also ask the sequence-to-
sequence (seq2seq) model to actively learn visual
semantic representations. For efficient training, we
adopt an end-to-end training architecture.

In the prediction stage, we only use the image
as the input of the CLIP and get the visual prompt,
and then perform multi-level learning from visual
information to textual information. In the VPTG,
we perform efficient representation, co-learning,
and fusion of multi-modal information. Extensive
experimental results show that the VPTG method
consistently outperforms all baseline schemes in
the MDUG task, showing the effective ability of
the method to make better use of textual and visual
information to generate high-quality multi-modal
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dialogue responses.
In summary, our contributions are as follows:

• In this work, we focus on the video visual
dialogue task. To the best of our knowledge,
this is the very first attempt to apply the vi-
sual prompt for solving the video dialogue
response generation task.

• We present a useful method, which can be
used in almost all seq2seq models. And it con-
ducts visual prompts and visual knowledge
transfer to jointly learn images and text, and
effectively generate a response. We explore
the task with multi-modal information repre-
sentation, co-learning, and fusion.

• Extensive experiments are performed to exam-
ine the effectiveness of the proposed VPTG
on the MDUG dataset, in which we achieve
state-of-the-art performances.

2 Related work

2.1 Visual Dialogue Task

With the progress of human-robot interaction tech-
nology, more and more dialogue tasks emphasize
user-friendliness and ethical safety (Zhang and
Zhao, 2021). A dialogue system mainly includes
two parts: (1) understanding the history of dia-
logue; (2) Response in natural language.

The Visual Dialogue (VD) task require agents
to have meaningful dialogue with humans in multi-
modal scenes (Das et al., 2017; Dalu et al., 2019;
Li et al., 2021; Wang et al., 2022b). It is more
complex than traditional visual tasks (such as Ob-
ject Detection (Ren et al., 2015), Image Retrieval
(Kalantidis et al., 2015)). In the VD task, given
some frame or a video clip, a dialog history con-
text, the agent has to ground in image and text,
infer context from history, and generate text re-
sponse accurately. It requires multi-dimensional
modeling based on visual information to gener-
ate accurate descriptions, which has been used to
help visually impaired people better understand the
visual content of the environment. The MDUG
dataset is a VD dataset that aims to generate an
interactive response based on the image captions
context history and video clips image content. The
traditional multi-modal fusion method first uses the
visual model to extract the image features and then
uses the neural network such as LSTM (Hochreiter
and Schmidhuber, 1997) to fuse the information

between different modes. In recent years, many
methods have been committed to more compre-
hensive information fusion (Vinyals et al., 2014),
such as MHCIAE (Lu et al., 2017) used discrimi-
native learning to migrate knowledge into dialogue
generation. ReDAN (Gan et al., 2019) conducted
visual dialogue through multi-step reasoning. UTC
(Chen et al., 2022) unified the discriminative and
generation of Visual Dialogue tasks based on the
framework of contrastive learning. Different from
previous works, the VPTG adopts a more flexi-
ble and widely applicable framework that can be
integrated with various single-modal pre-trained
language models to learn vision-language interac-
tions by taking visual prompt and visual knowl-
edge transfer, which deeply captures the relations
between image and texts to mutually reinforce dia-
logue response generation.

2.2 Pre-Trained Language Model
There are also pre-trained models promising in the
visual-language field (Murahari et al., 2019; Wang
et al., 2020; Ye et al., 2022). Most of the popular
approaches employ an encoder-decoder architec-
ture for visual dialog. The encoder aims at encod-
ing the image and text to fused features, and two
separate decoders are employed for ranking and
generating respectively. Among them, a variety
of attention mechanism-based approaches are pro-
posed to learn the interactions between the image,
the answers, and the dialog history in the discrim-
inative setting. The 3D ConvNet was pre-trained
on the Kinetics dataset (Carreira and Zisserman,
2017). The CLIP (Radford et al., 2021) and Wenlan
(Huo et al., 2021) models are image-text pair pre-
trained models, which are pre-trained by learning to
map text and image to the same vector space. The
OFA (Wang et al., 2022a) is a unified model adopt-
ing multi-modality pre-training with multi-tasking
training objectives. It transforms all multi-modal
tasks into sequence-to-sequence (seq2seq) tasks,
which realizes the state-of-the-art performance in
multiple visual-language tasks.

2.3 Prompt Tuning
How to make better use of pre-trained models has
become a concerning problem (Han et al., 2021b).
Prompt tuning is a new NLP paradigm used to solve
the downstream tasks of the pre-trained model.In
the field of multi-modality, increasing methods
adopt prompt tuning to learn the aligned features
between different modalities. CPT (Yao et al.,
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2022) uses color (visual feature) as a bridge to
recover masked tokens from cross-modal content,
narrowing the gap between pre-training and down-
stream tasks. The VPTSL (Li et al., 2022a) formu-
lates the natural language video localization task
as an extraction reading comprehension task by
introducing the discrete visual prompt. And, it im-
plements a new state-of-the-art on the MedVidQA
(Gupta et al., 2022) datasets.

The VPTG solves the defect of incomplete uti-
lization of visual features. It also performs vi-
sual prediction tasks by LKL compared with these
prompt methods. This can make the model more
fully understand the visual semantics, so as to bet-
ter multi-modal modeling.

3 Datasets

The multi-modal Dialogue Understanding and Gen-
eration task (Wang et al., 2022b) is required to gen-
erate a dialogue agent for the next sentence based
on the multi-modal scene and the previous dialogue
process. This task needs to model the semantics
of the session and the scenario of the session. The
task provides the multi-modal video of dialogue
content and scene. Its ultimate goal is to generate
agent replies that meet the context and are related
to the video scene.

The videos and dialogues for this task are
crawled from online TV series. The dataset is split
into a training set, a validation set, and a test set.
Each example includes a dialogue session as well
as the associated video clip, which is a sequence
of frames. The frames from the videos have been
downsampled to 3fps.

It is composed of 43,895 videos with 1,100,242
utterances. Each video has an average of 25.07
utterances. We follow the official data split, where
1,000,079, 50,032, and 50,131 utterances are used
for training, validation, and testing, respectively.

4 The Proposed Method

We propose the visual prompt Text Generate
(VPTG) framework for the multi-modal Dialogue
Understanding and Generation (MDUG) task,
whose ultimate goal is to generate a response that is
coherent to the dialogue context and relevant to the
video context. The Figure 2 illustrates the architec-
ture of VPTG. It is challenging to directly generate
the dialogue response according to multi-modal
data. To tackle this challenge of data alignment
and fusion between image and text, we split the

MDUG task into two simultaneous modules: (1)
the visual predictor module is first used to generate
visual prompt (Section 4.1) by jointly training an
image encoder and a text encoder and fusion image
information into a text representation. (2) The text
predictor conducts Visual Knowledge Transfer
(Section 4.2) to guarantee response generation with
information alignment between text and image.

4.1 Visual Prompt

The visual prompt method was proposed in the
Visual Predictor module. In this module, we aim
at learning multi-modal feature representation and
constructing visual prompts to reinforce semantic
modeling.

In the MDUG task, an example includes a dia-
logue session and the associated video clip which
is a sequence of frames (3 frames per second). In
the VPTG, we input the last frame of video I and a
corresponding next textual response T correspond-
ing at a time. Because image and text are het-
erogeneous data, we leverage the CLIP (Radford
et al., 2021) to model joint representations of image
and text. For multi-modal data, joint representa-
tions are projected to the same space using all of
the modalities as input. The CLIP (Radford et al.,
2021) is a visual-language pre-training model that
learns both visual and language representations
by predicting the correct pairings of a batch of
{image, text} training examples. In our model, for
the current frame image and the next textual re-
sponse, we utilize an image encoder to get visual
prompt Vimage ∈ Rk and a text encoder to get
Vtext ∈ Rk, they are jointly trained to respectively
map the input image and text into a unified repre-
sentation space. We adopt contrastive learning as
its training objective. We use LCL to close the se-
mantic distance of image-text pairs, where ground
truth image-text pairs are regarded as positive sam-
ples X+ = {x+

i }ni=1, and mismatched image-text
pairs constructed as negative ones X− = {x−

i }mi=1.

LCL = −∑n
i=0

[
log

Sim(xi,x
+
i )

Sim(xi,x
+
i )+

∑m
j=1 Sim(xi,x

−
j )

]

Sim(xi, xj) = exp
(
f(xi)

T f (xj)
)

(1)

4.1.1 Prompt Designing
The information coming from text and image
modalities may have varying predictive power and
noise topology (Baltrušaitis et al., 2018). After
learning joint representations of image-text pairs,
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Figure 2: The architecture of the proposed method. In the training stage, we input the “image” and “answer text”
into two separate encoders of CLIP, and input the image feature vector as a visual prompt into the seq2seq model.
In addition, the answer eigenvector is also provided to the encoder output “[CLS]” vector of the seq2seq model for
distillation. In the prediction stage, we only use the image as the input of the CLIP and get the visual prompt.

we conduct visual prompt learning. Unlike tra-
ditional visual prompt Tuning methods aiming to
finetune large-scale Transformer modules with a
small amount of task-specific learnable parame-
ters, we construct the visual prompt to fuse visual
modality into text modeling and generation, which
can also be trained end-to-end.

We adopt the visual image representation as
the visual token for prompting the pre-trained lan-
guage model. Specifically, the image representa-
tion Vimage was transferred to the same dimension
as the input text tokens as a visual prompt.

Pt = Linear(Vimage) (2)

where Pt ∈ Rd,d is the dimension of text predic-
tor encoder embedding; Linear is a single feed-
forward layer.

4.1.2 Prompt Tuning
Intuitively, the visual prompt Pt is used as the vi-
sual token which concatenates with the text dia-
logue sentence and the last video frame image. The
“[CLS]” is positioned at the head of the input token,
while the prompt Pt is used as the trigger to model
and generate a response. After concatenation, the
embedding module is adopted for learning the fea-
tures in the same vector space. On the one hand,
the visual prompt covers the non-verbal part that
the text token lacks. On the other head, the visual
prompt is supervised by the visual frames, where
some visual features can be the extra knowledge

for the pre-trained model when fine-tuning.

P = Embedded ([CLS]Text[SEP])ConcatPt
(3)

4.2 Visual Knowledge Transfer

The text predictor module is based on the
seq2seq Transformer model (Vaswani et al., 2017a).
The Transformer is Encoder-Decoder architecture,
which is proved to be outstanding for text genera-
tion. The encoder produces a global contextual rep-
resentation based on multi-modal representation fu-
sion, and the decoder will use the multi-head atten-
tion mechanism to fuse encoder information, and
then generate the final frame predicted response
token by token. To make information alignment,
we propose Visual knowledge transfer to distil
knowledge by cross-attention. This thought has
been proved to perform better multi-modal infor-
mation fusion in the textual question answering
field (Izacard and Grave, 2020).

4.2.1 Text Encoder Distill Learning
In text predictor, each P constructed in Visual
Prompt is given as input to a seq2seq model en-
coder.

VP = Encoderseq2seq(P) (4)

Let V seq2seq
CLS ∈ Rd be the [CLS] token’s repre-

sentation of the encoded query VP , it models the
whole representation containing dialogue text and
visual prompt in the bidirectional encoder. We will
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assume that the last hidden state output among two
encoders and text can be defined as p1(t | p) and
p2(t | z). There are two transformer encoders in
the VPTG, where we call the visual predictor en-
coder as Encoder1, the text predictor encoder as
Encoder2.

p1(t | p) ∝ V CLIP
text , p2(t | z) ∝ V seq2seq

CLS (5)

where t is input dialogue text, p is the input
frame image; z is the visual prompt according
to p; V CLIP

text ∈ Rk is the representation of im-
age in the visual predictor. The p1 represent the
Encoder1, and the p2 represent the Encoder2.
We close the gap between V seq2seq

CLS and V CLIP
text

by minimizing the KL-divergence. This aims at
training the response generator (Encoder2) with
visual knowledge information from the image-text
predictor (Encoder1).

L0
KL(θ,Pt) = DKL(V

seq2seq
CLS (x)||w0V

CLIP
text (x))

L1
KL(θ,Pt) = DKL(w0V

CLIP
text (x)||V seq2seq

CLS (x))

LKL(θ,Pt) =
1

2

∑

x∈X

(
L0
KL(θ,Pt) + L1

KL(θ,Pt)
)

(6)

where X is the training set of all image-text pairs.
w0 ∈ Rd×k is a trainable weights vector. The
text predictor encoder (Encoder2) is trained si-
multaneously by the response generation task. We
take the formula above to perform visual knowl-
edge distill learning. In training LKL, it performs
gradient decoupling (stop-gradient operator) for
V CLIP
text (x) and Encoder1. This visual knowledge

distill learning method requires the seq2seq model
(or Encoder2) to actively learn visual semantic
representation, so as to increase the model’s per-
ception of visual signals and avoid ignoring infor-
mation of visual prompt.

4.2.2 Response Generation
Finally, we generate responses with the seq2seq
model’s decoder. We define Lgen as the autoregres-
sive loss.

Lgen = −
N∑

n=1

p(yi) log
exp (yi)∑N
n=1 exp (yi)

(7)

where yi is the i-th generated token by the language
model. N is the size of the target vocabulary.

4.3 Training and Inference
Combining the above derivations, our training ob-
jective that we seek to minimize for response be-

comes:

L = LKL + λLgen + γLCL, γ ∈ R, λ ∈ R. (8)

We jointly train the visual predictor and text predic-
tor as an end-to-end training approach.

For inference, we first encode the input image-
text pairs by the visual predictor, then construct the
visual prompt to fuse multi-modal representation.
The text predictor can generate predicted responses
after concatenation between the text tokens and the
visual token.

5 Experiments

In this section, we will introduce the evaluation
indicators and experimental settings. Then we com-
pare VPTG with the existing dialogue generation
technology and ablation experiments to prove the
effectiveness of our method.

5.1 Evaluation Metrics
Following prior work (Chen et al., 2015; Laokul-
rat et al., 2016; Pasunuru and Bansal, 2017; Liu
et al., 2021b), we use a variety of evaluation indi-
cators, which can evaluate the generation quality
of sentence level and word level at the same time,
and show the detailed performance of the system
more comprehensively. We adopt “BLEU” (Pap-
ineni et al., 2002), “ROUGE” (Lin, 2004), “ME-
TEOR” (Denkowski and Lavie, 2014) and “CIDER”
(Vedantam et al., 2015) as the evaluation metrics,
which can assess the quality of visual dialogue gen-
eration, including fidelity and diversity.

5.2 Implementation Details
In order to compare the functions of the system
more fairly, we follow the setting of the base-
line scheme and only compare whether to add the
VPTG module. In recent years, natural language
processing significant progress has been achieved
(Han et al., 2021a; Qiu et al., 2020) due to the
introduction of Pre-trained Language Model (Pe-
ters et al., 2018; Devlin et al., 2019; Radford and
Narasimhan, 2018). Therefore, more and more
methods begin to introduce the pre-trained lan-
guage model in the dialogue generation task (Zhang
et al., 2019b; Adiwardana et al., 2020; Roller et al.,
2021b; Thoppilan et al., 2022; Gu et al., 2022).

For all methods, we use the same CLIP 1 (Rad-
ford et al., 2021) model as feature extraction It

1https://huggingface.co/openai/
clip-vit-base-patch32
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Models BLEU-1 ROUGE-L METEOR CIDEr Avg
Random Mode 4.81 3.92 2.21 2.42 3.34

BART-base(Lewis et al., 2019) (2019)
Originally 5.02 4.35 2.54 3.75 3.92
Fintune 5.74 6.10 3.87 4.11 4.96
With VPTG 6.12 6.52 4.01 4.35 5.25(0.29↑)

T5-base (2020)
Originally 2.78 4.21 2.33 1.20 2.63
Fintune 2.94 4.44 2.81 0.58 2.69
With VPTG 3.24 5.12 2.98 0.89 3.06(0.37↑)

Blender-400M (Roller et al., 2021a)(2021)
Originally 6.03 7.69 5.43 3.51 5.67
Fintune 7.01 8.73 6.05 5.85 6.91
With VPTG 7.55 9.15 6.49 6.61 7.45(0.54↑)

Table 1: Performance comparison of the variants methods on MDUG dataset. We highlight the best score in each
column in bold, and the second best score with underline. We also show the improvement between first place and
second place.

Case Study BLEU-1 ROUGE-L METEOR CIDEr Avg
Baseline 7.01 8.73 6.05 5.85 6.91
W/O LKL 7.25 8.91 6.24 7.12 7.38
W/O Visual-Feature 7.10 8.79 6.34 6.01 7.06
W/O visual prompt 6.45 8.10 5.78 5.62 6.49
VPTG 7.55 9.15 6.49 6.61 7.45

Table 2: We conduct the ablation study to analyze the performance of the VPTG on the Blender-400M model, where
we use the same parameters to train the model and report the highest score.

has 8 attention heads and 12 layers, and its hidden
size is 512. For the seq2seq model, we all use the
base size model for testing. And for the remaining
settings, we follow the original code.

We train the model using the Pytorch2 (Paszke
et al., 2019) on the NVIDIA RTX3090 GPU and
use the hugging-face3 (Wolf et al., 2020) frame-
work. We use the AdamW (Loshchilov and Hutter,
2018) as the optimizer and the learning rate is set to
1e-5 with the warm-up (He et al., 2016). The batch
size is 24. We set the maximum length of 512 (we
set the max length as 128 for Blender, because it
supports up to 128 lengths of input), and deleted
the excess. We use the linear decay of the learning
rate and gradient clipping of 1e-6. The dropout
(Srivastava et al., 2014) of 0.1 is applied to prevent
overfitting. The detailed experimental settings are
shown in Table 1.

All hyperparameters are optimized on the Valid
set. In all our experiments, at the end of each
training phase, we will test the effective data set
and select the highest model (mainly depending on
BLEU) in the test data set for prediction. We report
the results in the test data set. We repeated the
experiment three times and reported the average
score.

2https://pytorch.org
3https://github.com/huggingface/

transformers

5.3 Comparison with State-of-the-Art
Methods

In the MDUG dataset, we compared the baseline
scheme with the existing dialogue generation.

BART (Lewis et al., 2019) uses a standard
seq2seq transformer (Vaswani et al., 2017b) struc-
ture. Its structure is very simple, which can be seen
as a combination of BERT (Devlin et al., 2018)
and GPT (Radford and Narasimhan, 2018). In the
pre-training stage, it destroys the original text by
randomly disrupting the order of the original sen-
tences and adding mask tags. After that, the BART
(Lewis et al., 2019) reconstructs the original text
by denoising it. The BART (Lewis et al., 2019)
achieves the best performance in translation and
summary tasks that need to be generated.

T5 treats all tasks as text-to-text tasks. It is differ-
ent from the BART (Lewis et al., 2019) in that the
pre-training stage only requires the decoder to re-
cover the masked part without full-text recovery. It
has even surpassed the human level in many natural
language tasks (Wang et al., 2018, 2019).

Blender (Roller et al., 2021a) is a pre-training
model in the chat field. It carries out pre-training
in a large number of dialogues, which improves the
dialogue fluency of the model. It can provide users
with interesting chat preferences, display person-
ality, and so on. Blender can maintain consistent
personality attributes in the dialogue and surpasses
the existing models in terms of participation and
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STEP1:            To have and to hold, for better or worse, richer or poorer,
STEP2:            In sickness and health, for as long as you both shall live?
STEP3:            Sure. - By the power vested in me, I pronounce you husband and wife.
STEP4:            Okay, then.

Expected Response: You may kiss the bride.

Okay, then.

… …

In sickness and health, for as long as you both shall live? Sure. - By the power vested in me, I pronounce you husband and wife.

Textual : That's a good way to look at it.  I'm not sure if I'll ever be able to do that.

VPTG    : You can vote and kiss each other.

Can we route them to the desk monitor?

… …

Hard-patch the camera output to the one by 10. We can't roll the graphics without the switcher.

STEP1:           The whole board's down.
STEP2:            Hard-patch the camera output to the one by 10.
STEP3:            We can't roll the graphics without the switcher.
STEP4:            Can we route them to the desk monitor?
Expected Response: They'll be hard cuts.

Textual  :     I'm sure you can find a way to do it.

VPTG     :      I'll check the network switch

Figure 3: Examples of the generated results.

humanization indicators.

5.4 Experimental Result

We report the performance of the model in Table
2. The “Originally” refers to the use of the original
pre-training model for a zero-shot generation. The
“Finetune” means that we fine-tune the data set and
select the highest score to test in the test. The “With
VPTG” means that we have modified the structure
of the model and added the VPTG module based
on the existing language model, which enables us
to give the visual ability to the language model that
has never seen an image.

It is not difficult to find that, other models have
poor zero-shot effects in the field of dialogue except
the Blender. This is because the T5 model and the
Bart model are pre-trained in a large-scale general
corpus, which is difficult to migrate directly to the
field of dialogue. Even if these models are fine-
tuned, the effect is still insufficient, even worse
than the result of random selection. This shows that
Visual Dialogue tasks have strong open attributes
and need to use more features.

After the VPTG is added to the model, the CLIP
can provide visual semantic features. This makes
the seq2seq model have a more comprehensive per-
ceptual performance. It can analyze the overall
scene and generate dialogue text more in line with
the scene. In the “With VPTG” of Table 1, the per-
formance of all models has been significantly im-
proved. This shows the effectiveness of the VPTG
module.

5.5 Ablation Study

In Table 3, we can see some performance compar-
isons. We further carry out care learning in Blender
(Roller et al., 2021a), which is the best pre-trained
model in MDUG tasks (Wang et al., 2022b). It
can fully show the effect differences brought by
different methods.

First, we try to cancel the LKL loss, which means
that we no longer require the model to predict the
actual video scene. This may lead to the lack of
understanding of the scene in the model so that the
generated text lacks the modelling of the scene.

After cancelling the visual feature, we will no
longer provide the video feature vector of the cur-
rent scene. This may make the model lack visual
semantic features and cause the omission of envi-
ronmental scenes.

We tested the use of dot products to integrate
visual features into the embedding matrix of the
seq2seq model, but the effects decreased signifi-
cantly. We believe that if we do not use the visual
prompt to provide visual features, the direct dot
product will cause the catastrophic forgetting prob-
lem of the pre-training language model. It will
destroy the original semantic understanding ability
of the pre-training language model and become a
kind of noise interference through the fusion of
direct dot product feature vectors.

5.6 Case Study
In Figure 3, we select two examples to show. We
can see that the VPTG model can better model
scene information and generate text with specific vi-
sual semantics than the single modal language pre-
training model. Compared with the single model,
the VPTG has higher fluency in the field of dia-
logue. This fully shows that the VPTG can deeply
mine visual signals.

6 Conclusions

In this paper, we proposed a new visual knowledge
fusing paradigm that provides the pre-trained lan-
guage generation model with the visual prompt.
The VPTG module is flexible and can support
almost all seq2seq models to be used in multi-
modal dialogue generation tasks. It realizes the
language model’s understanding of visual infor-
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mation by transforming visual features into embed-
ding prompts. We have conducted vast experiments
on the task of multi-modal Dialogue Understanding
and Generation. The VPTG outperforms all other
baselines in MDUG tasks for these experiments,
which reflects the effectiveness of the proposed
method.
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Abstract

Videos of group interactions contain a wealth
of information beyond the information directly
communicated in a transcript of the discussion.
Tracking who has participated throughout an
extended interaction and what each of their tra-
jectories has been in relation to one another is
the foundation for joint activity understanding,
though it comes with some unique challenges
in videos of tightly coupled group work. Mo-
tivated by insights into the properties of such
scenarios, including group composition and the
properties of task-oriented, goal-directed tasks,
we present a successful proof-of-concept. In
particular, we present a transfer experiment to
a dyadic robot construction task, an ablation
study, and a qualitative analysis.

1 Introduction

The broad area of transcript understanding from
video encompasses more than the information com-
municated through discussion, especially when the
video captures small group interactions. In that
case, each action is meaningful in the context of
a broader task. From a social perspective, actions
and reactions are meaningful in relation to one an-
other. Sequences of actions of an individual within
an interaction are meaningful as an enactment of
role taking within a group activity. Building on
recent work in multi-object tracking, which is a
paradigm of interest in the computer vision com-
munity, this paper presents a proof-of-concept for
model transfer for tracking the trajectories of par-
ticipants within a small group activity. In particular,
we target tightly coupled group work, which is chal-
lenging due to the close proximity of participants,
intermittent motion, and periodic movement in and
out of view. Success tracking within such scenar-
ios is a key enabler for joint activity understanding,
which requires at the foundation tracking who has
participated throughout an extended interaction and
what each of their trajectories has been in relation

to one another. Our results demonstrate positive
impact of three different enhancements motivated
by consideration of the nature of tightly coupled
collaborative group activities.

In many contexts of learning and work, dyads
and small groups work together to accomplish a
goal. The ability to understand a video capturing
this type of interaction has many real world appli-
cations. For example, video recordings of such
interactions are very common forms of data for
research on group learning, communication, and
group work. Real time understanding of group
interactions has also been used to trigger support
for group behavior in order to improve outcomes.
Facilitators overseeing multiple groups can use re-
ports of this real time understanding to support
decision making regarding how they divide their
attention between groups.

In the remainder of the paper, we first offer a
review of related work both from the computer vi-
sion community and from the multi-modal learning
analytics community. Next, we present our tech-
nical approach, extending recent successes using
DeepSORT for Multiple Object Tracking (MOT).
We then present a successful experiment producing
results demonstrating improvement over a state-
of-the-art baseline, as well as an ablation study to
investigate the individual effects of each enhance-
ment and a qualitative analysis of those effects.

2 Background & Related Work

From a technical perspective, the work reported
in this paper has its roots in recent directions in
the Multi-Object Tracking (MOT) literature. How-
ever, as the intended application is within areas of
research and practice focused on supported group
work and learning, we also review work from the
field of Learning Analytics.
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Figure 1: An overview of the DeepDSORT+ model architecture used in our experiments which extracts bounding
boxes from frames using Detectron and then use Kalman Filter and REID based assignments to match previous
tracks and create new unmatched tracks.

2.1 Multi-Object Tracking

In recent years, multi-object tracking has been a
growing paradigm of interest in the computer vi-
sion community. The task requires the ability to
detect multiple objects, mainly individual people,
and consistently maintain their identities through
the course of their trajectories given video input.
The capability to successfully monitor trajectories
grounds many high-level multimodal activities in
video understanding, such as pose estimation and
action recognition (Wang et al., 2013; Luo et al.,
2017).

With advances in object detection and the popu-
lar MOT benchmark (Dendorfer et al., 2020), many
state-of-the-art competitive tracking methods have
emerged (Zhang et al., 2021; Wojke et al., 2017;
Bewley et al., 2016). Offline models using batch-
ing strategies tend to perform well on the bench-
mark (Zhang et al., 2021). However, in domains
where the goal is to achieve live video understand-
ing, computationally efficient online tracking meth-
ods (Wojke et al., 2017; Bewley et al., 2016) that
sequentially infer trajectories in real-time are pre-
ferred.

Despite advances in multi-object tracking, state-
of-the-art models struggle with key issues, partic-
ularly in maintaining trajectory identities through
occlusions and interactions among multiple objects.
Our research in this paper shares the common goal
of tackling these key issues directly, particularly
in its exploration of group work in which com-
plex interpersonal interactions are commonplace
and are the necessary centerpiece to understanding
dynamics of the activity.

2.2 Tracking Collaboration and Social
Processes

In the field of Learning Sciences, automatic tempo-
ral analyzes of collaborative data have become es-
sential to operationalize successful learning in stu-
dent groups. Much of learning analytics has been
focused around natural language data, particularly
automated analysis of student discussion, which
has consistently shown to be a valuable method
in assessing student learning (Rosé et al., 2008;
McLaren et al., 2007) and scaffolding engaging
collaborative interactions (Kumar et al., 2007).

However, with the understanding that collabo-
rative processes are innately multimodal, there is
acknowledgment that traditional textual discourse
may not tell the entire story. Consequently, multi-
modal learning analytics has become increasingly
popular with the examination of visual patterns
such as, in gesture, pose, and eye gaze. Recent
studies have used multimodal data to detect misun-
derstandings during collaborative tasks (Cherubini
et al., 2008), discover insights in learning processes
(Spikol et al., 2018), and provide beneficial visual
feedback to instructors in the classroom (Ahuja
et al., 2019, 2021).

More broadly, collaborative learning analysis is
one of many social processes that may benefit from
precise multi-object tracking. In museums, visitor
trajectories can provide curators with insights into
improving interaction with content (Mezzini et al.,
2020), and body tracking has been used to create
immersive digital story telling exhibits (Genc and
Häkkilä, 2021). Multi-object tracking is also ap-
plied in virtual reality (Uchiyama and Marchand,
2012), and provides information to create simu-
lations for professional development, such as vir-
tual reality for educators in the classroom (Ahuja
et al., 2021). Our aim is to contribute to the abil-
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ity to identify and maintain trajectories throughout
videos, which provides an essential backbone and
grounding for these detections in multimodal learn-
ing analytics.

3 Method

To perform tracking on videos in small group in-
teraction, we explore the widely used online Deep-
SORT algorithm developed for Multiple-Object
Tracking (MOT) benchmark. We extend the Deep-
SORT algorithm to improve transfer of the model
from the task on which it was trained, namely track-
ing pedestrians walking on streets, to our group
work setting. We begin with an explanation of the
well-known DeepSORT algorithm and then discuss
the extensions we have added.

3.1 DeepSORT

A tracking model must be able to detect bound-
ing boxes, detect objects to track and continue to
identify them for as long as they are in view, thus
managing the lifespan of tracked objects. Deep-
SORT uses F-RCNN (Ren et al., 2015) or YOLO
(Redmon and Farhadi, 2018), to detect bounding
boxes on tracked objects. Building on SORT, Deep-
SORT also uses the Kalman filtering framework
for track handling. Deviating from SORT, it uses
CNN based appearance features for tracking as
well, hence the prefix ”Deep”.

The algorithm considers two means for assign-
ing tracks with bounding box detection, namely,
one considering motion and the other considering
appearance, captured in two different metrics, as
shown in Figure 1.

Kalman Filter - Tracking is based on an 8-
dimensional state space (u, v, r, h, û, v̂, r̂, ĥ)
that includes the center of the bounding box (u, v),
the aspect ratio r and height h and their respec-
tive velocities in the image coordinates. A standard
Kalman filter with constant velocity motion and lin-
ear observation models is used, where the bounding
box (u, v, r, h) is considered a direct observation
of the object state. It uses squared Mahalanobis
distances between the predicted Kalman states and
the newly arrived measurements.

dm(i, j) = (dj − yi)
TS−1

i (dj − yi)

where the i-th track distribution is projected into the
measurement space as (yi, Si) and dj , which is the
j-th bounding box detection for the current frame.

We use a high threshold of 0.95 for this distance in
order to filter out unassociated detections.

REID - When the motion uncertainty across
frames is high, the Mahalanobis distance is not
a suitable metric. Also, during occlusions it is very
difficult to apply Kalman filter based approaches
for continuous frame tracking. Hence, appearance
based features using person REID (reidentification)
models becomes essential in those scenarios. For
this, we compute appearance feature for each of the
bounding boxes detected using a CNN-based REID
and extract an appearance feature Xi for each track
i, which is a function of the current appearance
feature of the track xi and previous Xi. We have
used a simple CNN-based REID model to study the
effectiveness of the algorithm in zero-shot transfer
in our proof-of-concept experiment.

xi = REID(bounding box(i))

Xi = f(xi, X
i)

Next, the smallest cosine distance is applied be-
tween the previously computed F i for the i-th track
and the j-th detection feature rj for the frame in
consideration, in appearance space, with an admis-
sible threshold, which we keep as 0.2.

da(i, j) = min(1−Xirj)

For the initial few frames, we use Kalman filter
based assignment to confirm the initial set of tracks,
and then after that we try matching with the ap-
pearance based features, because they are usually
consistent across frames. For later frames, only
when the appearance based features aren’t able to
match confirmed tracks with the bounding boxes or
there are bounding boxes that are left undetected,
we use Kalman Filter based assignment for match-
ing. The metrics are complementary to each other,
where the Kalman metric is usually used to recover
from short-term motion-based assignments that are
missed by appearance metrics, whereas the appear-
ance metric helps to recover detection of objects
having been lost from view from long-term occlu-
sion.

3.2 Additions to DeepSORT

To the original DeepSORT algorithm, we intro-
duce a set of enhancements to improve tracking in
our target group work settings. We call the model
with these changes DeepSORT+. We explore a
modification to DeepSORT to replace YOLO with

22



Detectron. We refer to the revised DeepSORT with
Detectron as DeepDSORT, and the version with
our enhancements DeepDSORT+. Our proposed
algorithm extensions are motivated from insights
into tightly coupled group work, in particular, that
the extended interaction involves a persistent set
of participants who may move in and out of view
but otherwise remain stable. Motion within view is
related to the group work and thus purposeful. As
such, it can be expected that changes in position
across frames will be consistent over stretches of
time. In summary, our enhancements include no
longer deleting tracks with a maximum age, putting
a limit on the number of tracks to be created, and
introducing a smoothed version of the appearance
feature. Our model with enhancements is shown in
Figure 1.

3.2.1 No Max Age
DeepSORT uses a max age to maintain the life span
of a track. It deletes tracks that have not been de-
tected for a certain number of frames. Since Deep-
SORT was used for the MOT benchmark, which
was used to track pedestrians from surveillance
camera videos, it proved to be effective in that con-
text where the total number of objects to track is
unbounded, but if a track is not viewed for an ex-
tended time, they are unlikely to return. In our set-
ting, the number of participants who are important
to track is only the direct participants in the group
work, and thus bounded. However, unlike pedestri-
ans moving through an area, they may leave for an
extended time, but will nevertheless likely return to
the work. In this case, allowing for an unbounded
number of tracks is superfluous, and as participants
move in and out of view, their movement creates
opportunities for false positive detection of new
tracks. However, solving the problem by imposing
a max age is counter-productive since the likeli-
hood is high that tracks will return even if they
have left for some time. Thus, we remove the max
age constraint.

3.2.2 Number of tracks
Complementary to removing the max age con-
straint, we also take advantage of the bounded num-
ber of participants in the group work. There may
be other people in view, in the background, moving
through the space. Bounding the number of tracks
reduces the propensity to lose track of a main par-
ticipant and instead begin tracking someone in the
background.

3.2.3 Smoothing appearance feature
In DeepSORT, current frame detections are com-
pared with all previous frame features of tracks to
find the closest track. Treating each frame sepa-
rately introduces the possibility that two different
tracks will appear similar. We mitigate this risk
by using a smoothed global appearance feature F i

for each track i considering the current frame track
feature fi, given by the following formula.

F i = α ∗ fi + (1− α) ∗ F i

Reducing the set of observations of a track to a
single smoothed version reduces the danger of a
pair of frames from different tracks inadvertently
appearing similar. For our experiments, we set α
as 0.1, weighing heavily towards past observations
and changing the representation only slowly over
time.

3.2.4 Detectron
To identify bounding boxes, F-RCNN or YOLO
based models have been shown to be very effective,
which are also used in DeepSORT. Detectron (Wu
et al., 2019) is an object detection model that is
able to detect more concise human-based bounding
boxes but with higher accuracy which is essen-
tial in our cases because the appearance features
might confuse with the other people or objects if
the bounding box is not very accurate in person
position. We call this model DeepDSORT+.

4 Experiments

4.1 Dataset
In order to evaluate our multimodal approach in
small group activities and social processes, we col-
lected and annotated an exploratory video corpus
from a summer course conducted at Carnegie Mel-
lon University. During the course, groups of 2-3
students participated in a robotic arm instruction
task. The activity occurred over two collabora-
tive sessions, each lasting around several hours: a
robotic construction session in which students built
their mechatronic arms and a robotic arm learning
activity session in which students operated their
robot. Each group collected video and audio data
during each session using a Kodak Orbit 360 4K
VR Camera with its 197◦ 4K Ultra Wide View
Front Lens. Students were instructed to place each
camera on a small tripod at the end of their table to
capture every member of the group and the robotic
arm.
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Dataset MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ IDsw ↓ FP ↓ FN ↓
DeepSORT Group 1 24.6 62.1 43.1 18.2 9.1 77 2229 2795
DeepSORT Group 2 5.2 56.4 38.7 25 25 24 2274 2718

DeepSORT Combined 15.4 59.7 41 21.6 17.1 101 4503 5513

DeepSORT+ Group 1 31.2 62.8 52.7 18.2 18.2 22 1135 2613
DeepSORT+ Group 2 6.3 56.5 46.1 25 25 16 1813 2463

DeepSORT+ Combined 18.8 59.6 49.4 21.6 21.6 19 1474 2538

DeepDSORT+ Group 1 78.1 89.9 85.9 63.6 9.1 36 165 1033
DeepDSORT+ Group 2 93.1 90.3 96.5 100 0 20 92 204

DeepDSORT+ Total 85.6 90.1 91.2 81.8 4.6 56 257 1237

Table 1: Combined results on our videos for DeepSORT, DeepSORT+ and DeepDSORT+ models. The arrow
indicates whether higher value indicates a good (↑) or a bad (↓) result.

MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ IDsw ↓ FP ↓ FN ↓
DeepDSORT+ 85.6 90.1 91.2 81.8 4.6 56 257 1237
DeepDSORT+ − smooth 84.3 90.1 84.5 81.8 0 77 795 1824
DeepDSORT+ − #tracks 83.6 90 85.6 77.3 0 78 957 1581
DeepDSORT+ + max age 83.6 90.1 73.9 21.1 74.9 15 1842 2636

Table 2: Different ablations for our DeepDSORT+ model on both groups of videos by removing each component
that we introduce specifically for tracking group social processes.

These videos help study tracking in confined
spaces with limited number of people in social
processes. The videos feature many interactions
between students and the robotic arm, as well as
movement in different locations. Other complex
scenarios include occasional off-camera movement,
irrelevant background activity from other groups,
and intermittent occlusions of students. More-
over, by using a video corpus collected via a small
portable camera, social processes such as these may
be collected and given support in real-time. Con-
sequently, this corpus provides key scenarios that
are essential to be able to track people consistently
across frames for downstream automatic analysis
of individual and group traits and outcomes.

We conduct our experiments across 2 student
groups. We divided each video session into short
8 minute sections and extract about 500 frames
with 1 fps for tracking annotation from every sec-
tion. Each video has a gold standard tracking an-
notation created by extracting person class-based
bounding boxes for each frame using F-RCNN and
labeling each box with person IDs. In sum, we
experimented with 4 8-minute videos from each
group (8 videos in total), which comprises of 4148
annotated frames with a maximum of 3 students

in a particular frame. People in the background
of the frames uninvolved in the activity are not
annotated because they are not part of the group
collaboration.

4.2 Metrics

We evaluate our videos on metrics that have been
commonly used for MOT benchmark, particularly
we focus on the following values:

MOTA: Combines three error sources: false
positives, missed targets and identity switches
MOTP: Misalignment between the predicted and
ground-truth bounding boxes
IDF1: Ratio of correctly identified detections
over the average of computed and ground-truth
detections
MT: Mostly tracked targets that are tracked atleast
80% of their life span
ML: Mostly lost targets that are tracked atmost
20% of their life span
IDsw: Total no of identity switches
FP: Total no of false positives
FN: Total no of false negatives / missed targets

We highlight these metrics because they are cru-
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cial for further downstream applications concern-
ing individual and group activity in social pro-
cesses. That is, if models do not perform well
on these metrics, they cannot perform an essential
goal in multi-modal video understanding: identify-
ing key roles and salient interactions during social
processes. It is most important for models in this
domain to accurately identify tracks and consis-
tently maintain tracks without error. Additionally,
we are most concerned with a model’s ability to
never lose or miss tracks in an activity, highlighting
an emphasis on reducing false positives.

4.3 Experiments and Ablation
For both Group 1 and Group 2, we conduct the fol-
lowing experiments across variations of the Deep-
SORT model as described in 3:

• DeepSORT : original DeepSORT model as
implemented by (Bewley et al., 2016) which
uses YOLO to identify bounding boxes 1

• DeepSORT+ : modified DeepSORT with
YOLO and all additions mentioned in 3.2

• DeepDSORT+ : modified DeepSORT with
Detectron 2 and all additions mentioned in 3.2

We also perform an ablation over the modified
DeepDSORT+ model through the removal of mod-
ified individual components:

• DeepDSORT+ − smooth : modified Detec-
tron DeepSORT without smoothing appear-
ance feature

• DeepDSORT+ − # tracks : modified Detec-
tron DeepSORT without restriction of number
of tracks

• DeepDSORT+ + max age : modified Detec-
tron DeepSORT with max age for tracking

For our experiments, we run the model over track-
ing for all the frames of the original video at 30
fps but the model is evaluated only on the gold-
standard annotated frames extracted at 1 fps. We
used 1 NVIDIA GTX 1080 GPU to run tracking
over each video. Each frame takes a processing
time of 0.18 s yielding a total of 5 fps. Running
this online, in real time, would process 5 frames
per second which is quite efficient for a tracking

1https://github.com/mikel-
brostrom/Yolov3 DeepSort Pytorch

2https://github.com/facebookresearch/detectron2

algorithm. This is another reason for choosing
DeepSORT as the baseline because it is an ON-
LINE algorithm which is suitable for our purposes.
For the CNN based Person REID model, we pre-
train the model on the market1501 (Zheng et al.,
2015) dataset, which is also used in the original
DeepSORT implementation.

5 Results

Table 1 shows the results of tracking over two sets
of videos collected for two different groups, across
DeepSORT, DeepSORT+ and DeepDSORT+ mod-
els. We can see that introducing the required com-
ponents discussed in Section 3.2, to just the Deep-
SORT model, leads to a decrease in false posi-
tives and false negatives in DeepSORT+. Further,
we see improvements in almost all the metrics in
DeepDSORT+ showing that Detectron, in general,
is a better model than YOLO, and our additional
extensions lead to further improvement. Better
bounding boxes implies better appearance features
that make the appearance REID model less con-
fused, leading to a drop in false positives and false
negatives, thereby increasing IDF1. MOTA and
MOTP metric also improve because the detected
bounding boxes are closer to the ground-truth ones.
We see that for Group2 videos the performance im-
provement is larger due to the Detectron model de-
tecting people in the videos more accurately. There
are more ID switches in the DeepDSORT+ model
than in DeepSORT+, but significantly less than in
DeepSORT. These ID switches account for a count
of the frames in which the IDs are switched. The
increased performance of DeepDSORT+ implies
that in the face of ID switches, it is able to recover.

6 Analysis

We perform ablation of our model to assess the
impact of each of our extensions. Table 2 shows
the results of removing each component. Figure 2
shows examples of qualitative errors introduced by
removing each component compared to the com-
plete model.

Smooth vs Non Smooth: For the smoothing abla-
tion, instead of adding the new appearance feature
as discussed in 3.2, we average all appearance fea-
tures so that each frame feature receives equal im-
portance such that smoothing is not applied. With-
out smoothing, abrupt changes in appearance or
slight movement will likely change inference more
drastically. We expect that without smoothing, the
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(a) Tracking results when smoothing is not done and the features are averaged out for all the past frames, showing that it gives
rise to false positives and ID switches. The upper results are DeepDSORT+ results without smoothing and the lower ones are
DeepDSORT+ results.

(b) Tracking results when there is no cap on the number of tracks, showing that it gives rise to new tracks getting created when
there is a slight mismatch in features (like when the person is in motion). The upper results are DeepDSORT+ results without
limit on number of tracks and the lower ones are DeepDSORT+ results.

(c) Tracking results when maximum age is included as 100 frames, showing that when bounding box detections are missed
in between frames or people move in and out of the frame, new IDs are created, (cyan to yellow). The upper results are
DeepDSORT+ results with maximum age and the lower ones are DeepDSORT+ results.

Figure 2: Qualitative ablation results showing the removal of each component as discussed in Table 2, by removing
smoothing in a), removing cap on number of tracks in b) and adding maximum age of tracks in c). Colors around
bounding box indicate the track associated with the person, where a change in the color indicates an error made by
the model.
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model is more likely to confuse IDs when there is
motion. Quantitatively, Table 2 supports this find-
ing by revealing smoothing decreases ID switches
and false positives.

In qualitative analysis of the smoothing abla-
tion, we find errors that align with these expec-
tations. Note in Figure 2a, the track in the pur-
ple bounding box is incorrectly switched when
the individual leans forward in the non-smoothing
model. However, with smoothing, the model cor-
rectly maintains their track. From this ablation, we
conclude that smoothing helps decrease noise in
abrupt changes of appearance in cases of obstruc-
tion and motion.

Limited vs Unlimited Number of Tracks: We
also examine the ablation that removed the limit of
the number of tracks that can be created. By limit-
ing the maximum number of tracks to the number
of participants within the activity, we hypothesized
that the model would maintain tracks more con-
sistently with less likelihood of creating irrelevant
tracks during motion. The results in Table 2 sup-
port this hypothesis, as allowing the model to infer
an unlimited number of tracks increased the rate of
false positives.

This can be seen qualitatively in Figure 2b. Due
to motion by the individual in the cyan bounding
box, the ablation model mistakes motion for a new
person and incorrectly creates a new yellow bound-
ing box track around the individual. When tracks
are limited, the model does not have the ability
to create a new track and correctly maintains the
identity of the moving individual.

No Max Age vs Max Age: In the maximum age
ablation, we limit the maximum age of tracks to
100 frames. Originally, this threshold was used to
remove unnecessary tracks that leave and never
return in frame, commonly experienced in the
benchmark MOT dataset. In collaborative social
processes, the maximum age assumption was no
longer appropriate. We noted that often individuals
returned to the field of view after being occluded
or out of frame for long periods of time, or they
remain undetected by the model. By removing the
max age threshold, we suspected the model would
correctly maintain relevant tracks rather than dis-
carding them.

This is quantitatively supported by the large in-
crease in false positives and the decrease in IDF1
when a maximum age threshold of 100 frames was
introduced. This can also be observed in Figure 2c,

as the cyan bounding box individual is incorrectly
discarded after leaving the frame and labeled as a
new yellow bounding box individual when return-
ing. This identity is correctly maintained without
the maximum age threshold.

We note that keeping a higher maximum age
threshold above 100 frames may also be a solution
to this issue. However, it is impossible to define
a generalizable amount of time for which people
within a given activity will be out of frame. Hence,
we conclude removing the maximum age threshold
so that relevant tracks are never removed is the best
approach for this modification.

7 Limitation

This paper targets tightly coupled group work,
which is a closed setting with a fixed finite number
of participants. If this assumption were required
to be lifted, then people in the background might
introduce the potential for false positives. A direc-
tion that would be valuable to explore in that case
would be taking depth-perception into account in
order to properly distinguish those engaged in the
task from people in the background. As people
move, their appearance changes, which introduces
challenges for the matching process. One possible
direction would be to tune the REID model over
the first few frames when a new track appears. In
order to further extend capabilities to participants
who are easily confused, for example because of
wearing similar clothing, more sophisticated REID
models might be used that treat different body parts
of individuals separately.

8 Conclusion

This paper presents a successful proof of concept
for the transfer of models trained to track pedes-
trians to a scenario that features tightly coupled
group work. With a small change to the original
DeepSORT algorithm, using Detectron instead of
YOLO, we are already able to achieve substantial
improvement. Additional extensions motivated by
the characteristics of tightly coupled group work
add further improvement. In future work we play
to explore more sophisticated REID models for this
purpose. While this study lays the foundation for
joint activity understanding, much is left to be done
to explore aspects other than participant trajecto-
ries, such as the interplay of participant emotions
and joint eye gaze.
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tracking for involving museum visitors in digital sto-
rytelling. In Augmented Humans Conference 2021,
AHs’21, page 304–306, New York, NY, USA. Asso-
ciation for Computing Machinery.

Rohit Kumar, Carolyn P. Rosé, Yi-Chia Wang, Mahesh
Joshi, and Allen Robinson. 2007. Tutorial dialogue
as adaptive collaborative learning support. In Pro-
ceedings of the 2007 Conference on Artificial Intelli-
gence in Education: Building Technology Rich Learn-
ing Contexts That Work, page 383–390, NLD. IOS
Press.

Chenxu Luo, Chang Ma, Chunyu Wang, and Yizhou
Wang. 2017. Learning discriminative activated sim-
plices for action recognition. Proceedings of the
AAAI Conference on Artificial Intelligence, 31(1).

Bruce M. McLaren, Oliver Scheuer, Maarten De Laat,
Rakheli Hever, Reuma De Groot, and Carolyn P.
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Abstract

Machine translation (MT) is an important task
in natural language processing, which aims to
translate a sentence in a source language to an-
other sentence with the same/similar semantics
in a target language. Despite the huge effort
on building MT systems for different language
pairs, most previous work focuses on formal-
language settings, where text to be translated
come from written sources such as books and
news articles. As a result, such MT systems
could fail to translate livestreaming video tran-
scripts, where text is often shorter and might
be grammatically incorrect. To overcome this
issue, we introduce a novel MT corpus - Be-
hanceMT for livestreaming video transcript
translation. Our corpus contains parallel tran-
scripts for 3 language pairs, where English is
the source language and Spanish, Chinese, and
Arabic are the target languages. Experimental
results show that finetuning a pretrained MT
model on BehanceMT significantly improves
the performance of the model in translating
video transcripts across 3 language pairs. In
addition, the finetuned MT model outperforms
GoogleTranslate in 2 out of 3 language pairs,
further demonstrating the usefulness of our pro-
posed dataset for video transcript translation.
BehanceMT will be publicly released upon the
acceptance of the paper.

1 Introduction

Machine Translation (MT) is an important and
challenging task in natural language processing.
Early work solved the task via statistical models
(Al-Onaizan et al., 1999; Och et al., 2004; Lopez,
2008; Koehn, 2009). Recent work has made signif-
icant improvement via deep learning models (Lu-
ong et al., 2015; Vaswani et al., 2017; Devlin et al.,
2019; Yang et al., 2019; Lewis et al., 2020) that
formalize MT as a text generation task, where an
encoder is used to consume input text in a source
language and a decoder is employed to generate

the input’s translation in a target language. In addi-
tion to the advance in model design, another factor
contributing to the success of deep learning mod-
els is the creation of enormous MT corpora for
model training such as WMT corpora (Bojar et al.,
2014, 2016), OPUS corpus (Tiedemann, 2012) and
IWSLT corpus (Cettolo et al., 2015). However,
these corpora often contain formal-language texts
such as books and news articles. This could lead
to poor performance of the MT models, which are
pretrained on such corpora, on informal-language
text such as video transcripts. This is unfortunate
as video transcripts are being generated at growing
rate in international online video platforms such as
Youtube 1, Dailymotion 2, and Behance 3. Video
transcript translation is thus important to improve
access to the platforms’ content for users who speak
different languages.

In this work, we aim to address this issue by in-
troducing a novel MT corpus - BehanceMT for
video transcript translation (VTT). BehanceMT
contains transcripts collected from the Behance
platform and translations obtained by human an-
notators for 3 language pairs, where English is
the source language and Spanish, Chinese, and
Arabic are the target languages. An MT system
pretrained on formal-language corpora can then
be finetuned on BehanceMT to improve its perfor-
mance for VTT. To demonstrate this idea, we em-
ploy OpusMT (Tiedemann and Thottingal, 2020),
which is a popular MT system pretrained on OPUS
corpora. For each language pair, we finetune the
pretrained OpusMT on the BehanceMT training
data and evaluate the model (called OpusMT+)
on the test data. Experimental results show that
OpusMT+ consistently outperforms OpusMT in all
settings across the three language pairs for VTT.
In addition, we compare OpusMT+ with Google-

1https://www.youtube.com/
2https://www.dailymotion.com/
3https://www.behance.net/
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Translate 4. The significant improvement obtained
by OpusMT+ over GoogleTranslate in English →
Chinese and English → Spanish further demon-
strates the usefulness of our proposed MT corpus.
To facilitate future work for VTT, we will publicly
release the BehanceMT corpus.

2 Related Work

Previous work has created different corpora for MT,
such as WMT corpora (Bojar et al., 2014, 2016),
OPUS corpus (Tiedemann, 2012) and IWSLT cor-
pus (Cettolo et al., 2015). However, most of these
corpora focus on formal-language settings. To the
best of our knowledge, (Cettolo et al., 2015), which
involves parallel TED talks, is the closest work to
ours. However, TED talks are mostly presented in
formal language. By contrast, BehanceMT is cre-
ated based on transcripts of livestreaming videos,
which are more informal.

3 Data

In this section, we present how we collect, prepro-
cess, and annotate video transcripts to create the
BehanceMT corpus.

3.1 Data Collection
Video transcripts in the BehanceMT corpus are col-
lected from livestreaming videos on Behance, a
platform for livestreaming tutorial videos on cre-
ative works such as digital drawing, graphic de-
sign, and photo/video editing. Each video tran-
script contains multiple sentences produced by the
Microsoft Automatic Speech Recognition (ASR)
system (Xiong et al., 2018). To achieve a diverse
corpus given a fixed annotation budget, we ran-
domly select 99 video transcripts and retain at most
50 first sentences with an average length of 10
words for each transcript. The resulting transcripts
are finally used to perform data annotation.

3.2 Data Annotation
To translate the video transcripts, we hire crowd-
sourcing workers on Upwork 5, who are native
speakers of the target languages and proficient in
English. Particularly, two crowd-sourcing workers
are hired for translating video transcripts to Span-
ish, two crowd-sourcing workers are employed for
translating video transcripts to Arabic, and one
crowd-sourcing worker is hired for translating the

4https://translate.google.com/
5https://www.upwork.com/

video transcripts to Chinese. The workers are paid
approximately $0.4 for translating a sentence on
average. Each worker performs the translation task
by writing a translation for each sentence in an
excel sheet containing their assigned video tran-
scripts. To facilitate their annotation process, we
also provide the video titles for each transcript so
that the annotators can look up and watch the origi-
nal videos if necessary.

Finally, we randomly split the translated video
transcripts into train/dev/test parts with a ratio of
80/10/10 for model development. The statistics
for the resulting BehanceMT corpus is shown in
Table 1.

Data #transcripts #sentences #tokens
Train 78 3,787 40,024
Dev 11 530 5,007
Test 10 449 4,617

Table 1: Statistics for English data in BehanceMT cor-
pus. Data for the target languages (Spanish, Arabic, and
Chinese) contains the translations for each sentence in
the English data.

4 Model

We employ OpusMT (Tiedemann and Thottingal,
2020) as the main model to conduct experiments on
the proposed BehanceMT corpus. OpusMT uses
the Marian-NMT architecture (Junczys-Dowmunt
et al., 2018) and is pretrained on OPUS corpus
(Tiedemann, 2012) to perform the translation task
for different language pairs. For each of the three
language pairs (i.e., English → Spanish, English
→ Arabic, English → Chinese), we further fine-
tune the pretrained bilingual OpusMT model on
the corresponding training data in BehanceMT. We
denote the finetuned OpusMT model as OpusMT+.

5 Experiments

5.1 Model Training and Hyper-parameters

To implement the models, we use Pytorch 1.12.1
and Huggingface Transformers 4.21.1. The pre-
trained OpusMT models “opus-mt-en-es”, “opus-
mt-en-ar”, and “opus-mt-en-zh” are obtained re-
spectively for English → Spanish, English → Ara-
bic, and English → Chinese settings from the of-
ficial model hub 6. To finetune the models on
BehanceMT data, we employ Adam optimizer
(Kingma and Ba, 2015) to train the model for 50

6https://huggingface.co/Helsinki-NLP
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epochs with a batch size of 16, a learning rate of
1e− 6, and a weight decay of 0.01.

Models Spanish Chinese Arabic
OpusMT 35.0 5.3 25.2
OpusMT+ 37.5 13.7 33.4
GoogleTranslate 34.9 3.1 43.2

Table 2: Model performance (BLEU score) comparison
on BehanceMT test sets for the three target languages.

5.2 Performance Comparison

Table 2 presents performance comparison between
OpusMT, OpusMT+, and GoogleTranslate across
the three language pairs on test sets of our pro-
posed BehanceMT corpus. First, we can see that
OpusMT and GoogleTranslate perform poorly in
most settings. This suggests that VTT is challeng-
ing task and more research effort is necessary to
improve the performance for this area. Second,
OpusMT+ significantly outperforms OpusMT in all
settings, showing the benefit of finetuning OpusMT
on video transcript data for improving model per-
formance for VTT. This is further confirmed as
OpusMT+ obtains significant improvement com-
pared to the state-of-the-art commercial translation
engine GoogleTranslate in two out of the three
translation settings.

6 Conclusion

In this work, we present a novel corpus - Be-
hanceMT for video transcript translation (VTT).
Behance contains parallel video transcripts for
three language pairs, where English is the source
language and Spanish, Arabic, and Chinese are
the target languages. Our experiments with strong
baselines on BehanceMT show that the proposed
corpus is challenging and useful for VTT across
the three language pairs.
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Abstract

We present an empirical study investigating
the influence of automatic speech recognition
(ASR) errors on the spoken implicit discourse
relation recognition (IDRR) task. We construct
a spoken dataset for this task based on the Penn
Discourse Treebank 2.0 (Prasad et al., 2008).
On this dataset, we conduct “Cascaded” ex-
periments employing state-of-the-art ASR and
text-based IDRR models and find that the ASR
errors significantly decrease the IDRR perfor-
mance. In addition, the “Cascaded” approach
does remarkably better than an “End-to-End”
one that directly predicts a relation label for
each input argument speech pair.

1 Introduction

Discourse parsing is one of the key research ar-
eas in NLP (Marcu, 2000; Li et al., 2022). One
important problem in discourse parsing is the im-
plicit discourse relation recognition (IDRR) task
(Marcu and Echihabi, 2002), which aims to identify
the relation between two discourse arguments (e.g.
clauses, sentences or paragraphs in the document)
without explicit discourse connectives (e.g., but,
and, because and the like). This IDRR task has at-
tracted many research works (Lin et al., 2009; Zhou
et al., 2010; Ji and Eisenstein, 2015; Bai and Zhao,
2018; Nguyen et al., 2019; Kim et al., 2020; Dou
et al., 2021; Jiang et al., 2021), and it is very useful
for many downstream NLP tasks such as machine
translation (Joty et al., 2017; Guzmán et al., 2014),
text summarization (Li and Rafi, 2019; Gerani et al.,
2014) and question answering (Chai and Jin, 2004;
Jansen et al., 2014).

Implicit discourse relations also play essen-
tial roles in spoken language understanding tasks
(Aubin et al., 2019; Ma et al., 2019). Thus, it
is worth investigating the IDRR task in spoken
form. Research works have been performed for
IDRR from the manual speech transcripts (Petti-
bone and Pon-Barry, 2003; Tonelli et al., 2010;

or
ig

in
al Argument 1: computer-generated videos help

Argument 2: the average american watches seven
hours of tv a day

tr
an

sc
ri

pt Argument 1: computer generated vidio’s health
Argument 2: the average american watches seven
hours of tevia day

Table 1: An example of ASR errors (highlighted in
bold). A prediction model needs to identify the dis-
course relation “Contingency.Cause.Reason” between
Argument 1 and Argument 2, without the discourse
marker (here, “since”), which is already challenging. It
would be more challenging if the model is required to
work on transcript data with potential ASR errors which
might change the meanings of input arguments.

Rehbein et al., 2016). However, to the best of our
knowledge, no study has investigated the effect of
automatic speech recognition (ASR) errors on the
spoken IDRR task. Table 1 shows an example of
ASR errors that might affect the IDRR result.

In this paper, we present a study that investigates
the influence of ASR errors on the downstream
spoken IDRR task. As there is no public bench-
mark dataset for this spoken IDRR task, we con-
struct a dataset for this task based on the Penn Dis-
course Treebank (PDTB) 2.0 (Prasad et al., 2008).
Following previous works (Lee et al., 2018; You
et al., 2020; Song et al., 2022) that construct spo-
ken derivatives of text-based question answering
and text-to-SQL datasets, we use the Google text-
to-speech system to produce a spoken variant of
the PDTB 2.0 dataset. In our “Cascaded” exper-
iments combining state-of-the-art ASR and text-
based IDRR models, we find that the ASR errors
significantly decrease the performance of the down-
stream IDRR task. We also experiment with an
“End-to-End” approach that directly predicts a re-
lation label for each input argument speech pair,
and find that the “End-to-End” obtains remarkably
lower performances than the “Cascaded”.
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Statistic #Pair #Hour WER
Training 12632 58.37 28.42

Validation 1183 5.42 27.28

Test 1046 4.59 30.27

Table 2: Our dataset statistics. “#Pair”, “#Hour” and
“WER” denote the number of spoken pairs, the number
of speech audio hours and the word error rate, respec-
tively. Here the word error rate is computed for the
automatic transcripts predicted by Wav2Vec 2.0 w.r.t.
the original text arguments.

2 Dataset construction

This section presents the dataset construction pro-
cess for our spoken IDRR task. We construct our
dataset in the spoken form based on the PDTB 2.0
dataset (Prasad et al., 2008), which is one of the
largest benchmark datasets used for IDRR research.
We employ the Google text-to-speech system to
generate spoken variants of the original text argu-
ments from the PDTB 2.0 dataset. We thus obtain
speech pairs and the gold relation label for each
speech pair (i.e. the label of the original argument
pair). We also employ the standard PDTB 2.0 data
split (Ji and Eisenstein, 2015) that uses sections
2–20, 0–1 and 21–22 for training, validation and
test, respectively. Table 2 shows the statistics of
our dataset.

3 Empirical approach

On our spoken dataset, we compare two implicit
discourse relation recognition approaches: Cas-
caded vs. End-to-End.

3.1 Cascaded

The “Cascaded” approach combines two main com-
ponents of automatic speech recognition (ASR) and
text-based IDRR, as illustrated in Figure 1.

For the ASR component, we employ the base
version of Wav2Vec 2.0 (Baevski et al., 2020)—
which is pre-trained and fine-tuned on the 960-hour
Librispeech dataset (Panayotov et al., 2015). In par-
ticular, we feed the spoken argument audios into
Wav2Vec 2.0 to generate the corresponding auto-
matic speech recognition (ASR) transcripts. For
each argument speech pair, we thus obtain a corre-
sponding transcript pair generated by Wav2Vec 2.0.
Table 1 shows an example of ASR transcription
errors from our training set. Table 2 also presents
the word error rate of Wav2Vec 2.0 on our dataset.

Wav2Vec 2.0

that's not character

BMGF-RoBERTa

that's not plot

Expansion.List

Wav2Vec 2.0

that's not character that's not plot

Expansion.List

FFNN

Figure 1: Illustrations of our empirical approaches:
“Cascaded” in the left-hand side subfigure and “End-
to-End” in the right-hand side subfigure.

The text-based IDRR component takes each
speech transcript pair produced by the ASR com-
ponent as input and predicts the discourse relation
label for the transcript pair. For IDRR, we em-
ploy BMGF-RoBERTa (Liu et al., 2020) with its
officially public implementation, which still main-
tains its state-of-the-art performance level up to
date on the PDTB 2.0 dataset. BMGF-RoBERTa
employs RoBERTa (Liu et al., 2019) to obtain con-
textualized representations for word tokens in each
argument and also uses the following modules:

• Trainable segment embeddings (SE): the train-
able segment embeddings are originally used
in BERT (Devlin et al., 2019), but removed in
RoBERTa. BMGF-RoBERTa employs these em-
beddings because they are shown to be helpful
for the IDRR task (Shi and Demberg, 2019).

• Bilateral Matching (BM): comparing each word
token of one argument against all tokens of the
other one and vice versa.

• Gated Fusion (GF): assigning different impor-
tance to each word token in arguments, and
then aggregating importance results and encod-
ing each argument into a vector representation.

• Prediction: Two arguments’ vectors are concate-
nated into a single one that is fed into a two-layer
feed-forward neural network (FFNN) followed
by a softmax for relation classification.

3.2 End-to-End
For the “End-to-End” approach, we propose a
speech-based discourse identification model that
takes each argument speech pair as input and di-
rectly predicts the relation label for the input speech
pair. In particular, the model employs Wav2Vec
2.0 to extract a feature vector representation from
each speech. The model uses a similar prediction
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layer as in BMGF-RoBERTa, which concatenates
two audios’ vectors into a single vector and then
feeds this vector into a two-layer FFNN followed
by a softmax for relation classification. Figure 1
also illustrates the “End-to-End” architecture.

3.3 Implementation details and Setup

For the “Cascaded” approach, we train BMGF-
RoBERTa for 40 epochs on the speech transcript
pairs from the training set. We employ optimal
hyper-parameters from Liu et al. (2020), which are
0.001, 32 and 0.005 for the Adam learning rate,
the batch size and the weight decay, respectively.
In each training epoch, we compute the model’s
accuracy two times on the validation set of speech
transcript pairs to select the best checkpoint. The
selected checkpoint is then applied to the test set
of speech transcript pairs to report final results.

For the “End-to-End”, Wav2Vec 2.0 is employed
as a feature extractor, frozen during training, while
the remaining prediction layer is learned. We train
the proposed model for 10 epochs on the speech
pairs from the training set, using the Adam learning
rate grid-searched at 1e-5 with a batch size of 1 (as
the audios are long) and 8 gradient accumulation
steps. We evaluate the model two times on the
validation set of speech pairs in each training epoch,
to select the best checkpoint to apply to the test set.

Note that PDTB 2.0 has a hierarchical annota-
tion scheme of 3 implicit relation levels. Most
works using PDTB 2.0 report accuracy (Acc.) and
macro-averaged F1 scores for the classification of
all 4 labels from the top level (L1), including Com-
parison (Comp.), Contingency (Cont.), Expansion
(Exp.) and Temporal (Temp.). Recent works (Ji
and Eisenstein, 2015; Bai and Zhao, 2018; Dai and
Huang, 2019; Shi and Demberg, 2019; Liu et al.,
2020) additionally report accuracy (Acc.) scores
for the classification of the top 11 frequent labels
from the second level (L2). We follow the recent
works to report obtained results on both setups.

4 Experimental results

4.1 Main results

Table 3 reports multi-class classification results ob-
tained on the test set at the top (L1) and second
(L2) levels. When it comes to the effect of ASR er-
rors propagation, all performance scores are signif-
icantly decreased: 69.06% → 66.63% and 58.13%
→ 50.24%, which are classification accuracies for
the top- and second-level labels, respectively; and

Model 4-way L1 (Acc. | F1) 11-way L2 (Acc.)

Liu et al. 69.06 | 63.39 58.13

Cascaded 66.63 | 56.00 50.24

End-to-End 51.34 | 38.29 37.92

Table 3: Multi-class classification results (in %) on
the test set. “Liu et al.” denotes results of BMGF-
RoBERTa with the original text arguments as its input
(i.e. equivalent to a perfect ASR of 0% WER). Each
score difference between two models is significant with
p-value < 0.01.

Model Exp. Comp. Cont. Temp.

Liu et al. 77.66 59.44 60.98 50.26

Cascaded 74.15 56.78 57.28 43.64

End-to-End 58.15 38.39 37.64 28.32

Table 4: Binary classification F1 score (in %) for each
L1 label on the test set. Each score difference between
two models is significant with p-value < 0.01.

63.39% → 56.00%, which are F1 scores for the
top-level label prediction. Table 4 shows the one-
vs-rest binary classification F1 score for each label
from the top level. ASR errors also remarkably
reduce the performance. In particular, scores are
decreased about 3% on the Expansion (77.66%
→ 74.15%), Comparison (59.44% → 56.78%) and
Contingency (60.98% → 57.28%) labels, and about
7% on the Temporal label (50.26% → 43.64%).

Tables 3 and 4 also show that the performance
of the “End-to-End” approach is far behind the
“Cascaded” one’s. For example, the accuracy and
F1 scores obtained for “End-to-End” on the top-
level labels are about 15+% lower than those of
“Cascaded”. This is not surprising because: (1) our
speech dataset is small for this difficult language
understanding task of spoken IDRR, and (2) the
“Cascaded” approach gets to utilize the powerful
pre-trained RoBERTa model while the “End-to-
End” one is limited to a simple two-layer FFNN.

4.2 Ablation study
We conduct an ablation study to investigate the
contribution of each main module of the BMGF-
RoBERTa model to the final results of the “Cas-
caded” approach. Table 5 shows the results ob-
tained on the validation set. Each of the main mod-
ules, including the trainable segment embeddings,
the Bilateral Matching and Gated Fusion, plays an
essential role in BMGF-RoBERTa (See Section 3.1
for brief descriptions of these modules). Removing
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Model 4-way L1 (Acc. | F1) 11-way L2 (Acc.) Exp. Comp. Cont. Temp.

Cascaded 68.13 | 58.16 54.59 77.63 58.33 57.23 40.26
(1) w/o SE 62.64 | 49.09 47.04 75.07 43.69 54.02 35.68

(2) w/o BM 66.27 | 57.66 51.59 76.46 52.80 54.96 38.98

(3) w/o GF 66.53 | 55.95 51.93 75.98 55.24 55.76 33.66

(1) & (2) & (3) 59.59 | 49.02 43.00 73.77 43.41 47.91 29.91

Table 5: Ablation results on the validation set. (1) w/o SE: Without employing the trainable segment embeddings;
(2) w/o BM: Without the Bilateral Matching module; (3) w/o GF: Without the Gated Fusion module. Each score
difference between the full cascaded model and its ablated one is significant with p-value < 0.01.
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Figure 2: The confusion matrix of the “Cascaded” ap-
proach on the validation set w.r.t. the top 11 frequent
labels from the second level.

each module significantly reduces the performance.
In addition, removing all three modules degrades
the obtained results by about 10+% in most cases.

4.3 Error analysis

Figure 2 presents the confusion matrix of the “Cas-
caded” approach on the validation set w.r.t. multi-
class classification of the top 11 frequent labels
from the second level. We find that correct predic-
tions mainly come from 6 major labels of Cause,
Conjunction, Restatement, Contrast, Instantiation
and Asynchronous. We also find that main errors
come from the confusion between the relations Re-
statement and Cause, the relations Conjunction and
Cause and the relations Contrast and Conjunction.
They are difficult to distinguish because the form
of the discourse unit in the two relation labels is
semantically similar. We observe similar findings
for the “End-to-End” as shown in Figure 3.

We provide a qualitative example to demonstrate
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Figure 3: The confusion matrix of the “End-to-End”
approach on the validation set w.r.t. the top 11 frequent
labels from the second level.

the challenges of this spoken IDRR task. Given an
input speech pair of the original text argument pair
(“After the race, Fortune 500 executives drooled
like schoolboys over the cars and drivers”, “No
dummies, the drivers pointed out they still had
space on their machines for another sponsor’s
name or two”), in the “Cascaded” approach, the
original token “drooled” from the first argument is
incorrectly predicted as druled by the ASR com-
ponent. Both the “Cascaded” and “End-to-End”
approaches produce an incorrect label prediction of
Contrast, while BMGF-RoBERTa takes this orig-
inal text argument pair as input and produces a
correct label of Cause.

5 Discussion

The method of employing the Google text-to-
speech to generate spoken forms of the original text
arguments in the PDTB 2.0 dataset produces an ar-
tificially generated dataset, thus not fully reflecting
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the error types of human speech. In addition, the
original raw PDTB 2.0 dataset comes from the Wall
Street Journal (WSJ) articles. So our dataset might
not cover relevant real-world spoken genres.

We unfortunately were unaware of the availabil-
ity of the Continuous Speech Recognition (CSR)
corpus that consists of human-read speech with
texts from the WSJ when conducting our study.1

There might be an overlap between original texts
from the PDTB 2.0 dataset and the CSR corpus,
thus the overlap might be used for further evalua-
tion in future work.

6 Conclusion

We have presented an empirical study investigat-
ing the influence of ASR errors on the spoken
IDRR task. We construct a spoken derivative of
the PDTB 2.0 dataset and conduct “Cascaded” ex-
periments employing state-of-the-art ASR and text-
based IDRR models on this spoken dataset. We
find that the ASR errors significantly reduce the
IDRR performance. We also find that an “End-
to-End” approach that directly predicts a relation
label for each input speech pair obtains remarkably
lower performances than the “Cascaded” one.
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