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Abstract

Visual Dialogue (VD) task has recently re-
ceived increasing attention in Al research. VD
aims to generate multi-round, interactive re-
sponses based on the dialog history and image
content. Existing textual dialogue models can-
not fully understand visual information, result-
ing in a lack of scene features when communi-
cating with humans continuously. Therefore,
how to efficiently fuse multi-modal data fea-
tures remains to be a challenge. In this work,
we propose a knowledge transfer method with
visual prompt (VPTG) fusing multi-modal
data, which is a flexible module that can uti-
lize the text-only seq2seq model to handle
VD tasks. The VPTG conducts text-image
co-learning and multi-modal information fu-
sion with visual prompts and visual knowledge
distillation. Specifically, we construct visual
prompts from visual representations and then
induce sequence-to-sequence (seq2seq) mod-
els to fuse visual information and textual con-
texts by visual-text patterns. Moreover, we
also realize visual knowledge transfer through
distillation between two different models’ text
representations, so that the seq2seq model can
actively learn visual semantic representations.
Extensive experiments on the multi-modal dia-
logue understanding and generation (MDUG)
datasets show the proposed VPTG outperforms
other single-modal methods, which demon-
strate the effectiveness of visual prompt and
visual knowledge transfer.

1 Introduction

Cross-modal understanding between vision and lan-
guage has become a challenging field in natural
language processing and computer vision. With
the rapid development of deep neural networks,
researchers have made rapid progress in a series
of visual language tasks, including moment local-
ization with natural language (Zhang et al., 2019a,
2020; Tan et al., 2021; Li et al., 2022b), image
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Multimodal Dialogue Understanding and Generation

STEP1: To have and to hold, for better or worse, richer or poorer,

STEP2: In sickness and health, for as long as you both shall live?

STEP3: Sure. - By the power vested in me, | pronounce you husband and wife.

STEP4: Okay, then.

Output: You may kiss the bride.

Figure 1: Description of the Multi-modal Dialogue Un-
derstanding and Generation (MDUG) task. From stepl
to step 3, the video is about a priest, and the subtitles are
snippets of wedding vows. For the response generation
of step 4, supposing that only dialogue text context was
taken, the previous dialog text: “OK, then” is inade-
quate for generating the expected output: “you may kiss
the bride.”

captioning (Vinyals et al., 2015; Chen et al., 2017;
Anderson et al., 2017), visual question answering
(Tang et al., 2018; Chen et al., 2020; Sheng et al.,
2021), etc. The visual dialogue task (Das et al.,
2017) aims to perform multiple rounds of interac-
tive dialogue based on dialogue history and image
content.

Dialogues with multi-modal contexts (visual and
textual) are becoming more and more general in
daily life (BaltruSaitis et al., 2018), such as commu-
nicating messenger tools (e.g. Facebook, WeChat).
Compared with visual question answering, Visual
Dialogue (VD) tasks not only require answering
questions according to visual information but also
require a deep understanding of multiple rounds of
historical dialogues (Schwartz et al., 2019b; Gan
et al., 2019; Chen et al., 2022). In the visual dia-
logue task, researchers have put forward a lot of
relevant datasets, the GuessWhat?! (de Vries et al.,
2016) and the Visdial (Das et al., 2017) set up visual
dialog data sets for images. The MDUG (Wang
et al., 2022b) is based on video scenes to generate
coherent textual responses.
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In this work, we mainly focus on video visual
dialogue such as the Multi-modal Dialogue Under-
standing and Generation (MDUG) dataset (Wang
et al., 2022b). Compared to image captioning and
image visual dialogue, it requires modeling long-
distance image sequences, which is more challeng-
ing and practical. The MDUG task proposes a
multi-modal dialogue task in the video field. It
needs the system to generate a response of the cur-
rent frame based on multi-modal video scene and
historical dialogue information, where historical
video clips frame and text captions are mapped
one-to-one. The video clips and visual images
have much abundant and useful information about
the plot development. It is easy to pick up on their
movements and expressions from visual informa-
tion. For example, in the last frame of Figure 1.
On the one hand, from the body movements of peo-
ple such as they gradually face each other and a
smile on the man’s face, we can observe that the
man is going to kiss his bride, so models can infer
the “kiss” action in generated response. On the
other hand, from the wedding vows context, it’s
easy to infer their roles as bride and groom. There-
fore, this example demonstrates the importance of
combining images and texts for the MDUG task.

Although much attention has been drawn to dia-
logue tasks (Das et al., 2017), neural models have
shown impressive performance gains in textual dia-
logue tasks. But existing text-only dialogue meth-
ods still have limitations in handling video dialogue
tasks in multi-modal scenarios, which may hin-
der further advancement in this direction. In text-
only dialogue tasks, more and more text generation
models are pre-trained in the large-scale corpora
with the development of pre-trained language mod-
els (Brown et al., 2020; Shao et al., 2021). Most
of the dialogue pre-training models are based on
transformers through pre-training in large-scale di-
alogue texts and using a large number of encoder
and decoder layers (Gu et al., 2022; Zhou et al.,
2021; Bao et al., 2021). This can improve the con-
sistency between the generated context and context
and the fluency of the generated text. But the bigger
challenge is based on the non-homogeneity of the
input text-image multi-modal information and the
output text information besides challenges in the
text-only task in multi-modal dialogue generation
tasks.

How to understand and integrate the multi-modal
information, and comprehensively perform text

generation remains to be an unsolved and important
problem. Many efforts have been made to realize
a reliable and accurate multi-modal dialogue un-
derstanding and generation in similar tasks such
as image captioning and video question answering
(Fukui et al., 2016; Sharma et al., 2020; Das et al.,
2017; Shrestha et al., 2019). However, the methods
adopted in that work cannot be directly generalized
to the video visual dialogue task, and the video
visual dialogue task requires multi-level modeling
in a large number of sequence images and dialog
history at the same time (Schwartz et al., 2019a).

To take a significant step in this direction and
fully utilize seq2seq models’ capability, we propose
a Visual Prompt Text Generate (VPTG) method
that can directly provide visual assistance train-
ing for multi-modal language models to tackle the
above challenges. The VPTG framework can ef-
ficiently generate dialogue response that is coher-
ent to both visual images and text dialogue. To
model text-image mapping in the same representa-
tion space, we adopt CLIP contrastive training to
conduct co-learning of image-caption pairs through
a pre-trained language model (Liu et al., 2021a).
We also use the visual prompt to fuse image visual
information into text features. In the training stage,
we input the “image” and “answer text” into the
CLIP (Radford et al., 2021), and input the “image”
feature vector as a visual prompt into the seq2seq
model. In addition, to improve the visual model-
ing ability of language models, we conduct visual
knowledge transfer by transferring visual represen-
tations to visual prompt and using it to prompt the
seq2seq model modeling multi-modal data. Specif-
ically, the “answer text” feature is also provided to
the encoder output “[CLS]” vector of the seq2seq
model for distillation. We also ask the sequence-to-
sequence (seq2seq) model to actively learn visual
semantic representations. For efficient training, we
adopt an end-to-end training architecture.

In the prediction stage, we only use the image
as the input of the CLIP and get the visual prompt,
and then perform multi-level learning from visual
information to textual information. In the VPTG,
we perform efficient representation, co-learning,
and fusion of multi-modal information. Extensive
experimental results show that the VPTG method
consistently outperforms all baseline schemes in
the MDUG task, showing the effective ability of
the method to make better use of textual and visual
information to generate high-quality multi-modal



dialogue responses.
In summary, our contributions are as follows:

¢ In this work, we focus on the video visual
dialogue task. To the best of our knowledge,
this is the very first attempt to apply the vi-
sual prompt for solving the video dialogue
response generation task.

We present a useful method, which can be
used in almost all seq2seq models. And it con-
ducts visual prompts and visual knowledge
transfer to jointly learn images and text, and
effectively generate a response. We explore
the task with multi-modal information repre-
sentation, co-learning, and fusion.

Extensive experiments are performed to exam-
ine the effectiveness of the proposed VPTG
on the MDUG dataset, in which we achieve
state-of-the-art performances.

2 Related work
2.1 Visual Dialogue Task

With the progress of human-robot interaction tech-
nology, more and more dialogue tasks emphasize
user-friendliness and ethical safety (Zhang and
Zhao, 2021). A dialogue system mainly includes
two parts: (1) understanding the history of dia-
logue; (2) Response in natural language.

The Visual Dialogue (VD) task require agents
to have meaningful dialogue with humans in multi-
modal scenes (Das et al., 2017; Dalu et al., 2019;
Li et al., 2021; Wang et al., 2022b). It is more
complex than traditional visual tasks (such as Ob-
ject Detection (Ren et al., 2015), Image Retrieval
(Kalantidis et al., 2015)). In the VD task, given
some frame or a video clip, a dialog history con-
text, the agent has to ground in image and text,
infer context from history, and generate text re-
sponse accurately. It requires multi-dimensional
modeling based on visual information to gener-
ate accurate descriptions, which has been used to
help visually impaired people better understand the
visual content of the environment. The MDUG
dataset is a VD dataset that aims to generate an
interactive response based on the image captions
context history and video clips image content. The
traditional multi-modal fusion method first uses the
visual model to extract the image features and then
uses the neural network such as LSTM (Hochreiter
and Schmidhuber, 1997) to fuse the information
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between different modes. In recent years, many
methods have been committed to more compre-
hensive information fusion (Vinyals et al., 2014),
such as MHCIAE (Lu et al., 2017) used discrimi-
native learning to migrate knowledge into dialogue
generation. ReDAN (Gan et al., 2019) conducted
visual dialogue through multi-step reasoning. UTC
(Chen et al., 2022) unified the discriminative and
generation of Visual Dialogue tasks based on the
framework of contrastive learning. Different from
previous works, the VPTG adopts a more flexi-
ble and widely applicable framework that can be
integrated with various single-modal pre-trained
language models to learn vision-language interac-
tions by taking visual prompt and visual knowl-
edge transfer, which deeply captures the relations
between image and texts to mutually reinforce dia-
logue response generation.

2.2 Pre-Trained Language Model

There are also pre-trained models promising in the
visual-language field (Murahari et al., 2019; Wang
et al., 2020; Ye et al., 2022). Most of the popular
approaches employ an encoder-decoder architec-
ture for visual dialog. The encoder aims at encod-
ing the image and text to fused features, and two
separate decoders are employed for ranking and
generating respectively. Among them, a variety
of attention mechanism-based approaches are pro-
posed to learn the interactions between the image,
the answers, and the dialog history in the discrim-
inative setting. The 3D ConvNet was pre-trained
on the Kinetics dataset (Carreira and Zisserman,
2017). The CLIP (Radford et al., 2021) and Wenlan
(Huo et al., 2021) models are image-text pair pre-
trained models, which are pre-trained by learning to
map text and image to the same vector space. The
OFA (Wang et al., 2022a) is a unified model adopt-
ing multi-modality pre-training with multi-tasking
training objectives. It transforms all multi-modal
tasks into sequence-to-sequence (seq2seq) tasks,
which realizes the state-of-the-art performance in
multiple visual-language tasks.

2.3 Prompt Tuning

How to make better use of pre-trained models has
become a concerning problem (Han et al., 2021b).
Prompt tuning is a new NLP paradigm used to solve
the downstream tasks of the pre-trained model.In
the field of multi-modality, increasing methods
adopt prompt tuning to learn the aligned features
between different modalities. CPT (Yao et al.,



2022) uses color (visual feature) as a bridge to
recover masked tokens from cross-modal content,
narrowing the gap between pre-training and down-
stream tasks. The VPTSL (Li et al., 2022a) formu-
lates the natural language video localization task
as an extraction reading comprehension task by
introducing the discrete visual prompt. And, it im-
plements a new state-of-the-art on the MedVidQA
(Gupta et al., 2022) datasets.

The VPTG solves the defect of incomplete uti-
lization of visual features. It also performs vi-
sual prediction tasks by Lk1, compared with these
prompt methods. This can make the model more
fully understand the visual semantics, so as to bet-
ter multi-modal modeling.

3 Datasets

The multi-modal Dialogue Understanding and Gen-
eration task (Wang et al., 2022b) is required to gen-
erate a dialogue agent for the next sentence based
on the multi-modal scene and the previous dialogue
process. This task needs to model the semantics
of the session and the scenario of the session. The
task provides the multi-modal video of dialogue
content and scene. Its ultimate goal is to generate
agent replies that meet the context and are related
to the video scene.

The videos and dialogues for this task are
crawled from online TV series. The dataset is split
into a training set, a validation set, and a test set.
Each example includes a dialogue session as well
as the associated video clip, which is a sequence
of frames. The frames from the videos have been
downsampled to 3fps.

It is composed of 43,895 videos with 1,100,242
utterances. Each video has an average of 25.07
utterances. We follow the official data split, where
1,000,079, 50,032, and 50,131 utterances are used
for training, validation, and testing, respectively.

4 The Proposed Method

We propose the visual prompt Text Generate
(VPTG) framework for the multi-modal Dialogue
Understanding and Generation (MDUG) task,
whose ultimate goal is to generate a response that is
coherent to the dialogue context and relevant to the
video context. The Figure 2 illustrates the architec-
ture of VPTG. It is challenging to directly generate
the dialogue response according to multi-modal
data. To tackle this challenge of data alignment
and fusion between image and text, we split the
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MDUG task into two simultaneous modules: (1)
the visual predictor module is first used to generate
visual prompt (Section 4.1) by jointly training an
image encoder and a text encoder and fusion image
information into a text representation. (2) The text
predictor conducts Visual Knowledge Transfer
(Section 4.2) to guarantee response generation with
information alignment between text and image.

4.1 Visual Prompt

The visual prompt method was proposed in the
Visual Predictor module. In this module, we aim
at learning multi-modal feature representation and
constructing visual prompts to reinforce semantic
modeling.

In the MDUG task, an example includes a dia-
logue session and the associated video clip which
is a sequence of frames (3 frames per second). In
the VPTG, we input the last frame of video I and a
corresponding next textual response 71" correspond-
ing at a time. Because image and text are het-
erogeneous data, we leverage the CLIP (Radford
et al., 2021) to model joint representations of image
and text. For multi-modal data, joint representa-
tions are projected to the same space using all of
the modalities as input. The CLIP (Radford et al.,
2021) is a visual-language pre-training model that
learns both visual and language representations
by predicting the correct pairings of a batch of
{image, text} training examples. In our model, for
the current frame image and the next textual re-
sponse, we utilize an image encoder to get visual
prompt Vimage € RF and a text encoder to get
Viext € R¥, they are jointly trained to respectively
map the input image and text into a unified repre-
sentation space. We adopt contrastive learning as
its training objective. We use L¢, to close the se-
mantic distance of image-text pairs, where ground
truth image-text pairs are regarded as positive sam-
ples X = {x;}"_;, and mismatched image-text
pairs constructed as negative ones X~ = {x; }I".

Sim(xi,zzr)

_ n
Ler = Zizo log Sim(xmf)JrZ;":l Sim(xi,mf)

Sim(z;, z;) = exp (f(z:)T f (z5))

4.1.1 Prompt Designing

The information coming from text and image
modalities may have varying predictive power and
noise topology (Baltrusaitis et al., 2018). After
learning joint representations of image-text pairs,

)
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Figure 2: The architecture of the proposed method. In the training stage, we input the “image” and “answer text”
into two separate encoders of CLIP, and input the image feature vector as a visual prompt into the seq2seq model.
In addition, the answer eigenvector is also provided to the encoder output “[CLS]” vector of the seq2seq model for
distillation. In the prediction stage, we only use the image as the input of the CLIP and get the visual prompt.

we conduct visual prompt learning. Unlike tra-
ditional visual prompt Tuning methods aiming to
finetune large-scale Transformer modules with a
small amount of task-specific learnable parame-
ters, we construct the visual prompt to fuse visual
modality into text modeling and generation, which
can also be trained end-to-end.

We adopt the visual image representation as
the visual token for prompting the pre-trained lan-
guage model. Specifically, the image representa-
tion Vipage Was transferred to the same dimension
as the input text tokens as a visual prompt.

Py = Linear(Vimage) 2)
where P, € R%d is the dimension of text predic-
tor encoder embedding; Linear is a single feed-
forward layer.

4.1.2 Prompt Tuning

Intuitively, the visual prompt P; is used as the vi-
sual token which concatenates with the text dia-
logue sentence and the last video frame image. The
“[CLS]” is positioned at the head of the input token,
while the prompt P is used as the trigger to model
and generate a response. After concatenation, the
embedding module is adopted for learning the fea-
tures in the same vector space. On the one hand,
the visual prompt covers the non-verbal part that
the text token lacks. On the other head, the visual
prompt is supervised by the visual frames, where
some visual features can be the extra knowledge
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for the pre-trained model when fine-tuning.

P = Embedded ([CLS]Text[SEP|) ConcatP;
3)

4.2 Visual Knowledge Transfer

The text predictor module is based on the
seq2seq Transformer model (Vaswani et al., 2017a).
The Transformer is Encoder-Decoder architecture,
which is proved to be outstanding for text genera-
tion. The encoder produces a global contextual rep-
resentation based on multi-modal representation fu-
sion, and the decoder will use the multi-head atten-
tion mechanism to fuse encoder information, and
then generate the final frame predicted response
token by token. To make information alignment,
we propose Visual knowledge transfer to distil
knowledge by cross-attention. This thought has
been proved to perform better multi-modal infor-
mation fusion in the textual question answering
field (Izacard and Grave, 2020).

4.2.1 Text Encoder Distill Learning

In text predictor, each P constructed in Visual
Prompt is given as input to a seq2seq model en-
coder.

Vp = Encodergeg2seq(P) 4)

Let Véfgseq € R? be the [CLS] token’s repre-
sentation of the encoded query Vp, it models the
whole representation containing dialogue text and
visual prompt in the bidirectional encoder. We will




assume that the last hidden state output among two  comes:

encoders and text can be defined as p; (¢ | p) and

p2(t | z). There are two transformer encoders in L =Lk + Algen +7LoL,y €R, AR, (8)
the VPTG, where we call the visual predictor en-
coder as Encoder, the text predictor encoder as
Encoders.

We jointly train the visual predictor and text predic-
tor as an end-to-end training approach.

For inference, we first encode the input image-

pi(t]p) o ngLtI L (t]z) o VCSEngseq (5)  textpairs by the visual predictor, then construct the

visual prompt to fuse multi-modal representation.

where ¢ is input dialogue text, p is the input  The text predictor can generate predicted responses

frame image; z is the visual prompt according after concatenation between the text tokens and the

to p; Vtgélp € R* is the representation of im-  visual token.

age in the visual predictor. The p; represent the

Encoder;, and the p, represent the Encoders. S Experiments
seq2seq CLIP
We close the gap between Vg™ and Vigr In this section, we will introduce the evaluation

by minimizing the KL-divergence. This aims at indicators and experimental settings. Then we com-

tr.alnlng the resp onse gener.ator (EnCO(_iem) with pare VPTG with the existing dialogue generation
visual knowledge information from the image-text . .
technology and ablation experiments to prove the

predictor (Encoder). effectiveness of our method.
L31,(0,P) = Drr(VoE™ (@) |lwoViess' ()
1 _ CLIP seq2seq
Lx1(0,P) = Drr(woVieg — (@)[[Vors ™ (2)) Following prior work (Chen et al., 2015; Laokul-
1 . ST

LxL(0,P) = 3 Z (E?(L(G,Pt) + ﬁKLWﬂ’t)) (6)rat et al., 2016; Pasunuru gnd Bansal, 2(?17,.L11_1

e et al., 2021b), we use a variety of evaluation indi-
cators, which can evaluate the generation quality
of sentence level and word level at the same time,
and show the detailed performance of the system
more comprehensively. We adopt “BLEU” (Pap-
multaneously by the response generation task. We  ipani et al., 2002), “ROUGE” (Lin, 2004), “ME-
take the formula above to perform visual knowl-  TEOR” (Denkowski and Lavie, 2014) and “CIDER”
edge distill learning. In training Lkp, it performs  (yedantam et al., 2015) as the evaluation metrics,

grg‘iile;t decoupling (stop-gradient operator) for  yhich can assess the quality of visual dialogue gen-
Vi () and Encoder,. This visual knowledge  eration, including fidelity and diversity.

5.1 Evaluation Metrics

where X is the training set of all image-text pairs.
wy € R4 is a trainable weights vector. The
text predictor encoder (Encoders) is trained si-

ext
distill learning method requires the seq2seq model

(or Encoders) to actively learn visual semantic 5.2 Implementation Details

representation, so as to increase the model’s per- I order to compare the functions of the system
ception of visual signals and avoid ignoring infor- e fairly, we follow the setting of the base-
mation of visual prompt. line scheme and only compare whether to add the
VPTG module. In recent years, natural language
processing significant progress has been achieved
(Han et al., 2021a; Qiu et al., 2020) due to the
introduction of Pre-trained Language Model (Pe-
ters et al., 2018; Devlin et al., 2019; Radford and
xp (yi) Narasimhan, 2018). Therefore, more and more
(7)) methods begin to introduce the pre-trained lan-

guage model in the dialogue generation task (Zhang

where y; is the i-th generated token by the language et al., 2019b; Adiwardana et al., 2020; Roller et al.,

4.2.2 Response Generation

Finally, we generate responses with the seq2seq
model’s decoder. We define L 4., as the autoregres-
sive loss.

gen = Zp Yi IOg Z

n=1XP (yl)

model. N is the size of the target vocabulary. 2021b; Thoppilan et al., 2022; Gu et al., 2022).
For all methods, we use the same CLIP ! (Rad-
4.3 Training and Inference ford et al., 2021) model as feature extraction It

.Con.nblnlng the above der%vail‘u(')ns, our training ob- https://huggingface.co/openai/
jective that we seek to minimize for response be- clip-vit-base-patch32
13
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Models BLEU-1 ROUGE-L METEOR CIDEr Avg

Random Mode 4.81 3.92 2.21 2.42 3.34

Originally 5.02 4.35 2.54 3.75 3.92

BART-base(Lewis et al., 2019) (2019) Fintune 5.74 6.10 3.87 4.11 4.96
With VPTG 6.12 6.52 4.01 4.35 5.25(0.291)

Originally 2.78 4.21 2.33 1.20 2.63

T5-base (2020) Fintune 2.94 4.44 2.81 0.58 2.69
With VPTG 3.24 5.12 2.98 0.89 3.06(0.371)

Originally 6.03 7.69 543 3.51 5.67

Blender-400M (Roller et al., 2021a)(2021) | Fintune 7.01 8.73 6.05 5.85 691
With VPTG 7.55 9.15 6.49 6.61 7.45(0.541)

Table 1: Performance comparison of the variants methods on MDUG dataset. We highlight the best score in each
column in bold, and the second best score with underline. We also show the improvement between first place and

second place.

Case Study BLEU-1 ROUGE-L METEOR CIDEr Avg
Baseline 7.01 8.73 6.05 5.85 6.91
W/O Lx1, 7.25 8.91 6.24 7.12 7.38
W/O Visual-Feature 7.10 8.79 6.34 6.01 7.06
W/O visual prompt 6.45 8.10 5.78 5.62 6.49
VPTG 7.55 9.15 6.49 6.61 7.45

Table 2: We conduct the ablation study to analyze the performance of the VPTG on the Blender-400M model, where
we use the same parameters to train the model and report the highest score.

has 8 attention heads and 12 layers, and its hidden
size is 512. For the seq2seq model, we all use the
base size model for testing. And for the remaining
settings, we follow the original code.

We train the model using the Pytorch? (Paszke
et al., 2019) on the NVIDIA RTX3090 GPU and
use the hugging-face® (Wolf et al., 2020) frame-
work. We use the AdamW (Loshchilov and Hutter,
2018) as the optimizer and the learning rate is set to
le-5 with the warm-up (He et al., 2016). The batch
size is 24. We set the maximum length of 512 (we
set the max length as 128 for Blender, because it
supports up to 128 lengths of input), and deleted
the excess. We use the linear decay of the learning
rate and gradient clipping of 1e-6. The dropout
(Srivastava et al., 2014) of 0.1 is applied to prevent
overfitting. The detailed experimental settings are
shown in Table 1.

All hyperparameters are optimized on the Valid
set. In all our experiments, at the end of each
training phase, we will test the effective data set
and select the highest model (mainly depending on
BLEU) in the test data set for prediction. We report
the results in the test data set. We repeated the
experiment three times and reported the average
score.

https://pytorch.org
‘https://github.com/huggingface/
transformers
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5.3 Comparison with State-of-the-Art
Methods

In the MDUG dataset, we compared the baseline
scheme with the existing dialogue generation.

BART (Lewis et al.,, 2019) uses a standard
seq2seq transformer (Vaswani et al., 2017b) struc-
ture. Its structure is very simple, which can be seen
as a combination of BERT (Devlin et al., 2018)
and GPT (Radford and Narasimhan, 2018). In the
pre-training stage, it destroys the original text by
randomly disrupting the order of the original sen-
tences and adding mask tags. After that, the BART
(Lewis et al., 2019) reconstructs the original text
by denoising it. The BART (Lewis et al., 2019)
achieves the best performance in translation and
summary tasks that need to be generated.

TS5 treats all tasks as text-to-text tasks. It is differ-
ent from the BART (Lewis et al., 2019) in that the
pre-training stage only requires the decoder to re-
cover the masked part without full-text recovery. It
has even surpassed the human level in many natural
language tasks (Wang et al., 2018, 2019).

Blender (Roller et al., 2021a) is a pre-training
model in the chat field. It carries out pre-training
in a large number of dialogues, which improves the
dialogue fluency of the model. It can provide users
with interesting chat preferences, display person-
ality, and so on. Blender can maintain consistent
personality attributes in the dialogue and surpasses
the existing models in terms of participation and


https://pytorch.org
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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STEP1:
STEP2:

To have and to hold, for better or worse, richer or poorer,

In sickness and health, for as long as you both shall live?

STEP3: Sure. - By the power vested in me, | pronounce you husband and wife.
STEP4: Okay, then.

Expected Response: You may kiss the bride.

STEP1:
STEP2:

The whole board's down.

Hard-patch the camera output to the one by 10.
STEP3: We can't roll the graphics without the switcher.
STEP4: Can we route them to the desk monitor?
Expected Response: They'll be hard cuts.

Textual : That's a good way to look at it. I'm not sure if I'll ever be able to do that.

VPTG : You can vote and kiss each other.

Textual : I'm sure you can find a way to do it.

VPTG I'll check the network switch

Figure 3: Examples of the generated results.

humanization indicators.

5.4 Experimental Result

We report the performance of the model in Table
2. The “Originally” refers to the use of the original
pre-training model for a zero-shot generation. The
“Finetune” means that we fine-tune the data set and
select the highest score to test in the test. The “With
VPTG” means that we have modified the structure
of the model and added the VPTG module based
on the existing language model, which enables us
to give the visual ability to the language model that
has never seen an image.

It is not difficult to find that, other models have
poor zero-shot effects in the field of dialogue except
the Blender. This is because the T5 model and the
Bart model are pre-trained in a large-scale general
corpus, which is difficult to migrate directly to the
field of dialogue. Even if these models are fine-
tuned, the effect is still insufficient, even worse
than the result of random selection. This shows that
Visual Dialogue tasks have strong open attributes
and need to use more features.

After the VPTG is added to the model, the CLIP
can provide visual semantic features. This makes
the seq2seq model have a more comprehensive per-
ceptual performance. It can analyze the overall
scene and generate dialogue text more in line with
the scene. In the “With VPTG” of Table 1, the per-
formance of all models has been significantly im-
proved. This shows the effectiveness of the VPTG
module.

5.5 Ablation Study

In Table 3, we can see some performance compar-
isons. We further carry out care learning in Blender
(Roller et al., 2021a), which is the best pre-trained
model in MDUG tasks (Wang et al., 2022b). It
can fully show the effect differences brought by
different methods.

15

First, we try to cancel the L1, loss, which means
that we no longer require the model to predict the
actual video scene. This may lead to the lack of
understanding of the scene in the model so that the
generated text lacks the modelling of the scene.

After cancelling the visual feature, we will no
longer provide the video feature vector of the cur-
rent scene. This may make the model lack visual
semantic features and cause the omission of envi-
ronmental scenes.

We tested the use of dot products to integrate
visual features into the embedding matrix of the
seq2seq model, but the effects decreased signifi-
cantly. We believe that if we do not use the visual
prompt to provide visual features, the direct dot
product will cause the catastrophic forgetting prob-
lem of the pre-training language model. It will
destroy the original semantic understanding ability
of the pre-training language model and become a
kind of noise interference through the fusion of
direct dot product feature vectors.

5.6 Case Study

In Figure 3, we select two examples to show. We
can see that the VPTG model can better model
scene information and generate text with specific vi-
sual semantics than the single modal language pre-
training model. Compared with the single model,
the VPTG has higher fluency in the field of dia-
logue. This fully shows that the VPTG can deeply
mine visual signals.

6 Conclusions

In this paper, we proposed a new visual knowledge
fusing paradigm that provides the pre-trained lan-
guage generation model with the visual prompt.
The VPTG module is flexible and can support
almost all seq2seq models to be used in multi-
modal dialogue generation tasks. It realizes the
language model’s understanding of visual infor-




mation by transforming visual features into embed-
ding prompts. We have conducted vast experiments
on the task of multi-modal Dialogue Understanding
and Generation. The VPTG outperforms all other
baselines in MDUG tasks for these experiments,
which reflects the effectiveness of the proposed
method.
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