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Abstract
Recent work on text simplification has focused
on the use of control tokens to further the state
of the art. However, it is not easy to further
improve without an in-depth comprehension
of the mechanisms underlying control tokens.
One unexplored factor is the tokenization strat-
egy, which we also explore. In this paper, we
(1) reimplemented ACCESS, (2) explored the
effects of varying control tokens, (3) tested the
influences of different tokenization strategies,
and (4) demonstrated how separate control to-
kens affect performance. We show variations
of performance in the four control tokens sep-
arately. We also uncover how the design of
control tokens could influence the performance
and propose some suggestions for designing
control tokens, which also reaches into other
controllable text generation tasks.

1 Introduction

Text simplification (TS) refers to reducing linguis-
tic complexity at both syntactic and lexical levels
without losing the main content (Alva-Manchego
et al., 2020b). It is commonly used to increase
the readability of documents intended for children
(De Belder and Moens, 2010), non-native speak-
ers (Petersen and Ostendorf, 2007) and people
with dyslexia. The requirements for simplified
outcomes may vary among audiences (Xu et al.,
2015), for instance, depending on the characteris-
tics of the dataset. The task can be roughly divided
into sentence-level simplification (Nishihara et al.,
2019; Martin et al., 2020a) and paragraph-level sim-
plification (Sun et al., 2020; Devaraj et al., 2021).
The two types of tasks may have different focuses,
and this paper only involves sentence-level simpli-
fication.

In order to fit the requirements of different user
groups, some projects introduced explicit discrete
prompts as control tokens to assist the model in
learning from datasets and adjusting the simplifica-
tions (Martin et al., 2020a; Agrawal et al., 2021).

Figure 1: Example of input and output

By adjusting the value in different control tokens,
researchers can manually adjust the characteristics
of the output, such as length, syntactic and lexical
difficulties, etc.

The control tokens are added to the beginning
of the complex sentences and represent a relation-
ship between that sentence and the desired input
(such as the desired compression ratio). In addi-
tion, the numerical value also changes with the
demands of the outcome. The format of the control
token is: <Token_value>, where Token is a novel
extra-vocabulary token with human interpretable
meaning, and value is a numerical value indicat-
ing some relationship between the given input and
output as shown in Figure 1 and Appendix A. The
design of the control tokens is based on the need for
adjustment. Multiple control tokens can be applied
simultaneously, and four control tokens are used in
this project.

Although the control tokens are manually
crafted, how the control tokens change the out-
come remains unstudied. To explore the mecha-
nisms of control tokens in simplification, this paper
proposes the following: (1) Verify the importance
of control tokens in Section 4.2. (2) Reimplement
the ACCESS (Martin et al., 2020a) used in the
current state-of-the-art (SOTA) in Section 3.3. (3)
Explore the influence of the variation of control
tokens in the format in Section 4.1. And finally (4)
investigate the effects of the tokenization method
in Section 4.2.
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2 Literature Review

Natural language generation (NLG) is a sub-task
in natural language processing. There have been
attempts to build an NLG system based on hand-
crafted rules and to define the problem and fea-
tures based on knowledge in the last century (Hovy,
1990; Reiter and Dale, 1997). With the develop-
ment of computation power and the introduction of
neural networks, more neural-network-based sta-
tistical methods were applied (Wen et al., 2015;
Dušek and Jurčíček, 2016; Lebret et al., 2016; Mei
et al., 2016). One important change happened
with the publishing of the transformer architecture
(Vaswani et al., 2017), which inspired the “pre-train
and fine-tune” paradigm. Later, due to the new
architecture outperforming existing ones in both
performance and computation consumption, the
transformer architecture and its derivatives occu-
pied a dominant position in the NLG domain (Yang
et al., 2019; Floridi and Chiriatti, 2020; Lewis et al.,
2020). As a sub-task of NLG, text simplification
can also be regarded as monolingual machine trans-
lation (Wubben et al., 2012). With the development
of sequence-to-sequence machine translation, text
simplification also drew more attention (Guo et al.,
2018; Surya et al., 2019; Omelianchuk et al., 2021)

In recent years, researchers tried to introduce
explicit parameters to control the simplified out-
put (Nishihara et al., 2019; Martin et al., 2020a;
Agrawal et al., 2021). Martin et al. (2020a) in-
troduced four hyper-parameters in the AudienCe-
CEntric Sentence Simplification (ACCESS): the
number of characters, Levenshtein similarity (Lev-
enshtein et al., 1966), word rank and dependency
tree depth, which are used to control the length,
similarity, lexical complexity and syntactic com-
plexity respectively. With the help of the param-
eters, users can modify the generated simplifica-
tion based on their needs. However, these parame-
ters may be less straightforward for lay users, and
Agrawal et al. ( 2021) replaced the detailed parame-
ters with simplification grades. In addition, a minor
change in these parameters may significantly affect
the readability and fluency of output. Although the
value set that maximises the benchmark scores can
be given, it may be of little help to the end-users
with specific requirements. Further exploration of
the effect and proper parameter preferences needs
to be made to guide and help lay users adjust these
parameters based on their needs.

Another novel research on the training datasets is

multilingual unsupervised sentence simplification
(MUSS) (Martin et al., 2020b). They fine-tuned
BART (Lewis et al., 2020) on their mined para-
phrases datasets instead of complex-simple parallel
corpora and found that with the help of ACCESS,
the unsupervised model outperformed the other un-
supervised text simplification models and became
the latest SOTA. As an extension of ACCESS, the
authors improved the design of control tokens and
changed the tokenization strategy. They showed
that performance differences between the two types
of datasets might be acceptable only if the mined
paraphrase dataset is good enough. Training on
paraphrase datasets provides more options than
training solely on the supervised datasets and there
is a nearly unlimited amount of unlabelled data.
They also found that the performance of the combi-
nation of unsupervised and supervised training is
the best, which is very similar to the pre-train and
fine-tune paradigm. Although multilingual tests
were made in the MUSS, they were delivered sep-
arately and had little interference with the aim of
this project. Thus, there is little need to focus on
their research in French and Spanish.

The metrics also play a vital role in evaluating
the performance of models. Although current met-
rics can hardly compete with human evaluations,
they can still partially reflect the performance in
certain indexes. Among the popular metrics, there
are reference-based metrics like Bilingual evalua-
tion understudy (BLEU) (Papineni et al., 2002) and
Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) (Lin, 2004) and non-reference-based
metrics like Flesch-Kincaid Grade Level (FKGL)
(Flesch, 1948). Currently, the most popular metric
for text simplification is the system output against
references and against the input sentence (SARI)
(Xu et al., 2016). SARI is designed especially for
text simplification tasks, which evaluates the out-
puts in aspects of adding, keeping and deleting.
Although it is found to have some deviation from
human judgement, SARI is still a valuable met-
ric to evaluate simplicity (Alva-Manchego et al.,
2021). As for the non-reference-based metrics, the
BERT score is a BERT-based metric that evaluates
the similarity between input and output by calculat-
ing the correlation in the embedding space (Zhang
et al., 2019). It is found to have a high correla-
tion with human judgement (Scialom et al., 2021).
By combining the metrics, the performance can be
evaluated more comprehensively.
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Strategy Raw Input ’<DEPENDENCYTREEDEPTHRATIO_0.6>’

Default
IDs [0, 41552, 41372, 9309, 23451, . . . , 2571, 6454, 1215, 288, 4, . . . ]

tokenization [’<s>’, ’<’, ’DEP’, ’END’, ’ENCY’, . . . , ’_’, ’0’, ’.’, ’6’, ’>’, . . . ]

Joint
IDs [0, 50265, . . . ]

tokenization [’<s>’, ’<DEPENDENCYTREEDEPTHRATIO_0.6>’, . . . ]

Separate
IDs [0, 50265, 50266, 15698, . . . ]

tokenization [’<s>’, ’<DEPENDENCYTREEDEPTHRATIO_’, ’0.6’, ’>’, . . . ]

Table 1: Tokenization under differing strategies for the input starting with: ’<DEPENDENCYTREEDEPTH-
RATIO_0.6>’

3 Experiments

3.1 Quantisation differences
As mentioned in the literature review, there
are 4 types of control tokens: <DEPENDEN-
CYTREEDEPTH_x> (DTD), <WORDRANK_x>
(WR), <REPLACEONLYLEVENSHTEIN_x>
(LV) and <LENGTHRATIO_x> (LR). In the
preprocessing step, they are calculated and added
to the beginning of complex sentences in the
complex dataset. As an augmentation to the
control tokens, the calculated values are rounded
to the nearest 0.05. However, in the original
optimisation process, the calculated values by
the algorithm provided by the Nevergrad (Rapin
and Teytaud, 2018) API have high precision and
verbose digits, just like the first line in Table 2.
During the reimplementation, we found that only
the first one or two digits are recognised as input
values and the remaining digits didn’t provide
any meaningful instruction. On the contrary, it
brought unnecessary information to the system and
even lowered the performance of the model. Thus
we replaced the continuous values with discrete
ones like 0.2, 0.25, 0.3, ..., 1.0 and changed to the
corresponding discrete algorithm in Nevergrad
(Rapin and Teytaud, 2018).

3.2 Tokenization Strategies
One of the aims of this project is to explore the ef-
fects of tokenization strategies. As shown in Table
1, the default tokenization method in the MUSS
project is regarding the control tokens as plain
text. In comparison, we added 2 more tokeniza-
tion strategies: One is to regard the whole control
token as one token in the tokenizer; the other is to
break the control token into a combination of type
and value and add them separately to the tokenizer.
These 2 strategies are achieved by manually adding
all possible control tokens to the dictionary of the
tokenizer. This will affect not only the evaluation

and optimisation process but also the training pro-
cess, thus each tokenization strategy requires an
independent fine-tuned model.

3.3 Reimplementation of ACCESS

One of the goals of this project is to reimplement
and verify the effect of control tokens in the cur-
rent SOTA. However, since the main focus of this
project is on the control tokens, instead of training
on both supervised and unsupervised datasets, it
would be more practical to claim the reimplemen-
tation of ACCESS rather than MUSS. In order to
build a unified baseline, this project also applied
the BART model (Lewis et al., 2020), which is
adopted in the MUSS project. The original project
can be divided into the following sections: data
mining, preprocessing, training, evaluation and op-
timisation.

Since the goal is verification, there is no need
to rewrite the code for all sections. Thus only the
codes related to training and some other periph-
eral functions have been altered to achieve similar
results. The other functions, such as preprocess-
ing and optimisation, still kept most of the original
code. The original core API used for training is
fairseq. This project replaced it with another open-
source API — Huggingface. Huggingface provides
a collection of the most popular pre-trained mod-
els and datasets, including the BART (Lewis et al.,
2020) and a unified, advanced and user-friendly
API to achieve the most common applications,
which made it easier for future upgrading and mod-
ification. The hyper-parameters of models in the
reimplementation, including the learning rate and
weight decay, are set to be identical to the original
project so that the influence of irrelevant factors
can be lowered. The last difference between the
reimplementation and the original project is the
tokeniser. The tokeniser in the reimplementation is
the BART-base byte-pair encoding(BPE) tokeniser
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instead of the GPT2 BPE tokeniser (Radford et al.,
2019). Both tokenisers serve the same purpose and
perform very similarly to each other. The new one
consumes fewer computer resources, which pre-
sumably causes only a little effect on the results.
Due to the variation of control tokens, the optimi-
sation algorithm has also changed. The original al-
gorithm is the OneplusOne provided by Nevergrad
(Rapin and Teytaud, 2018), and the current one is
the PortfolioDiscreteOnePlusOne, which fits the
discrete values better. As for the metrics, the SARI
score is kept as the primary evaluation method (Xu
et al., 2016), and the BERT score is introduced as
a co-reference.

However, due to the limitation of computation
resources and mass fine-tuning demands of models
with different tokenization strategies, this project
also downgraded the training scale and limited
the epochs in both baseline and reimplementation.
Here are the changes applied to both the reimple-
mentation and the baseline as follows:

• All results are from models trained in BART-
base instead of BART-large.

• All training processes are set to 10 epochs
only.

• All models are trained on Wikilarge (Zhang
and Lapata, 2017) only.

As explained earlier, each tokenization strategies is
corresponding to one model and there is a total of
16 models that need to be fine-tuned. This is why
only BART-base is applied and the training epochs
are limited. As for the reason for choosing 10 as the
targeting epoch number, it is because the training
loss for models with combined control tokens has
reached 0.85 and decreased very slowly between
epochs, while the validation loss started increasing.
If continuing training, the over-fitting problem may
occur. The results of the baseline shown in the next
section can also partially prove the training process
is probably long enough.

3.4 Training process

General NLP tasks can be divided into three steps:
data preprocessing, training and evaluation. The
preprocessing step followed the MUSS project
(Martin et al., 2020b). In this project, there is one
more step: optimisation. The authors defined four
types of prompts used as control tokens to ma-
nipulate the features of the outputs. Each control

token is designed to represent one character of the
sentence. The <DEPENDENCYTREEDEPTH_x>
represents the syntactic complexity; The <WOR-
DRANK_x> represents the lexical complexity; The
<REPLACEONLYLEVENSHTEIN_x> represents
the inverse similarity of input and output at the
letter level; The <LENGTHRATIO_x> represents
the length ratio of input and output. The value of
each control token is calculated based on the refer-
ence complex-simple pairs in the training dataset,
which is Wikilarge in this project (Zhang and La-
pata, 2017). After the calculation, these control
tokens will be added to the beginning of complex
sentences, and the model will be trained on this
preprocessed dataset. In addition to the combined
control tokens, this project also explored the effects
of a single control token; only the corresponding
control tokens are kept in that dataset.

The next step is training. It follows the majority
of fine-tuning processes for pretrained language
models. By feeding the preprocessed complex-
simple sentence pairs to the model, the model is
expected to learn how to simplify texts and the
meaning of each control token. As explained in
the tokenization strategy, each tokenization method
demands a separate model. To compare the perfor-
mance of different tokenization methods, except
the baseline, 15 models are fine-tuned in the exper-
iment: 3 models with full control tokens and 12
models with only one control token. The models
with one control token are used to verify the im-
portance of combined control tokens and provide
supportive evidence for the assumption.

The following step is evaluation. Thanks to
Easier Automatic Sentence Simplification Evalua-
tion(EASSE), multiple evaluation metrics can be
applied at the same time easily (Alva-Manchego
et al., 2019). The SARI score is adopted as the
primary metric to compare with the current SOTA,
while the BERT score is added as a second refer-
ence. Different from the common applications in
other projects, the BERT score in this project is the
correlation between the output and references. One
coefficient array can be used to combine different
evaluation metrics and give a weighted score. How-
ever, in this project, we also follow the operations
in MUSS and maximise the SARI score, so only
the SARI score is taken into account, and the cor-
responding coefficient is set to 1. The models will
be evaluated on the ASSET (Alva-Manchego et al.,
2020a) test dataset, which contains 359 complex-
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Prompts SARI BERT DTD WR LV LR
Baseline 43.83 — 0.249. . . 0.814. . . 0.758. . . 0.858. . .
Default 44.00±0.05 0.754 0.25 0.8 0.75 0.85

Joint tokens 44.02±0.05 0.769 0.25 0.8 0.75 0.85
Separate tokens 44.04±0.05 0.754 0.25 0.8 0.75 0.85

Default 44.36±0.05 0.733 0.6 0.7 0.65 0.85
Joint tokens 44.58±0.05 0.794 0.35 0.85 0.8 0.85

Separate tokens 44.53±0.05 0.784 0.35 0.75 0.8 0.85
Default 43.34±0.06 0.827 0.6 0.85 0.85 0.85

Joint tokens 43.83±0.06 0.829 0.6 0.85 0.85 0.85
Separate tokens 43.99±0.06 0.828 0.6 0.85 0.85 0.85

Table 2: Results on SARI and BERT score under differing tokenization strategies, with comparison to the baseline
(top 4 rows of results), optimised parameter values (middle 3 rows) and values reported on unified parameters (last
3 rows).

simple pairs, and each complex sentence has ten
reference simplifications.

The last step is optimisation. As mentioned in
previous sections, the value of control tokens is lim-
ited to a small range. All options fall between 0.2 to
1.5 except the Levenshtein, whose upper boundary
is limited to 1 due to the calculation method that
divides the minimum replacement steps to change
from the original sentence to the target sentence by
the maximum possible steps of replacement. Only
these options are provided during optimisation, and
the optimisation problem is reduced to finding the
best value combination of control tokens within
the range. Even though only finite combinations
can be applied to the model, the optimisation al-
gorithm is still supported by the Nevergrad (Rapin
and Teytaud, 2018) API to compare with the cur-
rent SOTA. With a budget of limitation to repeat
the optimisation process 64 times, the algorithm
can find a relatively optimised result. In order to
ensure the reliability of the score under the opti-
mised combination, a bootstrapping on the ASSET
(Alva-Manchego et al., 2020a) test dataset will be
executed by resampling the dataset 200 times and
hence generate a 95% confidence interval.

4 Results

4.1 Overall performance

Following the setting in reimplementation, the base-
line from the original code of the current SOTA is
43.83 on the ASSET (Alva-Manchego et al., 2020a)
test dataset, which is consistent with the reported
score in the MUSS in the corresponding scenario,
which is 43.63±0.71. There is no confidence in-
terval and BERT score in the baseline because

the baseline is generated by rerunning the code in
MUSS by altering specific settings only. The actual
output lacks these 2 features. As shown in the top
4 rows in the table2, the SARI score with 95% con-
fidence in the reimplementation is slightly higher
than the baseline. The middle 3 rows show the
best SARI score with optimised options of control
tokens. Among the 3 methods, the joint tokens had
the highest SARI score. Interestingly, the BERT
score is not always proportional to the SARI score,
but the BERT score of optimal value is still quite
high. The optimised values of control tokens are
pretty close in all situations except the DTD. The
bottom 3 rows show the performance difference
under a unified value of control tokens. The unified
value is the average value of all possible values
for each control token. Under the unified condi-
tion, the separated one outperformed the other two,
and the default tokenization method still performs
worst. As for the BERT score, the joint tokeniza-
tion method still outperforms the other two.

4.2 Effects of single control tokens
In order to verify the effects of each single control
token, a more detailed investigation of the SARI
score was done on control tokens respectively and
the results are shown in Figure 2. Except for the
Figure 2(b), all 3 tokenization methods show a
high consistency in the curves and have a common
minimum at the value of 1. As shown in Table 4, it
is mainly caused by the low score in both deletion
and adding operations.

In addition to the curves, the differences in to-
kenization methods have marginal effects on the
scores while the value of control tokens can change
the performance significantly. In Figure 2(a) and
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Figure 2: The effect of varying control tokens with different tokenization strategies on SARI Score.

Prompts SARI BERT DTD

Default
40.82 ±0.05 0.805 0.55
40.54 ±0.05 0.799 0.6

Separate
40.68±0.06 0.804 0.55
40.87±0.05 0.801 0.6

Joint
40.71±0.06 0.812 0.55
40.43±0.06 0.800 0.6

Prompts SARI BERT WR

Default
40.61±0.06 0.720 0.75
40.80±0.06 0.776 0.8

Separate
41.08±0.06 0.738 0.75
40.32±0.05 0.797 0.8

Joint
41.42±0.06 0.733 0.75
40.43±0.06 0.782 0.8

Prompts SARI BERT LV

Default
42.52±0.06 0.750 0.65
42.26±0.08 0.785 0.7

Separate
42.55±0.06 0.747 0.65
42.86±0.06 0.782 0.7

Joint
42.63±0.06 0.761 0.65
42.31±0.07 0.787 0.7

Prompts SARI BERT LR

Default
40.15±0.06 0.758 0.6
39.91±0.05 0.782 0.65

Separate
40.25±0.06 0.760 0.6
40.27±0.05 0.781 0.55

Joint
40.46±0.05 0.758 0.6
40.64±0.05 0.785 0.65

Table 3: Results on SARI and BERT scores of peak points in different control tokens.

Control Token Value SARI_add SARI_keep SARI_del SARI

DTD_joint

0.2 2.71 27.03 69.32 33.02
0.6 5.24 58.50 57.51 40.41
1.0 3.30 62.64 26.68 30.87
1.5 4.41 62.66 27.82 31.63

WR_joint

0.5 5.10 37.47 68.54 37.04
0.75 6.65 54.91 62.57 41.37
1.0 3.38 62.04 29.90 31.77

1.25 4.19 54.88 58.35 39.14

LV_joint
0.2 7.15 50.83 63.83 40.60
0.7 9.14 60.15 57.60 42.30
1.0 2.25 61.62 32.17 32.01

LR_joint

0.2 1.80 19.27 69.46 30.18
0.65 5.54 56.84 59.36 40.56
1.0 2.43 62.42 15.26 26.70
1.2 5.80 61.46 26.03 31.10

Table 4: SARI score by operation at turning points in Figure 2.
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Figure 3: The effect of varying control tokens with different tokenization strategies on BERT score.

2(c), the separate tokenization method shows the
highest peak point, while in Figure 2(b) and Figure
2(d), the joint tokenization method has the best per-
formance. The corresponding Table 3 also shows
the scores in pairs under a unified value. Although
the advantage is not as clear as the combined con-
trol tokens, the optimised SARI score of either sep-
arate or joint tokenization methods is still slightly
higher than the default tokenization method.

The Table 4 is designed to help readers better
understand the reason for variations in Figure 2. It
shows some local minimum or maximum points
within the domain and the corresponding SARI
score by operations. The addition score is much
lower than the keeping and deletion. It is because
there is only limited adding operation in the refer-
ences and much more expression options to carry
a similar meaning, which leads to a low hit rate of
the addition operation. At the same time, the keep
and deletion are chosen from the existing input and
thus have a much bigger hit rate and score.

As for the BERT score, as shown in Figure 3,
nearly all 3 tokenization strategies show high simi-
larity to each other except Figure 3(b). The figures
show that near all models have the highest BERT
score around 1. Since the BERT score calculates
the correlation between the output and references,
when the control token is set to 1, the model pro-
cesses nothing, and the output is very similar to the
input. Under this situation, as shown in Table 4,
the SARI_keep reaches the top. However, the peak
of BERT score in 3(c) slightly deviates to the left,
which shows that the references and input are not
identical.

5 Discussion and Future Directions

One phenomenon found during the optimisation
section in the original project is that the score of
recommended optimisation is even lower than the

default values of control tokens at 0.8. A hypothe-
sis emerged that continuous optimisation is not an
ideal option to maximise the score. As shown in
the first four rows in Table 2, the score in reimple-
mentation is higher even in similar values. There
are several reasons: the algorithm is not working
as expected or the optimisation budget is not large
enough to find better optimisations. The default to-
kenization method in the MUSS project that breaks
the control tokens into pieces brings more noise
and probably lowers the performance. Apart from
the verbosity in optimal values, the long tokeniza-
tion of the control token is another concern of noisy
input. Although the results above shows sign of
such problem, it may become more serious with the
increasing of control tokens, especially for short
sentences. It would be wiser to limit the unneces-
sary noise in the input to a lower level.

Figure 2 and Table 4 expose the reason for vari-
ation with the control token and provide a good
illustration of nature in each control token. In sin-
gle control tokens, the peak points mainly fall be-
tween 0.6 and 0.7, and the score decreases with
the value deviating from the peak point. How-
ever, there are still some differences among the
control tokens. In the DependencyTreeDepth Ratio
and Length Ratio, the reduction is more dramatic
than the other 2. In both graphs, the SARI_add
decreases with the value deviating from the peak
point and increases slowly when the value is bigger
than 1. The SARI_keep and SARI_del fluctuate
in the form of 2 half-phase shifted sine functions
and the maximum sum is found in between the
peaks. The graph of the WordRank Ratio shows
some diversity in both Figure 2(b) and 3(b) among
the tokenization methods. Although there is no
explanation for the deviations, the deviations show
the potential of combining different tokenization
methods. When focusing on the main section from
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0.5 to 1, the graph shows characteristics similar
to the graphs in the previous 2 control tokens. As
for the ReplaceOnlyLevenshtein Ratio, the slope
is milder on the left side and it seems to have less
effect on the SARI score. Unlike the other 3 con-
trol tokens, this control token can only indicate the
intensity of change but not the direction of change.
Although the combined effects are still under re-
search, a more effective control token could be a
better solution.

As for the optimal value, the most significant
variation between single and combined control to-
kens is in DependencyTreeDepth Ratio. The opti-
mal value in combined control tokens in the joint
and separate tokenization method is 0.35 instead of
0.6. Although no direct comparison is listed in Ta-
ble 2, comparing the middle and bottom three rows
makes it pretty clear that 0.35 has a better SARI
score. The correlation among the control tokens
presumably causes this variation. There are also
deviations in the other three control tokens. If the
four control tokens can be designed to work inde-
pendently, the graph on a single control token can
be directly used to find the optimal value. However,
the graph of combined control tokens is bound to
have some distortions for now. Based on the de-
tailed graph, it is also clear that the value of control
tokens can significantly affect the performance of
the models trained in this way and should be treated
carefully.

Another interesting finding between SARI and
BERT in this paper is that most BERT score for
optimal value is around 0.78 to 0.8. However, as
shown in Figure 3(b) and 3(d), there are more than
1 points that have such value, so the BERT score
alone cannot be used to evaluate the text simplifica-
tion results. It may be a necessary but not sufficient
condition for a good simplification. Since the SARI
score is not perfect and relies on references, it is
important to build non-reference-based metrics to
evaluate the model on a different genre of corpora.
The BERT score may play a role in these new met-
rics. Thus, this guess is worth further verification
in future work.

In addition to the values, as shown in Table 3, the
tokenization methods can also affect the peak score.
In the curves, there are different optimised methods
for each certain point. Although the performance
differences may be caused by the fine-tuned mod-
els on a lower training scale, they may still imply
performance variations between tokenization meth-

ods. Considering the various requirements of lay
users, a mixed tokenization method based on the
performance curve may maximise the model’s per-
formance at different points better than a fixed one.
Although it remains unclear whether there will be
the same effects in the combined control tokens,
the mixed tokenizations method can be still promis-
ing with the appearance of more different control
tokens. However, a more lightweight and efficient
training method should be introduced to solve the
problem of balancing cost and effect.

5.1 Future Work
In the future, one of the main tasks is to reim-
plement control tokens in different models or
learning strategies so that training can be more
lightweight and less time-consumed. Another goal
is to build new non-reference-based metrics and
replace SARI, which will significantly contribute
to the development. However, it is not easy to un-
derstand the relationship between the performance
and control tokens. A further investigation of the
complex relationship between SARI and combined
control tokens is also worth doing. Although the
five-dimension graph may be less visualised, it can
still provide some guidance on how to apply the
control tokens. Designing and introducing new
control tokens is another novel direction. The con-
trol tokens may be further simplified or optimised
with a deeper inspection of the control tokens and
SARI score. In addition to that, current optimisa-
tion procedure works only on the dataset level and
needs more precise prediction on sentence level.
A sentence level prediction model to the optimal
value of control token may be worth considering.
Lastly, whether there is a similar phenomenon of
control tokens in other controllable text generation
tasks is also an important question.

5.2 Concluding Remarks
In the investigation, we have shown the results
and importance of control tokens with different
values and tokenization methods, which can be
used to balance user intention and performance.
We proposed some improvements in quantisation,
compared the influences of different tokenization
strategies of control tokens and proposed possible
further improvement means. Although the pro-
posed suggestions may improve text simplification
tasks marginally, they may also be generalised to
prompts designing on other controllable NLP tasks.
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Appendices
A

Source Reflection nebulae are usually blue because the scattering is more efficient for
blue light than red (this is the same scattering process that gives us blue skies
and red sunsets).

LR_1.2 Reflection nebulae are usually blue because the scattering is more efficient for
blue light than red (this is the same scattering process that gives us blue skies
and red sunsets) and because the light reflects off of them.

LR_1.0 Reflection nebulae are usually blue because the scattering is more efficient for
blue light than red (this is the same scattering process that gives us blue skies
and red sunsets).

LR_0.8 Reflection nebulae are usually blue because the scattering is more efficient for
blue light than red (this is the same scattering process that gives us blue skies).

LR_0.6 Reflection nebulae are usually blue because the scattering is more efficient
for blue light than red.

LR_0.4 Reflection nebulae are usually blue because the scattering is more efficient.
LR_0.2 Reflection nebulae are usually blue in color.

Table 5: Effect of varying Length ratio with the others remain 1.0.

Source Moderate to severe damage extended up the Atlantic coastline and as far inland
as West Virginia.

LV_0.8 Moderate to severe damage happened along the Atlantic coast and as far inland
as West Virginia.

LV_0.6 Moderate to severe damage happened along the Atlantic coast and as far inland
as West Virginia.

LV_0.4 In West Virginia, the storm caused moderate to severe damage along the Atlantic
coast and inland.

LV_0.2 The National Hurricane Center (NHC) said that the storm was a "major hurri-
cane" and not a tropical storm.

Table 6: Effect of varying ReplaceOnlyLevenshtein ratio with the others remain 1.0.

Source He will abjure his allegiance to the king.
WR_0.8 LV_1.0 He will abjure his allegiance to the king.
WR_0.6 LV_1.0 He will abjure his allegiance to the king.
WR_0.8 LV_0.8 He will not give up his allegiance to the king.
WR_0.6 LV_0.8 He will not give up his power to the king.
WR_0.4 LV_0.8 He will not follow the orders of the king.
WR_0.2 LV_0.8 He will abjure his loyalty to the king.
WR_0.6 LV_0.8
LR_0.75

He will not follow the king anymore.

Table 7: Effect of varying WordRank ratio and some other ratios with the others remain 1.0.
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Source The four canonical texts are the Gospel of Matthew, Gospel of Mark, Gospel of
Luke and Gospel of John, probably written between AD 65 and 100 (see also
the Gospel according to the Hebrews).

DTD_1.2 The four canonical texts are the Gospel of Matthew, Gospel of Mark and Gospel
of Luke , probably written between AD 65 and AD 100 (see also the Gospel
according to the Hebrews).

DTD_0.8 The four canonical texts are the Gospel of Matthew, Gospel of Mark and Gospel
of Luke. They are probably written between AD 65 and 100 (see also the Gospel
according to the Hebrews).

DTD_0.6 The four canonical texts are the Gospel of Matthew, Gospel of Mark and Gospel
of Luke. The Gospel of John was probably written between AD 65 and 100 (see
also the Gospel according to the Hebrews).

DTD_0.4 The four canonical texts are the Gospel of Matthew, Gospel of Mark and Gospel
of Luke. The Gospel of John was probably written between AD 65 and 100 (see
also the Gospel according to the Hebrews).

Table 8: Effect of varying DependencyTreeDepth ratio with the others remain 1.0.
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