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Abstract

State-of-the-art text simplification (TS) systems
adopt end-to-end neural network models to di-
rectly generate the simplified version of the
input text, and usually function as a black-
box. Moreover, TS is usually treated as an
all-purpose generic task under the assumption
of homogeneity, where the same simplification
is suitable for all. In recent years, however,
there has been increasing recognition of the
need to adapt the simplification techniques to
the specific needs of different target groups.
In this work, we aim to advance current re-
search on explainable and controllable TS in
two ways: First, building on recently proposed
work to increase the transparency of TS sys-
tems (Garbacea et al., 2021), we use a large
set of (psycho-)linguistic features in combina-
tion with pre-trained language models to im-
prove explainable complexity prediction. Sec-
ond, based on the results of this preliminary
task, we extend a state-of-the-art Seq2Seq TS
model, ACCESS (Martin et al., 2020), to en-
able explicit control of ten attributes. The re-
sults of experiments show (1) that our approach
improves the performance of state-of-the-art
models for predicting explainable complexity
and (2) that explicitly conditioning the Seq2Seq
model on ten attributes leads to a significant
improvement in performance in both within-
domain and out-of-domain settings.

1 Introduction

Text simplification (henceforth TS) is a natural
language generation task aimed at transforming
a text into an equivalent that is more readable
and understandable for a target audience, while
preserving the original information and underly-
ing meaning. It involves a number of transforma-
tions applied at different linguistic levels, includ-
ing lexical, syntactic and discourse aimed at re-
ducing the complexity of content for the purpose
of accessibility and readability (see Siddharthan,
2011; Shardlow, 2014; Alva-Manchego et al., 2020;

Al-Thanyyan and Azmi, 2021; Jin et al., 2022,
for overviews). Simplification techniques have
been shown to be beneficial as reading supports
across a wide range of populations, from chil-
dren (De Belder and Moens, 2010; Kajiwara et al.,
2013), individuals with language disorders such as
aphasia (Carroll et al., 1999; Devlin and Unthank,
2006), dyslexia (Rello et al., 2013a,b) or autism
(Evans et al., 2014); language learners and non-
native English speakers (Petersen and Ostendorf,
2007; Paetzold and Specia, 2016), and people with
low literacy skills (Max, 2006; Candido Jr et al.,
2009; Watanabe et al., 2009). Moreover, TS tech-
niques have also been successfully employed as
a preprocessing step to improve the performance
of various downstream NLP tasks such as pars-
ing (Chandrasekar et al., 1996), machine transla-
tion (Gerber and Hovy, 1998; Hasler et al., 2017),
summarization (Beigman Klebanov et al., 2004;
Silveira and Branco, 2012), semantic role label-
ing (Vickrey and Koller, 2008), and information
extraction (Miwa et al., 2010). TS approaches typ-
ically learn simplification transformations using
parallel corpora of matched original and simpli-
fied sentences and can be classified into six cate-
gories (for recent overviews see Alva-Manchego
et al., 2020; Al-Thanyyan and Azmi, 2021): Early
approaches relied on either (1) manually gener-
ated rules for splitting and reordering sentences
(Candido Jr et al., 2009; Siddharthan, 2011) or
(2) learned simple lexical simplifications, i.e., one-
word substitutions (Devlin, 1998; Carroll et al.,
1998). Subsequent work has introduced (3) phrase-
based and syntax-based statistical machine trans-
lation techniques (Wubben et al., 2012; Xu et al.,
2016), (4) grammar induction (Paetzold and Spe-
cia, 2013; Feblowitz and Kauchak, 2013), and (5)
semantics-assistance, i.e., obtaining semantic rep-
resentations of the original sentences (Narayan and
Gardent, 2014; Stajner and Glavag, 2017). More re-
cently, TS tasks have been approached with (6)
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neural machine translation methods, in particu-
lar sequence-to-sequence (Seq2Seq) models using
an attention-based encoder-decoder architecture
(Nisioi et al., 2017; Alva-Manchego et al., 2017;
Zhang et al., 2017). While the performance of
Seq2Seq TS models is impressive, most of these
models are black-box models characterized by the
lack of interpretability of their procedures (Alva-
Manchego et al., 2020). In recent years, there have
been growing calls to a move away from black-
box models toward explainable (white-box) models
(Loyola-Gonzalez, 2019; Qiao et al., 2020; Aguilar
et al., 2022). Moreover, recent work in TS suggests
that the performance of state-of-the-art TS systems
can be improved by conducting explainable com-
plexity prediction as a preliminary step (Garbacea

etal., 2021).
Another important trend in current TS research

is the growing recognition that the concept of ‘text
complexity’ is not homogeneous for different target
populations (Gooding et al., 2021). That is, rather
than viewing TS as a general task where the same
simplification is appropriate for everyone (one-fits-
all approach), researchers are placing a greater em-
phasis on the need to develop TS systems that can
flexibly adapt to the needs of different audiences:
For example, while second language learners might
struggle with texts with rare or register-specific vo-
cabulary, aphasic patients might be overwhelmed
by a high cognitive load associated with long, syn-
tactically complex sentence structures. In response,
recent TS research has begun to adopt methods
proposed in controllable text generation research
(see the 2 section for further discussion). Control-
lable text generation refers to the task of generating
text according to a given controlled property of a
text. More generally, the development of control-
lable text generation systems makes an important
contribution to the general development of ethical
Al applications. This requires the ability to avoid
biased content such as gender bias, racial discrim-
ination, and toxic words. In addition, it is widely
seen as critical to the development of advanced text
generation technologies that better address specific
needs in real-world applications (Prabhumoye et al.,
2020; Zhang et al., 2022). For example, the task of
dialog response generation requires effective con-
trol over text attributes associated with emotions
(Liet al., 2021) and persona (Zhang et al., 2018).
In the context of TS, the relevant attributes involve
various linguistic aspects of text complexity (Sid-
dharthan, 2011). By combining multiple attributes,

a natural language generation system can theoret-
ically achieve not only greater controllability but
also greater interpretability. This requires the inclu-
sion not only of surface features, but also of more
sophisticated features. Traditionally, TS has used
readability measures that consider only surface fea-
tures. For example, the Flesch Reading Ease Score
(Flesch, 1948), a commonly used surface feature,
measures the length of words (in syllables) and
sentences (in words). While readability has been
shown to correlate to some degree with such fea-
tures (Just and Carpenter, 1980), there is general
consensus that they are insufficient to capture the
full complexity of a text.

In a nutshell, despite significant progress in data-
driven text simplification, the development of ex-
plainable and controllable models for automatic
text simplification remains a challenge. In this pa-
per, we advance current research on explainable
and controllable text simplification in two ways:

1. First, we use what is, to our knowledge, the
most comprehensive set of (psycho-)linguistic
features that goes beyond traditional surface
measures and includes features introduced in
the recent literature on human (native and
non-native) language learning and processing.
These encompass lexical, syntactic, register-
specific ngram, readability and psycholinguis-
tic features and are used in combination with
pre-trained language models to improve ex-
plainable complexity prediction proposed in
Garbacea et al. (2021).

2. Second, based on the results of this pre-
liminary task, we extend a state-of-the-art
Seq2Seq TS model, ACCESS (Martin et al.,
2020), to provide explicit control over ten at-
tributes so that simplifications can be adapted
to the linguistic needs of different audiences.

The remainder of the paper is organized as fol-
lows: Section 2 provides a concise overview of
related work in the field of explainable and control-
lable text generation with a focus on TS. Section
3 outlines the experimental setup including the de-
scription of three benchmark datasets used (Sec-
tion 3.1), the type of features extracted from these
datasets (Section 3.2), and the models performed
to improve explainable and controllable TS (Sec-
tions 3.3-3.5). Section 4 presents and discusses the
results of our experiments before presenting con-
clusions and future work in Section 5. Sections 6
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and 7 address the limitations of the study and point
out ethical considerations.

2 Related work

State-of-the-art systems for controllable text gen-
eration typically use a Sequence-to-Sequence
(Seq2Seq) architecture. These systems follow ei-
ther a learning-based or a decoding-based approach:
In the learning-based approaches, the Seq2Seq
model is conditioned on the attribute under con-
sideration at training time and then used to control
the output at inference time. Within this approach,
controlled text generation can be achieved by disen-
tangling the latent space representations of a vari-
ational autoencoder between the text representa-
tion and the controlled attributes (Hu et al., 2017).
Decoding-based methods, on the other hand, are
based on a Seq2Seq training setup that is modi-
fied to control specific attributes of the output text
(Kikuchi et al., 2016; Scarton and Specia, 2018).
For instance, Kikuchi et al. (2016) controlled the
length of the text output in the encoder-decoder
framework by preventing the decoder from gen-
erating the end-of-sentence token before the de-
sired length was reached, or by selecting only
hypotheses of a certain length during the beam
search. Recently, Martin et al. (2020) adapted a
discrete parameterization mechanism to the task
of sentence simplification by conditioning on rel-
evant attributes. Building on the earlier work of
TS (Scarton and Specia, 2018), their model, called
ACCESS - short for AudienCe-CEntric Sentence
Simplification — provides explicit control of TS
by conditioning the output returned by the model
on specific attributes. These attributes and their
values are prepended as additional inputs to the
source sentences at train time as plain text ‘param-
eter tokens’. Results of experiments on the Wiki-
Large corpus (Zhang and Lapata, 2017) show that
with carefully chosen values of three attributes -
(i) character length ratio between source sentence
and target sentence, (ii) normalized character-level
Levenshtein similarity between source and target,
and (iii) WordRank, a proxy to lexical complex-
ity, the ACCESS model outperformed previous TS
systems on simplification benchmarks, achieving
state-of-the-art at 41.87 SARI, corresponding to
a +1.42 improvement over the best previously re-
ported score.

Another recently introduced line of research, on
which the present work builds, explores how the
transparency and explainability of the TS process

can be facilitated by decomposing the task into sev-
eral carefully designed subtasks. More specifically,
Garbacea et al. (2021) propose that TS benefits
from a preparatory task aimed at the explainable
prediction of text complexity, which in turn is di-
vided into two subtasks: (1) classifying whether
a given text needs to be simplified or not (com-
plexity prediction) and (2) highlighting the part
of the text that needs to be simplified (complex-
ity explanation). Garbacea et al. (2021) focuses
on empirical analysis of the two subtasks of expli-
cable prediction of text complexity. Specifically,
they conduct experiments using a broad portfolio
of deep and shallow classification models in combi-
nation with model-agnostic explanatory techniques,
in particular LIME (Ribeiro et al., 2016) and SHAP
(Lundberg and Lee, 2017). The results of their ex-
periment show that a combination of a Long Short-
Term Memory network at the word level and LIME
explanations can achieve strong performance on
datasets. As a next step, they conduct follow-up
experiments with state-of-the-art controllable end-
to-end text generation systems, including ACCESS.
The results of these experiments suggest that the
performance of state-of-the-art TS models can be
significantly improved in out-of-sample text simpli-
fication simply by applying explainable complexity
prediction as a preliminary step.

3 Experimental Setup

In this section, we first introduce the three datasets
used in our experiments (Section 3.1) and the type
of (psycho-)linguistic features used in our models
(Section 3.2). We then describe the methods used
to address the three subtasks, i.e., (1) complex-
ity prediction, (2) complexity explanation, and (3)
simplification generation. For subtask (1), we per-
form experiments with five complexity prediction
models described in Section 3.3: (1) A word-level
Long Short-Term Memory (LSTM) network, (2) a
fine-tuned pre-trained BERT-based model, (3) and
(4) two hybrid Bidirectional Long-Term Memory
(BLSTM) classifiers that integrate GloVe word em-
beddings with (psycho-)linguistic features using
different fusion methods, and (5) A hybrid classi-
fier that integrates the those features with BERT
representations. In subtask (2), we apply these five
models to identify the complex parts of a given in-
put set to facilitate model validation and evaluation
(section 3.4). In Section 3.5, we turn to subtask (3)
and introduce an extended ACCESS model, which
we refer to as ACCESS-XL, containing a total of
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ten control features (parameter tokens) covering
several dimensions of linguistic complexity.

3.1 Datasets

We conducted our experiments with three bench-
mark datasets and ground truth complexity labels
that were also used in Garbacea et al. (2021):
(1) the WikiLarge corpus Zhang et al. (2017),
composed of parallel-aligned "Wikipedia-simple-
Wikipedia" sentence pairs, (2) the Newsela cor-
pus (Xu et al., 2015), comprised of news articles
simplified by professional news editors, and (3)
the Biendata dataset, comprising matches of re-
search papers from different scientific disciplines
with press releases describing them'. The size of
the three datasets and their distribution among train-
ing, validation, testing datasets are shown in Table
1.

Dataset Training | Validation | Test
Newsela 94,944 1,131 1,079
WiKilLarge | 207,480 30,632 59,639
Biendata 29,710 4,244 8,490

Table 1: Number of aligned complex-simple sentence
pairs by dataset

3.2 (Psycho-)Linguistic Features

The textual data of the three datasets were auto-
matically analyzed using CoCoGen (short for Com-
plexity Contour Generator), a computational tool
that implements a sliding window technique to cal-
culate sentence-level measurements for a given fea-
ture (for recent applications of the tool, see Kerz
et al., 2020, 2022; Wiechmann et al., 2022). We
extracted 107 features that fall into five categories:
(1) measures of syntactic complexity (N=16), (2)
measures of lexical richness (N=14), (3) register-
based n-gram frequency measures (N=25), (4) read-
ability measures (N=14), and (5) psycholinguistic
measures (N=38). The first category comprises (i)
surface measures that concern the length of produc-
tion units, such as the mean length clauses and sen-
tences, or (ii) measures of the type and incidence of
embeddings, such as dependent clauses per T-Unit
or verb phrases per sentence. These features are
implemented based on descriptions in Lu (2010)
using the Tregex tree pattern matching tool (Levy
and Andrew, 2006) with syntactic parse trees for
extracting specific patterns. The second category
comprise several distinct sub-types, including (i)

"https://www.biendata.com/competition/ hackathon

measures of lexical variation, i.e. the range of vo-
cabulary as displayed in language use, captured by
text-size corrected type-token ratio and (ii) lexical
sophistication, i.e. the proportion of relatively un-
usual or advanced words in the learner’s text. The
operationalizations of these measures follow those
described in Lu (2012) and Strobel et al. (2016).
The register-based n-gram frequency measures of
the third category are derived from the five register
sub-components of the Contemporary Corpus of
American English (COCA, Davies, 2009): spoken,
magazine, fiction, news and academic language
(see Kerz et al., 2020, for details). The fourth cate-
gory combine a word familiarity variable defined
by pre-specified vocabulary resource to estimate
semantic difficulty together with a syntactic vari-
able, such as average sentence length. Examples
of these measures are the Fry index (Fry, 1968)
or the SMOG formula (McLaughlin, 1969). The
psycholinguistic measures of the fifth category cap-
ture cognitive aspects of human language process-
ing not directly addressed by the surface vocab-
ulary and syntax features of traditional formulas.
These measures include a word’s average age-of-
acquisition (Kuperman et al., 2012) or prevalence,
which refers to the number of people knowing the
word (Brysbaert et al., 2019; Johns et al., 2020).
For an overview of all features, see Table 3 in the
Appendix. Tokenization, sentence splitting, part-of-
speech tagging, lemmatization and syntactic PCFG
parsing were performed using Stanford CoreNLP
(Manning et al., 2014).

3.3 Complexity prediction

For complexity prediction, i.e. the preliminary task
of classifying whether a given text needs to be sim-
plified or not, we performed experiments with five
(hybrid) deep neural network architectures. Two
of these prediction models are reimplementations
of models used in Garbacea et al. (2021) and serve
as baselines: The first model, LSTM, is a 2-layer
word-level BLSTM classifier that uses GloVe word
embeddings as input. The second baseline model is
a 12-layer BERT model for sequence classification
using a pre-trained BERT, with the first 8 layers
frozen during fine-tuning.

We also conducted experiments with three hy-
brid models that integrate the (psycho-)linguistic
features described in Section 3.2 into neural net-
works. GloVe-PSYLING A and GloVe-PSYLING
B are hybrid BLSTM with attention models (Wu
et al., 2019) that differ in how the integration was
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performed: In model A, the linguistic features were
concatenated with word embeddings before being
fed into a BLSTM. In the B model, the linguistic
features were concatenated with the last layer hid-
den state of the BLSTM. In the third hybrid model,
referred to as BERT-PSYLING, we concatenated
the linguistic features with the last layer output for
[CLS] token from BERT. The vector representation
of a sentence was then fed into a MLP classifier
with ReLu as activation function. For all classifiers,
Best hyperparameters were found by grid search:
For BERT on WiKiLarge, the best results were ob-
tained with a learning rate of 3 x 1075 and a batch
size of 64. For LSTM on Newsela, the learning rate
was 2 x 10~* and the batch size was 32. For BERT-
PYSLING on Biendata, the learning rate was 2e-5
and the batch size was 32. We used Adam as the
optimizer with 3 = (0.9,0.999) and ¢ = 1075.
Early stopping, where accuracy did not increase for
more than 4 epochs, was used as the stopping cri-
terion. All models were evaluated using precision,
recall, F1, and classification accuracy on balanced
training, validation, and testing datasets.

3.4 Complexity Explanation

The objective of the complexity explanation sub-
task is to highlight the part of the text that needs
to be simplified. In Garbacea et al. (2021) this
was achieved by quantifying the relative impor-
tance of the features in the of complexity predic-
tion models (unigrams, bigrams, trigrams, GloVe
word embeddings) using model-agnostic explana-
tory techniques, in particular LIME (Ribeiro et al.,
2016) and SHAP (Lundberg and Lee, 2017). To
afford complexity explanation of the five complex-
ity prediction models described in section 3.3, we
utilized BERT attention outputs: Since BERT uses
byte-pair tokenization, we converted token atten-
tions to word attentions by averaging the token
attention weights per word. For a given attention
head, the attention weights from the [CLS] token
to other words at the first layer were considered as
weights of those words for a given sentence. For
each individual word, its final weight was the av-
erage of the weights from the 12 heads of BERT.
The decision whether or not to highlight a partic-
ular word was based on a comparison of its final
weight and the average of the final weights of all
words in a given sentence: a word was considered
complex, and thus highlighted, if its final weight
fell below sentence average (see Figure 2 in the Ap-
pendix). We compare these complexity explanatory

approaches with LSTM-LIME, random highlight-
ing, and lexicon-based highlighting based on words
that appear in the Age-of-Acquisition (AoA) lexi-
con Garbacea et al. (see 2021, for details on these
basic methods). Following Garbacea et al. (2021),
we evaluated the models using token-wise preci-
sion (P), recall (R), and translation edit rate (TER)
(Snover et al., 2006), which assesses the minimum
number of edits needed to the unhighlighted part
of a source sentence so that it exactly matches the
target sentence.

3.5 Simplification Generation

The original AudienCe-CEntric Sentence Simpli-
fication (ACCESS) model, introduced by Martin
et al. (2020), provides explicit control of TS by
conditioning the output returned by the model
on specific attributes. The ACCESS model used
four such parameter tokens as control features:
(1) NbChars, the character length ratio between
source sentence and target sentence, (2) LevSim,
the normalized character-level Levenshtein similar-
ity between source and target, which quantifies the
amount of modification operated on the source sen-
tence, (3) WordRank, a proxy to lexical complexity
measured as the third-quartile of log-ranks of all
words in a sentence. To get a ratio the WordRank
of the target was divided by that of the source. The
Seq2Seq model is parametrized on the control fea-
tures by prepending a these attributes and their
values as additional inputs to the source sentences
as plain text ‘parameter tokens’. The special token
values are the ratio of this parameter token calcu-
lated on the target sentence with respect to its value
on the source sentence. For example to control the
number of characters of a generated simplification,
the compression ratio between the number of char-
acters in the source and the number of characters
in the target sentence is computed. Ratios are dis-
cretized into bins of fixed width of 0.05 and capped
to a maximum ratio of 2. Special tokens are then in-
cluded in the vocabulary. At inference time, we the
ratio is set a fixed value for all samples. For exam-
ple, to generate simplifications that are 80% of the
length of the source sentence, the token <NbChars
0.8> is prepended to each source sentence. As
the Seq2Seq model, a Transformer model with a
base architecture (Vaswani et al., 2017) was trained
utilizing FairSeq toolkit (Ott et al., 2019a).

Our extended model, referred to here as
ACCESS-XL, integrates ten of the 107 features
examined in the complexity prediction step. These
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ten measures were selected to cover all feature
groups. Within the lexical richness group, which
is the largest of the five groups, features were
selected to represent all subcategories of the group,
i.e. length of production unit, lexical diversity,
lexical sophistication, n-gram frequency, and both
crowdsourcing-based and corpus-based word
prevalence. Figure 4 in the Appendix shows
the differences in mean standardized feature
scores between ‘normal’ and ‘simple’ sentences
in Wikipedia, highlighting in blue the features
selected in our model. Following (Martin et al.,
2020), we then trained a base transformer (Vaswani
et al., 2017) using the FairSeq toolkit (Ott et al.,
2019b). Both encoder and decoder consist of
6 layers. For the encoder, each of the 6 layers
consists of an 8-head self-attention sub-layer and
a position-wise fully connected sub-layer with a
dimensionality of 2048. Each decoder layer has
a similar structure, but with an additional 8-head
self-attention layer that performs multi-head
attention over the output of the encoder stack.
The embedding size is 512. Dropout with a rate
0.2 was used for regularization. The optimizer
used is the Adam optimizer with a learning rate
of 0.00011, B8 = (0.9,0.999), ¢ = 1078, Label
smoothing with a uniform prior distribution of
€ = 0.54 was applied. Early stopping was used
to prevent overfitting, with non-increasement of
SARI score for more than 5 epochs as the stopping
criterion. Sentencepiece with a vocabulary size
of 10k was used as the tokenizer (Kudo and
Richardson, 2018). Beam search with a beam size
of 8 for searching for the best possible simplified
sentence. A fixed combination of control tokens
(a control feature along with its binned value)
was used in text generation. To find the best
combination, we applied the greedy forward select
algorithm; we progressively added the control
token from a candidate set that, in combination
with the previously added control tokens, leads to
the largest performance improvement in terms of
SARI score on the validation set of WiKiLarge.
After adding a control token to the combination,
all control tokens sharing the same control feature
with the newly added token were removed from
the candidate set. The algorithm stopped when no
control token led to an improvement in SARI score
or no control token was left in the candidate set.
The 5 most frequent control tokens from the WiKi-
Large training set were used as the initial candidate

set for each control feature, resulting in a reduction
of the total search space from about 400 to 510,
We evaluated the output of the text simplification
models using the FKGL (Flesch-Kincaid Grade
Level) readability metric (Kincaid et al., 1975) to
evaluate simplicity and SARI (Xu et al., 2016) as
an overall performance metric, since FKGL does
not take into account grammaticality and meaning
preservation (Wubben et al., 2012)%. All scores
were calculated using the EASSE python package
for sentence simplification (Alva-Manchego et al.,
2019)3. We selected the model with the best SARI
on the validation set and report its score on the
test set. The best combination of control tokens
was as follows: MLSg 50, Fry g5, FORCAST) g9,

WPCorp; g5, WPCrowdg go, BigramNews, .,
ANCy g5, A0A1 00, MLWsg 99, CTTRg 85.
4 Results

An overview of the results of the three subtasks —
complexity prediction, complexity explanation and
simplification generation — is presented in Table 2.
We discuss the results of each subtask in turn.
Complexity prediction: Our best-performing
models outperformed the classification accuracy of
explainable model — the word-level LSTM - pre-
dicting complexity in all three benchmark datasets
reported in Garbacea et al. (2021). Since the
pattern of results is consistent across all evalua-
tion metrics, we focus here on classification ac-
curacy: On WikiLarge, we improve on the word-
level LSTM presented in Garbacea et al. (2021) by
+8.08% by extracting attention weights from the
pre-trained BERT model. On Newsela, our GloVe-
based LSTM model outperforms the word-level
LSTM by +6.68%. On the Biendata dataset, our
hybrid model that integrates BERT representations
with linguistic features leads to an improvement
of +4.43%. Overall, our results replicate the gen-
eral pattern of results reported in Garbacea et al.
(2021) in that the best-performing models achieve
approximately 80% accuracy on the WikilLarge
and Newsela datasets and much higher — approx-
imately 95% accuracy — on the Biendata dataset.
These results support the conclusion drawn in Gar-
bacea et al. (2021) that complexity prediction is
influenced by the application domain, with the dis-
tinction between scientific content and public do-
main press releases (Biendata) being much easier

2See Appendix for definitions and more details on these
evaluation metrics.
3https: //github.com/feralvam/easse
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Complexity Prediction
WikiLarge Newsela Biendata
Model P R F1 Acc P R F1 Acc P R F1 Acc
LSTM (Garbacea et al., 2021) - - - 0.716 - - - 0.733 - - - 0.898
BLSTM GloVe 0.731 | 0.710 | 0.721 | 0.725 || 0.867 | 0.703 | 0.776 | 0.797 || 0.923 | 0.889 | 0.906 | 0.907
BERT 0.794 | 0.807 | 0.800 | 0.799 || 0.973 | 0.572 | 0.720 | 0.778 || 0.934 | 0.947 | 0.940 | 0.940
GloVe-PSYLING A (ours) 0.766 | 0.781 | 0.773 | 0.771 || 0.929 | 0.609 | 0.736 | 0.781 || 0.930 | 0.915 | 0.922 | 0.923
GloVe-PSYLING B (ours) 0.762 | 0.783 | 0.772 | 0.769 || 0.925 | 0.604 | 0.731 | 0.778 || 0.924 | 0.928 | 0.926 | 0.926
BERT-PYSLING (ours) 0.779 | 0.807 | 0.793 | 0.789 | 0.972 | 0.580 | 0.727 | 0.782 | 0.942 | 0.945 | 0.943 | 0.943
Complexity Explanation
WikiLarge Newsela Biendata
P R F1 TER| P R F1 TER| P R F1 TER|
Random highlighting 0.410 | 0.463 | 0.457 | 1.084 | 0.550 | 0.488 | 0.504 | 1.029 || 0.803 | 0.424 | 0.550 | 1.011
AoA lexicon 0.407 | 0.549 | 0.500 | 1.026 || 0.550 | 0.620 | 0.572 | 0.858 || 0.770 | 0.629 | 0.678 | 0.989
LSTM+LIME 0.404 | 0.639 | 0.419 | 0.997 || 0.520 | 0.615 | 0.506 | 1.062 || 0.805 | 0.826 | 0.796 | 0.983
BERT 0.405 | 0.660 | 0.434 | 0.936 || 0.542 | 0.729 | 0.597 | 0.817 || 0.784 | 0.635 | 0.688 | 0.965
GloVe-PSYLING A (ours) 0.454 | 0.596 | 0.426 | 1.010 || 0.579 | 0.481 | 0.501 | 0.827 || 0.806 | 0.552 | 0.641 | 0.959
GloVe-PSYLING B (ours) 0.453 | 0.643 | 0.440 | 0.999 || 0.544 | 0.554 | 0.524 | 0.816 || 0.813 | 0.556 | 0.646 | 0.951
BERT-PSYLING (ours) 0.400 | 0.619 | 0.419 | 0.949 || 0.540 | 0.701 | 0.586 | 0.818 || 0.781 | 0.638 | 0.688 | 0.966
Simplification Generation
WikiLarge (wd) Newsela (OOD) Biendata (OOD)
SARIT FK| SARIT FK| SARIT FK|
ACCESS 41.87 7.22 29.44 6.45 20.21 12.53
ACCESS-XL (ours) 43.34 4.39 34.91 3.96 27.25 10.71

Table 2: Prediction: Scores represent out-of-sample precision (P), recall (R), F1 and accuracy (Acc) scores.
Explanation: P, R, and and F1 values represent token-level scores. TER scores represent Translation Edit Rates
(Snover et al., 2006) Simplification: Scores represent out-of-sample SARI and Flesch-Kinkaid Grade Level (FK)

than the distinction between regular and simpli-
fied news articles (Newsela) or Wikepedia articles
(WikiLarge).

On the WikiLarge dataset, the BERT model per-
formed the best, with a +7.4% performance in-
crease over the LSTM. On the Newsela dataset,
however, the LSTM achieved the highest accuracy,
outperforming both the BERT and BERT-HYBRID
models by +1.9% and +1.5%, respectively. On
the Biendata dataset, the highest performance was
achieved by our BERT-HYBRID model, which im-
proved the already high performance of the LSTM
by +3.6%. Across all datasets, the GloVe word
embedding-based models consistently ranked be-
tween the LSTM and BERT-based models, suggest-
ing that the use of contextualized word embeddings
of the BERT-based model may reduce the gener-
alizability of the model, leading to variations in
model performance across datasets.

Complexity explanation: The second part of
Table 2 presents the results of the subtask designed
to evaluate how well complexity classification can
be explained, as measured by how accurately the
complex parts of a sentence can be identified (high-
lighted). In general, all of our models showed better
recall than precision, meaning that they were bet-
ter at identifying words that were removed in the
simplified version of a pair than words that were
truly removed from the complex version. This pat-

tern is opposite to what is reported in Garbacea
et al. (2021), where precision is strongly favoured
over recall. This may indicate that using average
attention as a threshold may not be optimal: While
this approach is the de facto standard in text style
transfer research, recent work has pointed out the
limitations of this approach, such as its inability
of handling flat attention distributions (Lee et al.,
2021)*. Future research may address this issue. As
in the case of complexity prediction, we found that
the performance of the models is dataset-specific
and also varies with respect to the rank order across
evaluation metrics: For WikiLarge, the BERT
model achieved the best recall and TER scores,
while precision was highest for the GloVE-based
hybrid models (+4.5% compared to BERT). For
Newsela, the BERT-based models outperformed
the other models in terms of recall and F1, while the
GloVe-based hybrid models achieved higher preci-
sion. All of our models significantly outperformed
the three base models in terms of TER values, with
the best performing model, Glove-PSYLING B,
reducing the TER of the AoA method by 4.2%
and that of the LSTM by as much as -24.4%. For
Biendata, Glove-PSYLING B achieved the best
values for precision and TER. However, the LSTM
dominated the ranking in terms of recall and F1

*Figure 2 in the Appendix illustrates the differences in
attention weight distributions among our models.
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with improvements of the next best model (BERT-
PSYLING) by up to 18%.

Simplification Generation We establish the
state-of-the-art at 43.34 SARI on the WikiLarge
test set, an improvement of +1.47 over the best
previously reported result. Our ACCESS-XL text
simplification model consistently outperforms the
original ACCESS model (Martin et al., 2020) on
all datasets and performance metrics. The per-
formance improvement was even greater in the
out-of-domain settings — with a +5.47% increase
in SARI in the Newsela dataset and +7.04% in
the Biendata dataset — suggesting that increased
controllability also leads to increased model ro-
bustness and generalizability. For FK readability,
the performance gain is even more pronounced:
in the within-domain setting (WikiLarge), the
ACCESS-XL model achieves a Flesch-Kinkaid
score of 4.39, an improvement of -2.88. To put
this number in perspective, the original ACCESS
model improved previous state-of-the-art models,
SBMT+PPDB+SARI (Xu et al., 2016) and PBMT-
R (Wubben et al., 2012), by only -0.07 and -1.11,
respectively. As in the case of SARI, the improve-
ment in FK performance extends to both out-of-
domain settings with an improvement of -2.49 for
Newsela and -1.82 for Biendata. To shed more
light on the textual characteristics of the outputs of
the two text simplification models, we compared
their average scores on the ten parameter tokens.
A visualization of the results along with the scores
obtained for the target and source sentences of the
testset for each dataset is shown in Figure 3 in the
Appendix. The comparisons revealed several im-
portant facts about the behavior of the models as
well as the training data: (1) For the WikiLarge
dataset, on which the model was trained, we found
that the differences in average scores between the
‘complex’ source sentences and the ‘simple’ target
sentences varied in magnitude: On some measures,
such as mean sentence length (MLS) — a proxy
of syntactic complexity, the difference between
simple and complex sentences is very pronounced
(MLSimp1e=14.9 words, MLS omplex=22.4 words).
For others, e.g. LS.ANC — a measure of lexical
sophistication, the difference between the standard
versions and their simplified counterparts is mini-
mal (LS.ANCgjmpie=0.411, LS. ANCcompiex=0.414).
These results are consistent with previous indica-
tions of limitations in the WikiLarge dataset related
to the high proportion of inappropriate simplifica-

tions (Xu et al., 2016). We further observed (2)
that the ACCESS-XL model successfully learned
to control the attributes and achieved the desired ef-
fect on the generated simplifications: For example,
its outputs are characterized by much lower MLS
values (MLSaccess-xt = 10.8 words) compared
to the source. We note that shorter MLS values
were achieved by splitting the sentence (rather than
simply deleting content), which has been shown
to be a weakness of current seq2seq TS models
(Maddela et al., 2020). This is illustrated in the sen-
tence set in Table 5 in the Appendix. And (3) we
found that the ACCESS-XL model was able to suc-
cessfully generalize its ability to control the target
attributes to out-of-domain settings. For example,
the learned control over the MLS parameter led
to the generation of Newsela simplifications that
almost matched almost perfectly the mean value of

the simple sentence targets in this dataset.
Lastly, we address the question of whether ex-

plainable prediction of text complexity is still a
necessary preliminary step in the pipeline when us-
ing a strong, end-to-end simplification system. We
found that for all datasets — and for both the origi-
nal ACCESS model and the extended ACCESS-XL
model — using of preliminary complexity predic-
tion did not improve simplification performance
(see Figure 6 in the Appendix): For both SARI
and FKGL evaluation metrics the best performance
was invariably achieved by a model without prior
indication of what sentences should undergo sim-
plification. These results stand in stark contrast to
the results reported in Garbacea et al. (2021), where
prior complexity prediction was found to improve
the performance of the original ACCESS model.
Rather than evaluating performance using SARI
and FKGL, as was the case here and in the original
ACCESS publication (Martin et al., 2020), Gar-
bacea et al. (2021) evaluated model performance
using edit distance (ED), TER, and Frechet Em-
bedding Distance. For ED alone, the reported im-
provements ranged from 30% to 50%. Follow up
experiments based on ED, conducted to determine
if the discrepancy was related to the choice of eval-
uation metric only confirmed the pattern of results
reported here for SARI and FKGL (see Tables 7
and 8 in the Appendix). Follow-up experiments
based on ED, conducted to determine if the dis-
crepancy was related to the choice of scoring met-
ric, only confirmed the pattern of results reported
here for SARI and FKGL (see Tables 7 and 8 in
the Appendix). Garbacea et al. (2021) conclude
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that the ACCESS model — and also the DMLMTL
presented in (Guo et al., 2018), which had the high-
est performance for Newsela (33.22 SARI) — tends
to simplify even simple inputs. Moreover, (Gar-
bacea et al., 2021) report that over 70% of the ‘sim-
ple’ sentences in the test data were modified (and
thus oversimplified) by the ACCESS model. Note,
however, that ‘simple’ here means that the input
sentence in question was classified as such by a
preliminary complexity prediction model. Since
these classifiers in WikilLarge only achieve a clas-
sification accuracy of 80%, the true percentage of
oversimplification cannot be accurately estimated.

5 Conclusion and Future Work

In this work, we have advanced research on ex-
plainable and controllable text simplification in two
ways: First, we have shown that performance on a
prior task of explainable complexity prediction can
be significantly improved by the combined use of
(psycho-)linguistic features and pre-trained neural
language models. And second, by extending the
AudienCe-CEntric sentence simplification model
to explicitly control ten text attributes, we have
achieved a new state of the art in text simplification
in both within-domain and out-of domain settings.
In future work, we plan to apply our modeling ap-
proach to another key text style transfer task, that
of formality transfer, and evaluate it on existing
benchmark datasets such as the GYAFC dataset
(Rao and Tetreault, 2018). Moreover, we intend
to explore the role of (psycho-)linguistic features
for controllable TS in unsupervised settings using
a variational auto-encoder and a content predictor
in combination with attribute predictors (Liu et al.,
2020).

6 Limitations

The current work relies exclusively on automatic
evaluation metrics for text simplification. While
such metrics provide a cost-effective, reproducible,
and scalable way to gauge the quality of text gener-
ation results, they also have their own weaknesses.
Human scoring is necessary to address some of the
inherent weaknesses of automatic evaluation (for
more details, see Jin et al., 2022)

Furthermore, the performance of the proposed
text simplification methods was tested on infor-
mational texts in English. While we assume that
the methods can be applied to other domains and
languages, we have not tested this assumption ex-
perimentally and limit our conclusions to English

and the types of language registers represented in
the three datasets used in this work.
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7 Appendix

Table 3: Overview of the 107 features investigated in the work

Feature group Number |Features Example/Description
of features
Syntactic complexity 16 MLC Mean length of clause (words)
MLS Mean length of sentence (words)
MLT Mean length of T-unit (words)
C/S Clauses per sentence
C/T Clauses per T-unit
DepC/C Dependent clauses per clause
T/S T-units per sentence
CompT/T Complex T-unit per T-unit
DepC/T Dependent Clause per T-unit
CoordP/C Coordinate phrases per clause
CoordP/T Coordinate phrases per T-unit
NP.PostMod NP post-mod (word)
NP.PreMod NP pre-mod (word)
CompN/C Complex nominals per clause
CompN/T Complex nominals per T-unit
VP/T Verb phrases per T-unit
Lexical richness 14 MLWc Mean length per word (characters)
MLWs Mean length per word (sylables)
LD Lexical density
NDW Number of different words
CNDW NDW corrected by Number of words
TTR Type-Token Ration (TTR)
cTTR Corrected TTR
rTTR Root TTR
AFL Sequences Academic Formula List
ANC LS (ANC) (top 2000, inverted)
BNC LS (BNC) (top 2000, inverted)
NAWL LS New Academic Word List
NGSL LS (General Service List) (inverted)
NonStopWordsRate |Ratio of words in NLTK non-stopword list
Register-based 25 Spoken (n € [1,5]) |Frequencies of uni-, bi-
Fiction (n € [1,5]) |tri-, four-, five-grams
Magazine (n € [1,5]) |from the five sub-components
News (n € [1,5]) (genres) of the COCA
Academic (n € [1,5])
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Feature group | Number |Features Example/Description
of features
Readability 14 ARI Automated Readability Index
ColemanLiau Coleman-Liau Index
DaleChall Dale-Chall readability score
FleshKincaidGradeLevel |Flesch-Kincaid Grade Level
FleshKincaidReadingEase Flesch Reading Ease score
Fry-x x coord. on Fry Readability Graph
Fry-y y coord. on Fry Readability Graph
Lix Lix readability score
SMOG Simple Measure of Gobbledygook
GunningFog Gunning Fog Index readability score
DaleChallPSK Powers-Sumner-Kearl Variation of
the Dale and Chall Readability score
FORCAST FORCAST readability score
Rix Rix readability score
Spache Spache readability score
Psycholinguistic 38 WordPrevalence See Brysbaert et al. (2019)
Prevalence Word prevalence list
incl. 35 categories
(Johns et al. (2020))
AoA-mean avg. age of acquisition
(Kuperman et al. (2012))
AoA-max max. age of acquisition
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Table 4: Means and standard deviations of all engineered languge features across the ‘normal” and ‘simple’ sentences
in the three benchmark datasets

Biendata Newsela WikilLarge
normal  simple normal | simple normal | simple
Feature M SDIM SD| M SD| M SD|| M SD| M SD
LexDens 0.73 0.1]0.76 0.12/| 0.58 0.1|0.58 0.11{]0.58 0.12| 0.6 0.17
CTTR 3.9 0.66/3.53 0.56| 4.69 0.83]3.94 0.67| 4.33 0.92|3.71 1.06
RTTR 2.65 0.42]2.39 0.37|[3.21 0.57|2.69 0.44{|2.96 0.63|2.54 0.7
TTR 0.97 0.05/0.99 0.04{[ 0.91 0.07{0.95 0.06{|0.88 0.1|0.92 0.1
MLWc 6.59 1.09|5.87 1.03|| 4.89 0.61] 4.67 0.67|| 4.98 0.83|4.95 1.19
MLWs 2.02 0.36| 1.73 0.35|| 1.47 0.2]1.39 0.21}| 1.52 0.25| 1.49 0.37
Prev.AlIAP 6.25 1.07|7.12 0.74|| 7.3 0.59]7.38 0.68|| 6.54 1.25/6.51 1.5
Prev.AlIBP 7.48 1.31| 8.58 0.95|/8.98 0.75/9.11 0.87] 8 1.56|7.96 1.86
Prev.AlICD 9.43 1.73|10.65 1.4 |[11.98 1.13]12.25 1.3 ||/10.662.14| 10.6 2.59
Prev.AlISD 7.55 1.35/8.79 1 ||9.14 0.77/9.32 0.89|| 8.14 1.57| 8.14 1.89
Prev.AIISDAP |3.63 0.69/4.23 0.5 || 4.44 0.38/4.51 0.44| 3.95 0.77/3.93 0.93
Prev.AlISDBP | 5.06 0.98]5.91 0.75|| 6.34 0.57| 6.47 0.66|| 5.61 1.12{5.59 1.36
Prev. AIIWF 10.031.85/11.18 1.51}|12.74 1.22|13.01 1.41{|11.39 2.3 [11.312.79
Prev.FemAP 5.58 1.02|6.45 0.71|| 6.67 0.55] 6.75 0.64]| 5.95 1.15/5.93 1.38
Prev.FemBP 6.72 1.26|7.81 0.92||8.26 0.71| 8.4 0.83|7.32 1.45| 7.3 1.74
Prev.FemCD 8.79 1.69/9.98 1.39(/11.37 1.1 |11.651.27|{10.09 2.05/10.04 2.49
Prev.FemSD 6.96 1.31]| 8.18 0.99|| 8.6 0.74|8.79 0.86(| 7.64 1.49|7.64 1.8
Prev.FemSDAP | 3.01 0.62|3.56 0.46{| 3.79 0.34| 3.86 0.39|| 3.34 0.67|3.33 0.81
Prev.FemSDBP | 4.35 0.91] 5.16 0.72|| 5.63 0.53|5.76 0.61|| 4.94 1.02/4.93 1.24
Prev.FemWF 9.2 1.78(10.321.48{{11.91 1.18|12.19 1.36||10.62 2.18|10.55 2.66
Prev.MaleAP |5.69 0.976.47 0.67| 6.63 0.53| 6.7 0.62|[5.95 1.13/5.92 1.36
Prev.MaleBP | 6.99 1.23|8.01 0.89|| 8.38 0.7 |8.51 0.81| 7.48 1.45/7.45 1.74
Prev.MaleCD |9.01 1.67/10.18 1.36|| 11.5 1.09/11.76 1.26/{10.23 2.06/10.18 2.5
Prev.MaleSD |7.23 1.3 |8.41 0.97|| 8.79 0.74] 8.96 0.86|| 7.82 1.51|7.82 1.82
Prev.MaleSDAP| 2.92 0.56/3.39 0.4 3.57 0.3|3.62 0.35| 3.18 0.62|3.16 0.75
Prev.MaleSDBP| 4.45 0.87|5.18 0.66(| 5.59 0.51| 5.7 0.58|/4.95 0.99/4.93 1.2
Prev.MaleWF |9.48 1.78|10.56 1.46([12.11 1.18|12.37 1.36||10.84 2.2 {10.752.68
Prev.UKAP 497 0.9|5.73 0.63|5.93 049 6 0.56| 5.31 1.02/5.29 1.23
Prev.UKBP 6.22 1.16| 7.2 0.85|| 7.61 0.66|7.73 0.76]| 6.78 1.33|6.75 1.6
Prev.UKCD 8.26 1.59]9.38 1.33|/10.721.05/10.99 1.21] 9.52 1.94|9.47 2.36
Prev.UKSD 6.46 1.22| 7.6 0.93||7.97 0.69| 8.15 0.81}| 7.07 1.38| 7.08 1.67
Prev.UKSDAP |2.42 0.5]2.85 0.38]3.05 0.28| 3.1 0.32][2.71 0.54| 2.7 0.66
Prev.UKSDBP |3.79 0.79|4.47 0.63||4.89 0.47|5.01 0.54| 4.32 0.89/4.31 1.08
Prev.UKWF 8.72 1.719.75 1.43}|11.331.14{11.591.31|(10.11 2.09(10.03 2.55
Prev.USAAP |5.84 1.01/6.68 0.7 || 6.86 0.55/6.94 0.64| 6.14 1.18| 6.11 1.41
Prev.USABP | 7.08 1.27|8.15 0.92| 8.56 0.72| 8.69 0.84/| 7.61 1.49|7.58 1.78
Prev.USACD |9.12 1.7|10.331.39||11.67 1.11|11.95 1.29|{10.38 2.09/10.33 2.54
Prev.USASD | 7.25 1.33|8.49 0.99|| 8.86 0.75]9.04 0.88|| 7.87 1.52|7.88 1.84
Prev.USASDAP|3.24 0.63| 3.8 0.46(|4.01 0.35{4.07 0.4 3.54 0.7 |3.53 0.85
Prev.USASDBP| 4.67 0.93|5.49 0.72( 5.94 0.54| 6.06 0.63| 5.23 1.06|5.21 1.28
Prev.USAWF | 9.55 1.81]10.68 1.48|12.24 1.19|12.51 1.38|{10.932.23/10.852.71
AFL 0 0| O 001 0 o0.01 0 o0.01)f 0 o0.01f 0 0.01
ANC 0.53 0.15/0.46 0.17/| 0.32 0.12{0.29 0.14(| 0.42 0.16| 0.42 0.22
BNC 0.7 0.12{0.67 0.14{0.53 0.11{ 0.51 0.14{| 0.6 0.14/0.62 0.18
NAWL 0.07 0.08]0.05 0.08|| 0.01 0.03|0.01 0.03] 0.02 0.04| 0.01 0.05
NGSL 0.43 0.16/ 0.29 0.16|[ 0.22 0.12]0.19 0.13}| 0.35 0.18| 0.35 0.23
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Biendata Newsela WikiLarge
normal simple normal simple normal simple
Feature M SD| M SD M SD| M SD M SD M SD
ngramlacad [100.345.99|82.6 30.9 |[218.2197.56(134.33 54.24(/191.58 106.77|134.35 89.59
ngramlfic 80.26 39.83(73.47 29.2||211.26 93.65/132.17 53.26(|179.99 101.04(127.55 85.76
ngramlmag (94.1343.86|82.86 30.58|(222.63 98.35|137.77 54.8 [|191.85106.55|135.32 89.95
ngramlnews (86.1143.24(78.63 30.42|222.82 98.5 |137.91 54.84(|190.63 105.75(134.58 §9.44
ngramlspok (84.2342.43|77.2130.28|[218.4997.09|136.38 54.85|[183.53 103.33|130.18 87.59
ngram2acad |11.0712.58|8.13 9.15| 41.46 30.02| 27.72 21.32| 32.37 28.85 |24.59 24.74
ngram2fic 3.55 5.37|4.26 6.69 || 33.83 25.95|25.47 20.46|| 22.31 21.55|18.68 19.98
ngram2mag |7.87 9.44|8.24 9.36 45.95 31.26/31.95 229 32.18 27.69 | 25.37 24.67
ngram2news |6.25 8.25|6.35 8.02 || 47.49 32.39|32.88 23.57|| 31.52 27.44|24.99 24.53
ngram2spok |[5.45 7.4416.04 7.99 |142.87 31 |31.11 23.43]|26.57 24.46|22.08 22.77
ngram3acad [0.82 1.97]0.56 1.5 || 3.81 5.23| 2.89 453 3.12 5.06 | 2.72 4.67
ngram3fic 0.15 0.65/0.24 096 2.58 4.17| 2.37 4.07|| 14 2.68 | 1.44 2.88
ngram3mag |0.47 1.3 [0.58 1.57| 4.52 5.8 | 3.65 5.25| 2.87 4.53 | 2.67 4.4l
ngram3news [0.36 1.1210.42 1.26| 491 6.19] 396 561 2.85 4.62 | 2.68 4.53
ngram3spok |0.28 1 [0.36 1.22| 3.87 5.68| 3.41 533 195 3.58 | 2.05 3.86
ngram4acad [0.09 0.42]0.06 032 041 1.06| 034 1.02] 0.35 1.04 | 0.32 0.97
ngram4fic 0.01 0.13/0.02 0.2 | 024 0.76| 024 0.82 0.12 042 | 0.13 0.5
ngram4mag |0.05 0.260.07 035 052 1.21| 045 1.21} 0.31 0.89 | 0.31 091
ngram4news |0.04 0.23(0.04 0.26| 0.57 129 0.5 1.28| 03 092 | 029 094
ngram4spok [0.03 0.19]0.04 0.25| 041 1.13| 0.4 1.17} 0.19 0.69 | 0.21 0.79
ngramSacad |0.01 0.16]0.01 0.09 || 0.07 0.33] 0.05 035 0.05 03 | 0.05 0.29
ngram5fic 0 003] 0 0.06]l 0.03 0.18] 0.03 0.2 | 001 0.1 |0.02 0.14
ngram5mag |0.01 0.09]0.01 0.1 || 0.09 0.38] 0.07 0.38| 0.05 0.25 | 0.04 0.24
ngramSnews | 0 0.07|0.01 0.08| 0.09 0.37| 0.08 0.38| 0.05 0.28 | 0.04 0.28
ngram5spok | 0 0.06| 0 0.07| 0.06 0.31| 0.06 032 0.03 0.18 | 0.03 0.21
NonStopW |0.74 0.1 {0.78 0.12|| 0.6 0.1 | 0.59 0.12] 0.63 0.12 | 0.64 0.17
Ao0A.max 12.64 2.47110.89 2.53 | 10.19 2.33| 84 2.16| 10.36 2.78 | 8.96 3.25
AoA.mean |7.43 1.34| 6.8 131 555 0.72]| 522 0.74] 573 1.16 | 545 1.68
WordPrev 1.62 0.42/2.04 029 1.99 0.28| 2.01 0.33] 1.62 0.49 | 1.59 0.58
KolDef 0.85 0.1210.93 0.12} 0.77 0.12| 0.89 0.13}| 0.8 0.23 | 0.93 0.35
NPPostMod |(6.41 56 | 2.8 3.3 || 399 576| 2.03 3.17| 564 644 | 3.58 4.73
NPPreMod |1.27 1.14|1.02 0.88| 1.03 0.86| 091 0.73] 1.21 1.01 | 1.04 0.87
CpS 0.31 0.5 077 0.69| 2.11 1.23| 1.58 0.86|| 1.45 1.01 | 1.19 0.93
CpT 0.27 0.47/0.66 0.66| 1.88 1.07| 149 0.8 || 1.28 0.8 | 1.08 0.77
CompNompC| 0.67 1.23]1.01 1.08| 1.57 12 ]1.09 09 | 197 151 | 1.3 1.24
CompNompT| 0.8 1.29|1.15 1.13|] 2.65 1.85| 1.52 1.18| 2.5 1.85 | 1.61 1.52
CompTpT 0.02 0.13| 0.1 0.3 ] 053 049| 037 048] 027 044 | 02 0.39
CoordPpC 0.12 036|0.06 0.24| 0.32 0.52| 0.18 0.39|| 0.45 0.68 | 0.28 0.52
CoordPpT 0.15 0.41/0.07 0.26| 0.51 0.72| 0.23 047 056 0.79 | 0.34 0.61
DCpC 0.04 0.17/0.12 0.29| 03 0.29| 02 0.27]| 0.16 0.27 | 0.12 0.24
DCpT 0.02 0.14| 0.1 032} 077 09 | 045 0.66] 034 0.62 | 024 0.53
MLC 371 6.28|5.83 4961223 6.89| 94 445| 1463 887 | 105 7.5
MLS 12.76 4.46|9.62 2.86|/22.76 9.77|13.74 5.12||21.13 10.6 |14.67 9.03
MLT 4.62 6.69|6.67 5.0220.54 10.24/12.96 5.47 |/ 18.77 11.09|12.95 9.35
TpS 0.36 0.48| 0.7 048] 1.06 039| 1 0.27]| 099 044 | 0.88 047
VPpT 041 0.64/093 0.82] 246 1.42| 1.87 1.04| 1.56 1.08 | 1.26 0.98
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Biendata Newsela WikiLarge
normal simple normal simple normal simple
Feature M SD| M SD M SD| M SD M SD| M SD
ARI 1598 5.01|11.02 4.6212.98 5.66| 7.45 3.85|12.63 6.14| 9.27 6.19
Coleman | 54.6 26.05|35.59 16.63||111.8757.51| 58.53 30.06(|102.55 62.16| 64.31 52.94
DaleChall | 10.16 2.13| 89 2.7 | 62 196|544 23| 758 2.49| 748 3.37
DC.PSK |11.41 1.53|10.31 1.95| 9.06 153|801 1.68| 999 1.8 | 9.56 2.37
FK Grade | 13.23 4.27| 853 4.05]10.61 4.55| 6.16 3.1510.56 4.97| 7.72 5.16
FK Read |22.95 30.03|51.06 29.3 || 59.52 19.89|75.39 18.56|| 56.99 23.43| 65.85 31.32
FORCAST| 13.23 2.14|11.86 2.62| 9.79 1.67| 923 196 10.2 1.93|10.08 2.91
Fry.x 202.05 36.22{172.58 35.25({146.84 19.97|138.88 21.31{|151.77 25.29(149.05 37.25
Gunning |510.4 178.2| 385.0 114.4|/910.4 390.9| 549.6 204.7|| 846.5 423.0| 587.4 361.1
Lix 61.4 14.53|48.27 16.85|| 48.26 14.61|35.23 12.96|| 48.96 15.67|41.45 19.55
Rix 59 298|533 251([1549 696| 991 4.12|/13.96 7.55|10.08 6.6
SMOG 878 1.64| 7.18 2.18| 6.26 1.55| 549 1.86| 6.45 1.71| 5.88 2.23
Spache 225 0.54) 1.86 0.34] 341 1.17| 233 0.61| 3.24 1.27| 247 1.08
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Figure 1: Complexity explanation: Differences in mean percentages of highlighted words across the five explana-
tion models compared along with the two baselines: "Random highlighting’ and highlighting based on AoA (=age
of acquisition) lexicon (Kuperman et al., 2012).
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Figure 2: Complexity explanation: Distributions of attention weights over words in a randomly selected sentence.

142



Table 5: Simplification Generation: Example pair from WikiLarge corpus (normal, simplified) and source sentence
simplified by ACCESS model (including four parameter tokens) and ACCESS-XL (including ten parameter tokens).

Type Sentence

Source (Wikipedia)  One side of the armed conflicts is composed mainly of the Sudanese military and
the Janjaweed, a Sudanese militia group recruited mostly from the Afro-Arab
Abbala tribes of the northern Rizeigat region in Sudan.

Target (WikiSimple) One side of the armed conflicts is made of Sudanese military and the Janjaweed,
a Sudanese militia recruited from the Afro-Arab Abbala tribes of the northern
Rizeigat region in Sudan.

ACCESS One side of the armed conflict is made up of the Sudanese military and the
Janjaweed, a Sudanese militia group brought mostly from the Afro-Arab Abbala
tribes of the northern Rizeigat region in Sudan.

ACCESS-XL The army of the armed conflicts is mainly made of the Sudanese military and the
Janjaweed, a Sudanese militia group. They recruited mostly from the Afro-Arab
Abbala tribes of the northern Rizeigat region in Sudan.
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Figure 3: Simplification Generation: Mean values of the ten parameter tokens (engineered language features)
across sentences sets.
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Table 6: ACCESS model performance with prior complexity prediction using different complexity prediction
models.

ACCESS
Ours Martin

Dataset Filter SARI | FKGL | SARI | FKGL

BERT 43.01 5.14 | 40.97 7.21

WiKiLarge BERT_PSYLING 42.84 5.06 | 40.97 7.17

GloVe-PSYLING-a | 41.38 5.19 | 39.54 7.24

GloVe-PSYLING-b | 41.53 5.03 | 39.72 7.22

BERT 2692 | 10.85 | 19.93 | 12.61

. BERT_PSYLING 26.87 | 10.86 | 19.87 | 12.63
Biendata

GloVe-PSYLING-a | 26.16 | 11.17 | 19.31 | 12.78

GloVe-PSYLING-b | 26.87 | 10.90 | 19.89 | 12.62

bert 33.44 5.27 | 27.33 6.78

Newsela BERT_PSYLING 33.13 5.19 | 27.30 6.75

GloVe-PSYLING-a | 34.88 3.96 | 29.41 6.45

GloVe-PSYLING-b | 34.90 3.96 | 2943 6.45

Delta Wiki Norm — Wiki Simple
All values are absolute values in SD units (M/SD)
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Figure 4: Simplification Generation: Differences in mean feature scores (standardized) between ‘normal’ and
‘simple’ sentences in WikiLarge corpus. Features in blue were selected for controllable sentence simplification in
the ACCESS-XL model.
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prediction (step 1) across prediction model and dataset
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Figure 6: Simplification Generation: Performance of text simplification models as measured by SARI (top, higher
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Table 7: Average ED between simple sentences and
original ACCESS output predictions with and without
complexity prediction. ED are calculated using the
tseval library, which EASSE relies on.

Dataset Filter ED
none 15.641
BERT 15.566
- BERT_PSYLING 15.590
WIKILarge | ) ve-PSYLING a | 15.717
GloVe-PSYLING_b | 15.771
LSTM 15.705
none 13.298
BERT 13.269
biendata BERT_PSYLING 13.267
GloVe-PSYLING_a | 13.240
GloVe-PSYLING_b | 13.281
LSTM 13.220
none 16.378
BERT 15.958
newsela BERT_PSYLING 15.957
GloVe-PSYLING_a | 16.377
GloVe-PSYLING_b | 16.376
LSTM 16.008

Table 8: Avg ED between complex sentences and origi-
nal ACCESS outputs with/without complexity predic-
tion

Dataset Filter ED
none 6.684
BERT 5.916
N BERT_PSYLING 5.979
WIKILarge | ) Ve PSYLING. a | 5.639
GloVe-PSYLING_b | 5.765
LSTM 4.516
none 2.823
bert 2.719
biendata BERT_PSYLING 2.699
GloVe-PSYLING_a | 2.529
GloVe-PSYLING_b | 2.723
LSTM 1.585
none 5.368
BERT 3918
newsela BERT_PSYLING 3.960
GloVe-PSYLING_a | 5.358
GloVe-PSYLING_b | 5.363
LSTM 3.022

Table 9: Simplification Generation: Proportion of sen-
tences retained after complexity prediction after com-
plexity prediction (step 1) across prediction model and
dataset

Complexity prediction model

Dataset ~ BERT PsyBERT PsyGloVe, PsyGloVey
Biendata 0.947 0.945 0.881 0.961
Newsela 0.572 0.578 0.959 0.991
WiKiLarge 0.807 0.805 0.675 0.764

Evaluation metrics for simplification generation
FKGL is computed as a linear combination of the
number of words per simple sentence and the
number of syllables per word:

N N
FKGL = 0.39 Nword L118 VY

. —15.59
N wor

sent

SARI compares the predicted simplification with
both the source and the target reference. It is an
average of F1 scores for three n-gram operations:
additions (add), keeps (keep) and deletions (del).
For each operation, these scores are then averaged
for all n-gram orders (from 1 to 4) to get the
overall F1 score.

_ 2 X Pope(n) X Tope(n)
fope(n) - pope(n) + Tope(n)

1
Fope = % Z fope(n)
n=[1,...,k]
SARI — Fadd+Fk£))eep+Fdel

SARI thus rewards models for adding n-grams that
occur in the reference but not in the input, for keep-
ing n-grams both in the output and in the reference,
and for not over-deleting n-grams. Xu et al. (2016)
show that SARI correlates with human judgments
of simplicity gain.
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