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Abstract

Eye movements are known to reflect cogni-
tive processes in reading, and psychological
reading research has shown that eye gaze pat-
terns differ between readers with and without
dyslexia. In recent years, researchers have at-
tempted to classify readers with dyslexia based
on their eye movements using Support Vector
Machines (SVMs). However, these approaches
(i) are based on highly aggregated features av-
eraged over all words read by a participant,
thus disregarding the sequential nature of the
eye movements, and (ii) do not consider the
linguistic stimulus and its interaction with the
reader’s eye movements. In the present work,
we propose two simple sequence models that
process eye movements on the entire stimu-
lus without the need of aggregating features
across the sentence. Additionally, we incorpo-
rate the linguistic stimulus into the model in
two ways—contextualized word embeddings
and manually extracted linguistic features. The
models are evaluated on a Mandarin Chinese
dataset containing eye movements from chil-
dren with and without dyslexia. Our results
show that (i) even for a logographic script such
as Chinese, sequence models are able to clas-
sify dyslexia on eye gaze sequences, reaching
state-of-the-art performance, and (ii) incorpo-
rating the linguistic stimulus does not help to
improve classification performance.1

1 Introduction

Reading effortlessly constitutes a key skill in mod-
ern society. Individuals suffering from develop-
mental dyslexia are characterized by specific and
persistent reading problems. Global prevalence es-
timates range from 3 to 7% (Landerl et al., 2013;
Peterson and Pennington, 2012). Previous research
has consistently shown that early diagnosis and in-
tervention is key to mitigate the resulting long-term
consequences (Vaughn et al., 2010).

1Model code is publicly available and can be found under
https://github.com/hallerp/dyslexia-seqmod.

Figure 1: Proposed approach. Each eye-movement read-
ing measure vector is concatenated with contextualized
word embeddings and used as input for the sequence
models to infer whether a reader suffers from dyslexia.

Psychological and clinical research on eye move-
ment patterns has revealed that individuals with
dyslexia exhibit gaze patterns that differ signifi-
cantly from the patterns observed in individuals
without dyslexia (Rayner, 1998; Pan et al., 2014).
In particular, scanpaths of individuals with dyslexia
are characterized by longer fixation durations, more
fixations, decreased saccade durations and a higher
proportion of regressions. In recent years, increas-
ing effort has been spent on utilizing these find-
ings and applying supervised classification meth-
ods such as SVMs and Random Forests on eye
movement data (see Kaisar 2020 for an overview)
to infer the presence or absence of dyslexia. There
are several reasons why automatized approaches
for assistance in dyslexia detection are desirable.
Currently, paper-pencil diagnostic tools are con-
ducted by trained speech therapists. These tools
are time-intensive and are typically only consid-
ered after a suspected case has been reported by
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observant educational staff, leaving many cases
overlooked. Eye-movement-based diagnostic tools
have the potential to be deployed in schools in a
relatively inexpensive manner and as part of a stan-
dard procedure aimed at early and comprehensive
detection of dyslexia; making an important contri-
bution to educational equity.
Although the aforementioned approaches provide
promising results, they suffer from specific draw-
backs: (i) The model input consists of eye move-
ment features, aggregated for each subject over the
presented stimulus material (text), thus disregard-
ing the sequential nature of the eye movements; (ii)
both the linguistic stimulus and its interaction with
the reader’s eye movements are not considered. For
classification purposes, this does not pose a prob-
lem per se. However, it does not allow us to inves-
tigate questions such as: Which words (or, more
specifically, what linguistic properties of the stim-
ulus) are particularly informative to discriminate
between individuals with and without dyslexia?
In the present work, we propose two neural se-
quence models, depicted in Figure 1, that process
the eye movements on the entire stimulus without
the necessity of feature aggregation over the sen-
tence. To incorporate the linguistic stimulus into
the model, we use pre-trained contextualized word
embeddings. We evaluate our model on an eye-
tracking-while-reading dataset from children with
and without dyslexia reading Mandarin Chinese
sentences by Pan et al. (2014).

2 Related Work

2.1 ML-based detection of dyslexia

To date, various data types and signals have been
utilized to solve the task of automated detection of
dyslexia such as text, MRI scans (Cui et al., 2016),
EEG recordings (Frid and Breznitz, 2012), student
engagement data (Abdul Hamid et al., 2018) as
well as eye-tracking data (Rello and Ballesteros,
2015; Raatikainen et al., 2021; Benfatto et al.,
2016). Benfatto et al. (2016) train a Support Vector
Machine with recursive feature elimination (SVM-
RFE) on 168 eye-tracking features obtained from
an eye-tracking-while-reading dataset from 185
Swedish children (aged 9-10 years). Their best
SVM-RFE model selected 48 features and achieved
an accuracy score of 95.6% ± 4.5% (sic!) on a bal-
anced dataset. We reimplement this method and
use it as a reference method (cf. 4.1). Jothi Prabha
and Bhargavi (2020), using the same dataset as Ben-

fatto et al. (2016), experiment with various feature
selection algorithms and machine learning mod-
els. They find that feature selection via Principle
Component Analysis (PCA) in combination with a
Particle Swarm Optimization based Hybrid Kernel
SVM classifier yields the best accuracy.
Raatikainen et al. (2021) combine a Random For-
est classifier for feature selection with an SVM,
achieving an accuracy of 89.7%. They expand their
feature space with transition matrices that represent
the number of transitions between the different seg-
ments (question, answer selection) in a trial as well
as the number of gaze shifts within one segment.

2.2 Modeling eye-tracking data with deep
neural sequence models

Eye movement data for task inference. Deep
neural sequence models have been deployed to
solve inference tasks based on eye movements such
as reader (Jäger et al., 2019) and viewer identifi-
cation (Lohr et al., 2020; Makowski et al., 2020,
2021), ADHD detection (Deng et al., 2022) as well
as the prediction of reading comprehension (Reich
et al., 2022).

Integrating the linguistic stimulus. There has
been growing interest in combining language and
eye movement models to predict gaze patterns dur-
ing naturalistic reading (Hollenstein et al., 2021;
Merkx and Frank, 2021; Hollenstein et al., 2022).
Wiechmann et al. (2022) investigate the role of
general text features and their interaction with eye
movement patterns in predicting human reading
behavior and find that models incorporating the
linguistic stimulus improves prediction accuracy.

3 Problem Setting

We investigate the two closely related tasks of
classifying (i) whether a given eye gaze sequence
on one sentence is from a reader with or with-
out dyslexia and (ii) whether a given eye gaze
sequence on a set of sentences is from a reader
with or without dyslexia. Formally, our train-
ing data can be represented as a set D =
{(W11, y1), . . . , (WNM , yN )}, where Wij =
⟨wij1 . . .wijK⟩ is a sequence of reading measure
vectors2 for each word k ∈ 1 . . .Kj obtained from
subject i reading sentence j, where N is the num-
ber of participants, M is the number of stimulus
sentences read by each of the participants and Kj

2Cf. the list of reading measures in Appendix B.
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the number of words in a given sentence j. Each
reading measure vector consists of R reading mea-
sures, i.e., wijk = (rijk1 . . . rijkR). The binary
target label yi denotes whether participant i is a
reader with or without dyslexia. For (i), our goal is
to train a binary classifier gθ such that

ŷi =

{
1, if gθ(Wij) ≥ δ

0, else,

where δ denotes the decision threshold and θ

the set of hyperparameters. Accordingly, for (ii),
ŷi = 1, if 1

M

∑M
j=1 gθ(Wij) ≥ δ.

The performance of a binary model can be charac-
terized by a false-positive and a true-positive rate.
By altering the decision threshold δ, a receiver op-
erator characteristic (ROC) curve can be derived,
with the area under the curve providing an aggre-
gated measure for all possible values of δ.

4 Methods

4.1 Reference method

As a baseline method, we train an SVM-RFE, fol-
lowing the procedure described by Benfatto et al.
(2016). We use the scikit-learn implementation (Pe-
dregosa et al., 2011) of the SVM-RFE with a linear
kernel. In the subject-prediction setting, we use eye
movement features from each subject aggregated
(mean and standard deviation) across trials and sen-
tences as input vectors. In the sentence-prediction
setting, we use aggregates of each sentence over all
trials, yielding 2 × 12 = 24 features per instance
in both settings.3

4.2 Proposed neural sequence models

Both models take as input an enriched reading mea-
sure vector rij (cf. Section 4.2.1) of a sentence j
read by participant i, normalized for each train/test
set separately, and predict a label yi. We tune both
models using random search.

LSTM. We implement a bidirectional recurrent
neural network with LSTM cells. The mean of the
hidden states is fed into a linear layer projecting it
down to a single sigmoid output to represent the
label prediction. Optimized hyperparameters and
search space are reported in Appendix 2.

3We also experimented with training random forests as
baseline, however, they were outperformed by the SVM-RFE.

CNN. We implement a CNN that convolves the
input accross the word sequence axis. It consists of
two convolutional layers, each followed by a pool-
ing layer, two dense layers, and a sigmoid output
unit. Hyperparameters are listed in Appendix 2.

4.2.1 Incorporating the linguistic stimulus

Using contextualized word embeddings. To in-
corporate the linguistic stimulus (the words oc-
curring in the current sentence), we first extract
768-dimensional BERT embeddings ejk for each
word w in a given sentence j, using the pre-trained
BERTBASE-embeddings, provided by Hugging Face
(Wolf et al., 2020), and concatenate them with the
reading measure vector wijk, resulting in an en-
riched reading measure vector rijk. Concatenat-
ing the full embedding to the feature vectors results
in 768 + R dimensions, resulting in a substantial
increase in parameters to be estimated. Given the
small amount of available training data, we test
two methods of dimensionality reduction: (i) We
perform PCA on the word embeddings and use the
first 20 principal components. (ii) Mean-difference-
encoding: In order to capture domain-specific in-
formation from the word embeddings relating to
differences in reading behaviour exhibited by indi-
viduals with and without dyslexia, we propose an
alternative method, which we call mean-difference-
encoding: We train a feed-forward neural network
with one hidden layer of size 20 to predict differ-
ences between the mean values of each eye move-
ment feature between the two groups for each word
based on its original word embedding. The values
of the hidden layer are a compressed representa-
tion of the original embedding that is optimized
to encode information that discriminates between
children with and without dyslexia. In order to
avoid train-test data leakage, in each fold, the mean-
difference-encoder is trained from scratch on the
respective training set.

Using manually extracted features. As an alter-
native way to incorporate the linguistic stimulus,
we add a range of manually extracted linguistic fea-
tures for each token wjk in sentence j: Surprisal,
i.e., − log p(wjk | wj<k), estimated with GPT-
2 (Radford et al., 2019), part of speech, dependency
relation type, distance to syntactic head, extracted
using spaCy (Honnibal et al., 2020), mean charac-
ter frequency and lexical frequency extracted from
SUBTLEX-CH (Cai and Brysbaert, 2010).
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5 Experiments

Data. We employ eye-tracking-while-reading
data from 62 Mandarin Chinese children (33 with
dyslexia) provided by Pan et al. (2014). Partic-
ipants were instructed to read 60 sentences out
loud while their eye movements were recorded.
40 sentences were selected from fifth grade text-
books and 20 additional control sentences were
extracted from the Beijing Sentence Corpus (Pan
et al., 2022). The dyslexia label had been assigned
when a child scored at least 1.5 standard deviations
below their corresponding age mean in standard
character recognition test (Shu et al., 2003).

5.1 Evaluation procedure
We evaluate our models using 10-fold nested cross-
validation in two settings. In the sentence predic-
tion setting, we predict the label from a single sen-
tence, read by a given subject. In the subject predic-
tion setting, we average the sigmoid outputs from
all sentences read by a given subject in order to
obtain a subject-level prediction. In both settings,
sentences are stratified over 10 folds, balanced by
group. Data from the same subject is always con-
strained to one fold, thus, the model always makes
predictions for unseen subjects.

Hyperparameter tuning. For each test fold, we
iterate through 9 validation folds, training 50
LSTM and 100 CNN models using randomly sam-
pled parameter combinations for each fold. We
select the highest scoring parameter set over all
9 validation folds and train a final model using 8
training folds. We use one left-out fold for early
stopping and evaluate it on the test fold.

5.2 Results
For all methods, we report AUC as well as accuracy,
recall, precision and the harmonic precision-recall
mean F1 for a decision threshold of 0.5 on subject-
and sentence-level. As can be seen in Table 1, our
proposed models reach but do not outperform state-
of-the art performance. While on subject-level,
the CNN architecture enriched with PCA-reduced
word embeddings achieves the highest AUC, on
sentence-level, the best results are obtained by the
LSTM that solely includes eye-movement features.
Overall, we note that classification performance
on subject-level is higher than on sentence-level
and that adding the linguistic stimulus does not aid
classification performance, neither as contextual-
ized word embeddings nor as manually-extracted

Figure 2: ROC curves over all test sets for best
performing model (LSTM with no linguistic stimulus
representation) on sentence-level.

features. Furthermore, as can be seen in Figure 2,
performance varies considerably with respect to dif-
ferent test sets. We also observe that the variance
in AUC for models enriched with the linguistic
stimulus is larger for LSTMs compared to CNNs.
Lastly, our domain-specific dimensionality reduc-
tion method (cf. Section 4.2.1) has no advantage
over PCA, although the former is explicitly trained
on differences between the two groups.

6 Discussion

Our proposed neural sequence models reach state-
of-the-art performance on solving the task of detect-
ing dyslexia from eye gaze sequences, for the first
time investigated for a logographic script such as
Chinese. Our results suggest that for our dataset, (i)
neural architectures processing eye-movement se-
quences along the sentence have no advantage over
the parsimonious SVM-baseline where features are
aggregated over the sentence, and (ii) enabling the
interaction between stimulus input and eye move-
ments does not improve classification performance.
However, after having shown that our approach is
able to reach SOTA performance, we aim to exploit
its properties to investigate the informativeness of
particular sentences, words, and other linguistic
sub-units for dyslexia detection in the future.
Furthermore, for all investigated models, the over-
all performance appears to be driven by a small
subset of individuals who presumably exhibit less
typical reading behavior among their group and
were more difficult to classify. Given that dyslexia
is a spectrum disorder—not binary as it is often
perceived—it is to be expected that individuals that
are not located at the two extremes (clearly dyslexic
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Architecture Evaluation Metrics
Model Stimulus representation AUC Accuracy Recall Precision F1

S
U

B
JE

C
T-

L
E

V
E

L

Baseline 0.93 (±0.03) 0.90 (±0.03) 0.87 (±0.04) 0.97 (±0.03) 0.91 (±0.03)

LSTM

None 0.91 (±0.03) 0.90 (±0.03) 0.88 (±0.05) 0.98 (±0.02) 0.92 (±0.03)

BERT meandiff 0.88 (±0.03) 0.80 (±0.06) 0.78 (±0.06) 0.93 (±0.06) 0.83 (±0.06)

BERT PCA 0.90 (±0.03) 0.83 (±0.05) 0.81 (±0.06) 0.97 (±0.03) 0.87 (±0.04)

Manually extracted 0.87 (±0.04) 0.87 (±0.05) 0.84 (±0.05) 0.97 (±0.03) 0.89 (±0.04)

CNN

None 0.91 (±0.04) 0.90 (±0.03) 0.86 (±0.04) 1.00 (±0.00) 0.92 (±0.02)

BERT meandiff 0.91 (±0.03) 0.90 (±0.03) 0.88 (±0.04) 0.97 (±0.03) 0.91 (±0.02)

BERT PCA 0.93 (±0.03) 0.87 (±0.02) 0.86 (±0.04) 0.93 (±0.04) 0.88 (±0.02)

Manually extracted 0.89 (±0.04) 0.83 (±0.04) 0.80 (±0.05) 0.97 (±0.03) 0.86 (±0.03)

S
E

N
T

E
N

C
E

-L
E

V
E

L

Baseline 0.85 (±0.03) 0.78 (±0.02) 0.79 (±0.04) 0.76 (±0.02) 0.77 (±0.02)

LSTM

None 0.85 (±0.03) 0.77 (±0.03) 0.74 (±0.04) 0.83 (±0.03) 0.78 (±0.03)

BERT meandiff 0.81 (±0.04) 0.68 (±0.04) 0.65 (±0.04) 0.86 (±0.05) 0.72 (±0.03)

BERT PCA 0.79 (±0.04) 0.66 (±0.04) 0.64 (±0.04) 0.85 (±0.05) 0.71 (±0.03)

Manually extracted 0.77 (±0.05) 0.71 (±0.03) 0.67 (±0.03) 0.85 (±0.05) 0.74 (±0.03)

CNN

None 0.84 (±0.02) 0.76 (±0.02) 0.73 (±0.02) 0.83 (±0.04) 0.77 (±0.02)

BERT meandiff 0.82 (±0.03) 0.75 (±0.02) 0.72 (±0.02) 0.82 (±0.04) 0.76 (±0.02)

BERT PCA 0.82 (±0.03) 0.74 (±0.02) 0.70 (±0.02) 0.85 (±0.04) 0.76 (±0.02)

Manually extracted 0.82 (±0.03) 0.74 (±0.02) 0.69 (±0.02) 0.86 (±0.03) 0.76 (±0.02)

Table 1: Classification results using 10-fold cross validation on subject- and sentence-level. We report AUC, accuracy,
recall, precision and F1 [results ± standard error]. The latter four were computed for a decision threshold of 0.5.

or clearly not dyslexic) are more difficult to classify
in a binary environment.
Our study was able to show that an SVM-based ap-
proach, previously applied to alphabetic languages
such as Swedish and Spanish, also works well on a
logographic script such as Chinese. In future work,
we would like to test our approach on alphabetic
language data sets. This is particularly interesting
given the fact that young Chinese readers are faced
with different challenges, e.g., the absence of or-
thographic word boundaries, therefore requiring
word segmentation, and the much larger number of
characters required to be memorized.

Limitations. It should be noted that our dataset
contained very little data. Considering that the
number of parameters of our sequence models ex-
ceeded the one of the baseline model by orders of
magnitude, it might be worth comparing the ap-
proaches again, once more data is available. The
problem of data scarcity might be alleviated by pre-
training on domain general eye-tracking datasets
or with data augmentation methods4. Furthermore,
we did not have access to the raw scores of the char-
acter recognition task. While our methods did not
outperform the baseline in this binary environment,
it would be interesting to assess their performance
on a regression task.

4In a preliminary experiment, we pre-trained our models
on the Beijing Sentence Corpus (Pan et al., 2022) and found
that it did not increase classification performance.

7 Conclusion

For the first time, we deploy models to detect
dyslexia from eye gaze sequences on data from
Mandarin Chinese readers. We propose two se-
quence classification approaches that (i) take as
input the full, non-aggregated linguistic stimulus
and (ii) model the interaction of the stimulus with
the eye movements. As a comparison, we adapt
a previously proposed SVM-based approach for
Mandarin Chinese. We find that all models reach
SOTA performance for data based on a logographic
script such as Chinese. In addition, we find that
incorporating the linguistic stimulus does not im-
prove the models’ performance. Given that we
reach SOTA performance on a very small dataset,
our approach has proven worthwhile to be pursued,
expanded, and further tested (e.g., on alphabetic
language data sets). It has the potential to be suc-
cessfully deployed in the context of automatized
approaches for dyslexia detection with the final
objective being the improvement of educational
equity.
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A Pan et al.’s (2014) dataset

Each sentence was composed of seven to 13 words
and each word consisted out of one to three char-
acters, with 38 one-character words, 372 two-
character words and 22 three-character words. Sen-
tences in which a child blinked while reading a
word, except the first and last one, are not included
in the final dataset. The set therefore contains the
data for between 24 up to 59 sentences for each
child.

B Reading Measures

Word-level reading measures used as input for both
the baseline models (aggregated over text or sub-
ject, respectively) and the neural models. All dura-
tions are in ms. Saccade distances refer to distances
with respect to x/y-axis coordinates. Landing posi-
tion refers to character index within a fixated word.

• Horizontal location of fixation on screen
• Total gaze duration (sum of all fixations landing

on the word before moving away from it)
• Landing position of first fixation within the word
• Landing position of last fixation within the word
• Duration of first fixation
• Duration of outgoing saccade
• Horizontal distance of outgoing saccade
• Vertical distance of outgoing saccade
• Total distance of outgoing saccade
• Duration of incoming saccade
• Horizontal distance of incoming saccade
• Vertical distance of incoming saccade

C Hyperparameter tuning

Model Hyperparameter Range

Both
Batch size [8, 16, 32, 64, 128]
Learning rate 15× U ∼ (1e−5, 1e−1)
Decision boundary 20× U ∼ (0.35, 0.65)

LSTM Hidden layer size [10, 20, . . . , 70]

CNN

C1 # channels [5, 10, . . . , 30]
C1 kernel [3, 5]
C1 pooling [average, max]
C2 # channels [10, 20, . . . , 50]
C2 kernel [3, 5]
C2 pooling [average, max]
L1 size [10, 20, . . . , 60]
dropout [0.1, 0.2, . . . 0.7]

Table 2: Hyperparameter space for LSTMs and CNNs.
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