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Abstract

Motivations for methods in explainable artifi-
cial intelligence (XAI) often include detecting,
quantifying and mitigating bias, and contribut-
ing to making machine learning models fairer.
However, exactly how an XAl method can help
in combating biases is often left unspecified.
In this paper, we briefly review trends in ex-
plainability and fairness in NLP research, iden-
tify the current practices in which explainabil-
ity methods are applied to detect and mitigate
bias, and investigate the barriers preventing
XAI methods from being used more widely
in tackling fairness issues.

1 Introduction

Trends in Natural Language Processing (NLP)
mirror those in Machine Learning (ML): break-
throughs in deep neural network architectures, pre-
training and fine-tuning methods, and a steady in-
crease in the number of parameters led to impres-
sive performance improvements for a wide variety
of NLP tasks. However, these successes have been
shadowed by the repeated discoveries that a high
accuracy on the held-out test set does not always
mean that the model is performing satisfactorily on
other important criteria such as fairness, robustness
and safety. These discoveries that models are ad-
versarially manipulable (Zhang et al., 2020a), show
biases against underprivileged groups (Chang et al.,
2019), and leak sensitive user information (Car-
lini et al., 2021) inspired a plethora of declarations
on Responsible/Ethical Al (Morley et al., 2021).
Two of the common principles espoused in these
documents are fairness and transparency.

Failures in fairness of models is often attributed,
among other things, to the lack of transparency
of modern Al models. The implicit argument is
that, if biased predictions are due to faulty reason-
ing learned from biased data, then we need trans-
parency in order to detect and understand this faulty
reasoning. Hence, one approach to solving these
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problems is to develop methods that can peek in-
side the black-box, provide insights into the inter-
nal workings of the model, and identify whether
the model is right for the right reasons.

As a result, ensuring the fairness of Al systems
is frequently cited as one of the main motivations
behind XAI research (Doshi-Velez and Kim, 2017,
Das and Rad, 2020; Wallace et al., 2020). How-
ever, it is not always clear how these methods can
be applied in order to achieve fairer, less biased
models. In this paper, we briefly summarize some
XAI methods that are common in NLP research,
the conceptualization, sources and metrics for unin-
tended biases in NLP models, and some works that
apply XAI methods to identify or mitigate these
biases. Our review of the literature in this inter-
section reveals that applications of XAI methods
to fairness and bias issues in NLP are surprisingly
few, concentrated on a limited number of tasks,
and often applied only to a few examples in or-
der to illustrate the particular bias being studied.
Based on our findings, we discuss some barriers
to more widespread and effective application of
XAI methods for debiasing NLP models, and some
research directions to bridge the gap between these
two areas.

2 Explainable Natural Language
Processing

With the success and widespread adaptation of
black-box models for machine learning tasks,
increasing research effort has been devoted to
developing methods that might give human-
comprehensible explanations for the behaviour of
these models, helping developers and end-users to
understand the reasoning behind the decisions of
the model. Broadly speaking, explainability meth-
ods try to pinpoint the causes of a single prediction,
a set of predictions, or all predictions of a model
by identifying parts of the input, the model or the
training data that have the most influence on the
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Table 1: Explainability methods from Sec. 2 categorized as local vs. global and self-explaining vs. post-hoc.

model outcome.

The line dividing XAI methods, and methods
that are developed more generally for understand-
ing, analysis and evaluation of NLP methods be-
yond the standard accuracy metrics is not always
clear cut. Many popular approaches such as probes
(Hewitt and Liang, 2019; Voita and Titov, 2020),
contrast sets (Gardner et al., 2020) and checklists
(Ribeiro et al., 2020) share many of their core moti-
vations with XAI methods. Here, we present some
of the most prominent works in XAlI, and refer the
reader to the survey by Danilevsky et al. (2020) for
a more extensive overview of the field. We con-
sider a method as an XAI method if the authors
have framed it as such in the original presentation,
and do not include others in our analysis.

A common categorization of explainability meth-
ods is whether they provide local or global expla-
nations, and whether they are self-explaining or
post-hoc (Guidotti et al., 2018; Adadi and Berrada,
2018). The first distinction captures whether the
explanations are given for individual instances (lo-
cal) or explain the model behaviour on any input
(global). Due to the complex nature of the data
and the tasks common in NLP, the bulk of the XAl
methods developed for or applicable to NLP mod-
els are local rather than global (Danilevsky et al.,
2020). The second distinction is related to how the
explanations are generated. In self-explaining meth-
ods, the process of generating explanations is inte-
grated into, or at least reliant on the internal struc-
ture of the model or the process of computing the
model outcome. Because of this, self-explaining
methods are often specific to the type of the model.
On the other hand, post-hoc or model-agnostic
methods only assume access to the input-output
behaviour of the model, and construct explanations
based on how changes to the different components
of the prediction pipeline affect the outputs. Below,
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we outline some of the representative explainability
methods used in NLP and categorize them along
the two dimensions in Table 1.

Feature attribution methods, also referred to as
feature importance or saliency maps, aim to de-
termine the relative importance of each token in
an input text for a given model prediction. The
underlying assumption in each of these methods
is that the more important a token is for a predic-
tion, the more the output should change when this
token is removed or changed. One way to estimate
this is through the gradients of the output with re-
spect to each input token as done by Simonyan et al.
(2014). Other methods have been developed to ad-
dress some of the issues with the original approach
such as local consistency (Sundararajan et al., 2017,
Smilkov et al., 2017; Selvaraju et al., 2017; Shriku-
mar et al., 2017).

Rather than estimating the effect of perturba-
tions through gradients, an alternative approach is
to perturb the input text directly and observe its
effects on the model outcome. Two of the most
common methods in this class are LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017).
LIME generates perturbations by dropping subsets
of tokens from the input text, and then fitting a lin-
ear classifier on these local perturbations. SHAP is
inspired by Shapely values from cooperative game
theory, and calculates feature importance as the fair
division of a “payoff" from a game where the fea-
tures cooperate to obtain the given model outcome.
AllenNLP Interpret toolkit (Wallace et al., 2019)
provides an implementation for both types of fea-
ture attribution methods, gradient based and input
perturbation based, for six core NLP tasks, includ-
ing text classification, masked language modeling,
named entity recognition, and others.

A third way to obtain feature attribution maps
in architectures that use an attention mechanism



(Bahdanau et al., 2015) is to look at the relative
attention scores for each token (Xu et al., 2015;
Choi et al., 2016). Whether this approach provides
valid explanations has been subject to heated de-
bate (Jain and Wallace, 2019; Wiegreffe and Pinter,
2019), however as Galassi et al. (2020) notes, the
debate has mostly been centered around the use of
attention scores as local explanations. There has
also been some works that use attention scores for
providing global explanations based on the syntac-
tic structures that the model attends to (Clark et al.,
2019).

Extractive rationales (DeYoung et al., 2020) are
snippets of the input text that trigger the original
prediction. They are similar in spirit to feature
attribution methods, however in rationales the at-
tribution is usually binary rather than a real-valued
score, and continuous subsets of the text are chosen
rather than each token being treated individually.
Rationales can also be obtained from humans as
explanations of human annotations rather than the
model decisions, and used as an additional signal
to guide the model.

Counterfactual explanations are new instances
that are obtained by applying minimal changes to
an input instance in order to change the model out-
put. Counterfactuals are inspired by notions in
causality, and aim to answer the question: "What
would need to change for the outcome to be differ-
ent?" Two examples of counterfactual explanations
in NLP are Polyjuice (Wu et al., 2021) and MiCE
(Ross et al., 2021). Polyjuice is model agnostic,
and consists of a generative model trained on exist-
ing, human generated counterfactual data sets. It
also allows finer control over the types of counter-
factuals by allowing the user to choose which parts
of the input to perturb, and how to perturb them
with control codes such as “replace” or “negation”.
MiCE uses model gradients to iteratively choose
and mask the important tokens, and a generative
model to change the chosen tokens so that the end
prediction is flipped.

There are also methods that try to pinpoint which
examples in the training data have the most in-
fluence on the prediction. The most common ap-
proach for this is Influence Functions (Koh and
Liang, 2017; Han et al., 2020), where the goal is
to efficiently estimate how much removing an ex-
ample from the data set and retraining the model
would change the prediction on a particular input.
An alternative is Representer Point Selection (Yeh
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et al., 2018), which applies to a more limited set
of architectures, and aims to express the logits of
an input as a weighted sum of all the training data
points.

Some explainability methods are designed to
provide global explanations using higher level, se-
mantic concepts. Feder et al. (2021b) use counter-
factual language models to provide causal explana-
tions based on high-level concepts. Their method
contrasts the original model representations with
alternative pre-trained representations that are ad-
versarially trained not to capture the chosen high-
level concept, so that the total causal effect of the
concept on the classification decisions can be es-
timated. Nejadgholi et al. (2022) adapt Testing
Concept Activation Vector (TCAV) method of Kim
et al. (2018), originally developed for computer vi-
sion, to explain the generalization abilities of a hate
speech classifier. In their approach, the concepts
are defined through a small set of human chosen
examples, and the method quantifies how strongly
the concept is associated with a given label.

Finally, some methods produce explanations in
the form of rules. One method in this category is
Anchors (Ribeiro et al., 2018a), where the model
searches for a set of tokens in a particular input
text that predicts the given outcome with high pre-
cision. Although Anchors is a local explainability
method in that it gives explanations on individ-
ual input instances, the generated explanations are
globally applicable. SEAR (Ribeiro et al., 2018b),
a global explainability method, finds universal re-
placement rules that, if applied to an input, adver-
sarially change the prediction while keeping the
semantics of the input the same.

3 Fairness and Bias in NLP Models

Unintended biases in NLP is a complex and multi-
faceted issue that spans various undesirable model
behaviours that cause allocational and representa-
tional harms to certain demographic groups (Blod-
gett et al., 2020). When the demographic group is
already marginalized and underprivileged in soci-
ety, biases in NLP models can further contribute
to the marginalization and the unfair allocation of
resources. Examples include performance dispar-
ities between standard and African American En-
glish (Blodgett and O’Connor, 2017), stereotypical
associations between gendered pronouns and occu-
pations in coreference resolution (Rudinger et al.,
2018) and machine translation (Stanovsky et al.,



2019), and false positives in hate speech detection
on innocuous tweets mentioning demographic at-
tributes (Rottger et al., 2021). In this section, we
review some of the most popular methods and met-
rics to identify such biases. For a more comprehen-
sive coverage, see recent surveys by Mehrabi et al.
(2021) and Caton and Haas (2020).

Most works in ML fairness literature assume that
biases in machine learning models originate from
misrepresentations in training datasets and merely
reflect the societal biases. However, as Hooker
(2021) explains, design choices can amplify the
societal biases, and automated data processing can
lead to systematic un-precedented harms. Shah
et al. (2020) identify five sources for bias in NLP
models. Selection bias and label bias are biases
that originate in the training data. The former
refers to biases that are created when choosing
which data points to annotate, and includes under-
representation of some demographic groups as well
as misrepresentation due to spurious correlations.
The latter refers to biases introduced due to the
annotation process, such as when annotators are
less familiar with or biased against text generated
by certain groups, causing more annotation errors
for some groups than others. Model bias are biases
that are due to model structure, and are responsible
for the over-amplification of discrepancies that are
observed in training data. Semantic bias refers to
biases introduced from the pre-trained representa-
tions, and include representational harms such as
stereotypical associations. Finally, bias in research
design covers the larger issues of uneven allocation
of research efforts across different groups, dialects,
languages and geographic areas.

Research in fair ML has developed a num-
ber of metrics to quantify the biases in an ML
model. These metrics are usually classified as
group fairness metrics and individual fairness met-
rics (Castelnovo et al., 2022; Czarnowska et al.,
2021). Group fairness metrics focus on quantify-
ing the performance disparity between different
demographic groups. Some examples are demo-
graphic parity, which measures the difference in
the positive prediction rates across groups, predic-
tive parity, which measures the difference in pre-
cision across groups, and equality of odds, which
measures the differences between false positive and
false negative rates across groups. Individual fair-
ness metrics are based on the idea that the model
should behave the same for similar examples re-
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gardless of the value of a protected attribute. A
refinement to this approach is counterfactual fair-
ness, where the criteria for fairness is that the model
decision remains the same for a given individual
in a counterfactual world where that individual be-
longed to a different demographic group. In NLP,
this notion often appears as counterfactual token
fairness (Garg et al., 2019), and is operationalized
through test suites that include variations of the
same text where some tokens associated with cer-
tain social groups are replaced with others, and the
bias of the model is measured by the performance
disparity between the pairs (Kiritchenko and Mo-
hammad, 2018; Prabhakaran et al., 2019).

Both group fairness metrics and individual fair-
ness metrics are instances of outcome fairness:
whether a model is fair is determined solely on the
outcomes with respect to various groups, regardless
of how the algorithm produced those observed out-
comes.! There is a complementary notion called
procedural fairness that is often considered in orga-
nizational settings (Blader and Tyler, 2003), which
aims to capture whether the processes that were
followed to obtain the outcome are fair. In ML, this
translates to whether the model’s internal reason-
ing process is fair to different groups or individuals
(Grgi¢-Hlaca et al., 2018; Morse et al., 2021). For
example, outcome fairness for a resume sorting
system might be implemented as ensuring that the
model has the same acceptance rates or the same
precision and recall for groups defined by race, gen-
der, or other demographic attributes. A procedural
fairness approach, on the other hand, might aim
to ensure that the decision making process of the
system only relies on skill-related features, and
not features that are strongly associated with de-
mographic attributes, such as names and pronouns.
The distinction between procedural and outcome
fairness relates to different kinds of discrimination
outlined in anti-discrimination laws, namely dis-
parate treatment and disparate impact (Barocas
and Selbst, 2016).

Fairness metrics have originally been developed
for applications where the social group member-
ship is known, for example in healthcare related
tasks. An issue with applying these to NLP tasks
is that either the demographic information is not
available and needs to be estimated, or some auxil-
iary signal, such as the mention of a target group

"Outcome fairness is also referred to as distributive fair-
ness in this literature.



or the gender of the pronoun, needs to be used.
However, inferring people’s social attributes from
their data raises important ethical concerns in terms
of privacy violations, lack of meaningful consent,
and intersectional invisibility (Mohammad, 2022).
Since determining whether the text is about a cer-
tain identity group is easier than whether it is pro-
duced by a certain identity group, there are more
works investigating the former than the latter. An
exception to this is the studies on disparate per-
formance of models on certain dialects such as
African American English (AAE) (Sap et al., 2019;
Blodgett and O’Connor, 2017). This is possible
due to the existence of a dialect identification tool
for AAE, which was trained by pairing geo-located
tweets with US census data on race (Blodgett et al.,
2016).

One source of bias that the NLP community has
devoted significant research effort to is word em-
beddings and pre-trained language models (Boluk-
basi et al., 2016; Zhao et al., 2019), which Shah
et al. (2020) characterizes as semantic bias. Al-
though it is not framed as such, this can be seen as
a particular global explanation for biases that the
models demonstrate in downstream tasks. How-
ever, the effectiveness of these methods has re-
cently been questioned by Goldfarb-Tarrant et al.
(2021) who found that there is no correlation be-
tween intrinsic bias metrics obtained by embed-
ding association tests, and extrinsic bias metrics on
downstream tasks.

4 Applications of XAl in Fair NLP

To determine the uses of explainability methods in
fair NLP, we search the ACL Anthology for papers
that cite the explainability methods listed in Sec-
tion 2, and that include keywords, “fair”, “fairness”,
or “bias”. We further exclude the papers that focus
on other types of biases such as inductive bias, or
bias terms in the description of the architecture.
Our results show that although there are a number
of papers that mention unintended or societal bi-
ases as wider motivations to contextualize the work
(e.g., by Zylberajch et al. (2021)), only a handful
of them apply explainability methods to uncover or
investigate biases. All of the works we identify in
this category use feature attribution methods, and
except that of Aksenov et al. (2021), employ them
for demonstration purposes on a few examples. Al-
though our methodology excludes works that are
published in venues other than ACL conferences
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and workshops, we believe that it gives a good in-
dication of the status of XAI in fairness and bias
research in NLP.

Mosca et al. (2021) use SHAP to demonstrate
that adding user features to a hate speech detection
model reduces biases that are due to spurious cor-
relations in text, but introduces other biases based
on user information. Wich et al. (2020) also apply
SHAP to two example inputs in order to illustrate
the political bias of a hate speech model. Aksenov
et al. (2021) aggregate attention scores from BERT
into global explanations in order to identify which
words are most indicative of political bias.

Some works beyond the papers that our search
methodology uncovered on the intersection of fair-
ness for NLP and XAI are that of Kennedy et al.
(2020), which uses Sampling and Occlusion al-
gorithm of Jin et al. (2019) to detect bias toward
identity terms in hate speech classifiers, and that
of Mathew et al. (2021), which shows that using
human rationales as an additional signal in train-
ing hate speech detection models reduces the bias
of the model towards target communities. Prab-
hakaran et al. (2019) target individual fairness, and
develop a framework to evaluate model bias against
particular named entities with a perturbation based
analysis. Although they do not frame their model
as such, the automatically generated perturbations
can be categorized as counterfactuals. Balkir et al.
(2022) suggest the use of two metrics—necessity
and sufficiency—as feature attribution scores, and
apply their method to uncover different kinds of
bias against protected group tokens in hate speech
and abusive language detection models.

As summarized in Table 2, almost all these
works focus exclusively on hate speech detection,
and use local feature attribution methods. The
range of bias types is also quite limited. This
demonstrates the very narrow context in which ex-
plainability has been linked to fairness in NLP.

There are also some works beyond NLP that use
XALI to improve fairness of ML models. Zhang
and Bareinboim (2018), Parafita and Vitria (2021)
and Grabowicz et al. (2022) leverage methods from
causal inference to both model the causes of the
given prediction and provide explanations, and to
ensure that protected attributes are not influencing
the model decisions through unacceptable causal
chains. The disadvantage of these models is that
they require an explicit model of the causal rela-
tions between features, which is a difficult task



Study Overall Objective of the Study  Application Bias Type Explainability
Method
Mosca et al. (2021) Detecting classifier sensitivity — hate speech detection  social group bias SHAP
towards identity terms vs. user
tweet history
Wich et al. (2020) Measuring the effect of bias on  hate speech detection  political orienta- SHAP
classification performance tion
Aksenov et al. (2021)  Classification of political bias in  hate speech detection  political orienta- aggregated

news

tion

attention scores

Kennedy et al. (2020) Reducing the classifier’s over-
sensitivity to identity terms
Improving group fairness
Detecting biases related to
named entities

Detecting over- and under-
sensitivity to identity tokens

Mathew et al. (2021)
Prabhakaran et al.
(2019)

Balkir et al. (2022)

hate speech detection

hate speech detection

social group bias

social group bias

feature impor-
tance (SOC)
LIME, attention

sentiment analysis, sensitivity to perturbation
toxicity detection named entities analysis

hate speech and abu- social group bias necessity and
sive language detec- sufficiency

tion

Table 2: Summary of the studies that apply explainability techniques to uncover unintended biases in NLP systems.

for textual data (Feder et al., 2021a). Pradhan et al.
(2022) also suggest a causality inspired method that
identifies subsets of data responsible for particular
biases of the model. Begley et al. (2020) extend
Shapely values to attribute the overall unfairness
of an algorithm to individual input features. The
main limitation of all these methods is that they
are currently only applicable to low dimensional
tabular data. How to extend these methods to ex-
plain the unfairness of NLP models remains an
open research problem.

As abstract frameworks for connecting XAl to
fair ML, P et al. (2021) outline potential synergies
between the two research areas. Alikhademi et al.
(2021) enumerate different sources of bias, and
discuss how XAI methods can help identify and
mitigate these.

5 XAI for Fair NLP through Causality
and Robustness

The framework of causality (Pearl, 2009) is in-
voked both in fairness and explainability literature.
The promise of causality is that it goes beyond
correlations, and characterizes the causes behind
observations. This is relevant to conceptualizing
fairness since, as Loftus et al. (2018) argue, there
are situations that are intuitively different from a
fairness point of view, but that purely observational
criteria cannot distinguish.

Causality tries to capture the notion of causes of
an outcome in terms of hypothetical interventions:
if something is a true cause of a given outcome,
then intervening on this variable will change the
outcome. This notion of intervention is useful for
both detecting biases and for choosing mitigation

85

strategies. Causal interventions are also the funda-
mental notion behind counterfactual examples in
XAL It is easier for humans to identify the cause of
a prediction if they are shown minimally different
instances that result in opposite predictions. Hence,
causal explanations can serve as proofs of bias or
other undesirable correlations to developers and to
end-users.

Going beyond correlations in data and capturing
causal relations is also an effective way to increase
robustness and generalization in machine learning
models. As Kaushik et al. (2020) argue, causal
correlations are invariant to differing data distribu-
tions, while non-causal correlations are much more
context and dataset specific. Hence, models that
can differentiate between the two and rely solely on
casual correlations while ignoring the non-causal
ones will perform well beyond the strict i.i.d. set-
ting.

Non-causal, surface level correlations are often
referred to as spurious correlations, and a common
use case of XAI methods for developers is to facili-
tate the identification of such patterns. A common
motivating argument in XAI methods for debug-
ging NLP models (Lertvittayakumjorn and Toni,
2021; Zylberajch et al., 2021), as well as counter-
factual data augmentation methods (Kaushik et al.,
2020; Balashankar et al., 2021; Yang et al., 2021),
is that unintended biases are due to the model pick-
ing up such spurious associations, and XAl meth-
ods which can be used to improve the robustness
of a model against these spurious patterns will also
improve the fairness of a model as a side effect.
There is indeed evidence that methods for robust-
ness also reduce unintended bias in NLP models
(Adragna et al., 2020; Pruksachatkun et al., 2021).



However, these methods are limited in that they
can address unintended biases only insofar as the
biases are present and identifiable as token-level
spurious correlations.

6 Challenges and Future Directions

As we saw in Sec. 4 and 5, only a few studies to date
have attempted to apply explainability techniques
in order to uncover biases in NLP systems, to a
limited extent. In this section, we discuss some
possible reasons for a seeming lack of progress in
this area and outline promising directions for future
research.

Local explainability methods rely on the user to
identify examples that might reveal bias. One
issue in preventing wider adoption of XAI methods
in fair NLP stems from the local nature of most
explanation methods applicable to NLP models.
An important step in identifying fairness problems
within a model is identifying the data points where
these issues might manifest. Since local explain-
ability methods give explanations on particular data
points, it is left to the user how to pick the instances
to examine. This necessitates the user to first decide
what biases to search for before employing XAI
methods, limiting their usefulness for identifying
unknown biases.

Local explanations are not easily generalizable.
Even if an issue can be identified with a local XAI
method, it is difficult to know to what extent the in-
sight can be generalized. This is an issue because it
is often essential to know what subsets of the input
are affected by the identified biased behaviour in
order to apply effective mitigation strategies. Some
methods such as Anchors mitigate this problem
by specifying the set of examples an explanation
applies to. Other approaches use abstractions such
as high-level concepts (Feder et al., 2021b; Ne-
jadgholi et al., 2022) to provide more generalizable
insights. Principled methods to aggregate local ex-
planations into more global and actionable insights
are needed to make local explainability methods
better suited to identifying and mitigating unin-
tended biases in NLP models. Also, future NLP
research could explore global explainability meth-
ods that have been used to uncover unknown biases
(Tan et al., 2018).

Not all undesirable biases are surface-level or
non-causal. In the motivation for XAI methods,
there is strong emphasis on identifying token-level
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correlations caused by sampling bias or label bias.
Although methods that target these patterns are
shown to also improve the fairness of models, not
all sources of bias fit well into this characterization
(Hooker, 2021), and hence might be difficult to de-
tect with XAI methods that provide token-level ex-
planations. For example, Bagdasaryan et al. (2019)
show that the cost of differential privacy methods
in decreasing the accuracy of deep learning NLP
models, is much higher for underrepresented sub-
groups. A rigorous study of a model’s structure
and training process is required to discover such
bias sources.

Another issue that is common in works that ap-
proach fairness through robustness is the character-
ization of unintended biases as non-causal associa-
tions in data (Kaushik et al., 2020; Adragna et al.,
2020). In fact, it can be argued that many of the un-
desirable correlations observed in data are causal in
nature, and will likely hold in a wide variety of dif-
ferent data distributions. For example, correlations
between different genders and occupations—which
arguably is the source of the occupational gender
stereotypes picked up by NLP models (Rudinger
et al., 2018)—are not due to unrepresentative sam-
ples or random correlations in the data, but rather
underlying systemic biases in the distribution of oc-
cupations in the real world. To ensure a fair system,
researchers must make a normative decision (Blod-
gett et al., 2020) that they do not want to reproduce
this particular correlation in their model. This sug-
gests that there may be inherent limitations to the
ability of XAI methods to improve fairness of NLP
methods through improving model robustness and
generalization.

Some biases can be difficult for humans to recog-
nize. Even for biases that could be characterized
in terms of surface-level correlations, XAl methods
rely on humans to recognize what an undesirable
correlation is, but biased models are often biased
in subtle ways. For example, if the dialect bias
in a hate speech detection system is mostly me-
diated by false positives on the uses of reclaimed
slurs, this might seem like a good justification to a
user who is unfamiliar with this phenomenon (Sap
et al., 2019). More studies with human subjects are
needed to investigate whether humans can recog-
nise unintended biases that cause fairness issues
through explainability methods as well as they can
recognise simpler data biases.



Explainability methods are susceptible to fair-
washing. Anissue that has repeatedly been raised
with respect to XAl methods is the potential for
“fairwashing” biased models. This refers to tech-
niques that adversarially manipulate explanations
in order to obscure the model’s reliance on pro-
tected attributes. Fairwashing has been shown pos-
sible in rule lists (Aivodji et al., 2019), and both
gradient based and perturbation based feature at-
tribution methods (Dimanov et al., 2020; Anders
et al., 2020). This relates to the wider issue of the
faithfulness of an explainability method: if there is
no guarantee that the explanations reflect the actual
inner workings of the model, the explanations are
of little use. One solution to this problem would
be to extend certifiable robustness (Cohen et al.,
2019; Ma et al., 2021) beyond the model itself,
and develop certifiably faithful explainability meth-
ods with proofs that a particular way of testing for
bias cannot be adversarially manipulated. Another
approach to mitigate this issue is to provide the
levels of uncertainty in the explanations, giving the
end-user more information on whether to trust the
generated explanation (Zhang et al., 2019), or other
ways to calibrate user trust to the quality of the pro-
vided explanations (Zhang et al., 2020b). However,
the effectiveness of these methods depends sub-
stantially on whether the model’s predicted prob-
abilities are well-calibrated to the true outcome
probabilities. Certain machine learning models do
not meet this criterion. Specifically, the commonly
used deep learning models have been shown to
be over-confident in their predictions (Guo et al.,
2017). Calibration of uncertainties is a necessary
prerequisite, should they be used to calibrate user
trust, as over-confident predictions can be them-
selves a source of mistrust.

Fair Al is focused on outcome fairness, but XAl
is motivated by procedural fairness. Finally, it
appears that there is a larger conceptual gap be-
tween the notions of fairness that the ethical Al
community has developed, and the notion of fair-
ness implicitly assumed in motivations for XAl
methods. Namely, almost all the fairness metrics
developed in Fair ML literature aim to formalize
outcome fairness in that they are process-agnostic,
and quantify the fairness of a model on its observed
outcomes only. The type of fairness that motivates
XAl on the other hand, is closer to the concept
of procedural fairness: XAl aims to elucidate the
internal reasoning of a model, and make it trans-
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parent whether there are any parts of the decision
process that could be deemed unfair.

We observe that due to the lack of better defi-
nitions of procedural fairness, the most common
way XAI methods are applied to fairness issues is
to check whether the model uses features that are
explicitly associated with protected attributes (e.g.,
gendered pronouns). This practice promotes a sim-
ilar ideal with “fairness through unawareness” in
that it aims to place the veil of ignorance about the
protected attributes not at the level of the data fed
into the model, but into the model itself. In other
words, the best one could do with these techniques
seem to be to develop “colourblind” models which,
even if they receive explicit information about pro-
tected attributes in their input, ignore this informa-
tion when making their decisions. Although it is
simple and intuitive, we suspect that such an ap-
proach has similar issues with the much criticized
“fairness through unawareness” approach (Kusner
et al., 2017; Morse et al., 2021). More clearly spec-
ified notions of procedural fairness, as well as pre-
cise quantitative metrics similar to those that have
been developed for outcome fairness, are needed
in order to guide the development of XAl methods
that can make ML models fairer.

7 Conclusion

Publications in explainable NLP often cite fair-
ness as a motivation for the work, but the exact
relationship between the two concepts is typically
left unspecified. Most current XAI methods pro-
vide explanations on a local level through post-hoc
processing, leaving open questions about how to
automatically identify fairness issues in individ-
ual explanations, and how to generalize from local
explanations to infer systematic model bias. Al-
though the two fields of explainability and fairness
feel intuitively linked, a review of the literature re-
vealed a surprisingly small amount of work at the
intersection. We have discussed some of the con-
ceptual underpinnings shared by both these fields
as well as practical challenges to uniting them, and
proposed areas for future research.
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