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Abstract
Neural rationale models are popular for inter-
pretable predictions of NLP tasks. In these,
a selector extracts segments of the input text,
called rationales, and passes these segments
to a classifier for prediction. Since the ratio-
nale is the only information accessible to the
classifier, it is plausibly defined as the expla-
nation. Is such a characterization uncondition-
ally correct? In this paper, we argue to the
contrary, with both philosophical perspectives
and empirical evidence suggesting that ratio-
nale models are, perhaps, less rational and in-
terpretable than expected. We call for more
rigorous evaluations of these models to ensure
desired properties of interpretability are indeed
achieved. The code for our experiments is at
https://github.com/yimingz89/N
eural-Rationale-Analysis.

1 Introduction

As machine learning models are increasingly used
in high-stakes domains, understanding the reasons
for a prediction becomes more important, espe-
cially when the model is a black-box such as a neu-
ral network. While many post-hoc interpretability
methods have been developed for models operating
on tabular, image, and text data (Simonyan et al.,
2013; Ribeiro et al., 2016; Feng et al., 2018), their
faithfulness are often questioned (Adebayo et al.,
2018; Rudin, 2019; Zhou et al., 2022a).

With no resolution in sight for explaining
black box models, inherently interpretable mod-
els, which self-explain while making decisions, are
often favored. Neural rationale models, shown in
Figure 1 (top), are the most popular in NLP (Lei
et al., 2016; Bastings et al., 2019; Yu et al., 2019;
Jain et al., 2020): in them, a selector processes the
input text, extracts segments (i.e. rationale) from it,
and sends only the rationale to the predictor. Since
the rationale is the only information accessible to
the predictor, it arguably serves as the explanation
for the prediction.
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Figure 1: Top: an honest neural rationale model. We
seek to understand the selector’s process (the bold ar-
row), which should select words and phrases as rationale
in an unbiased way, leaving the prediction to the clas-
sifier which receives this rationale. Bottom: a failure
case of neural rationale models. As discussed in Sec-
tion 3, an unrestricted selector may be able to make its
own (relatively accurate) prediction, and “pass” it to the
classifier via encoding it in the selected rationale.

While the bottleneck structure defines a causal
relationship between rationale and prediction, we
caution against equating this structure with inherent
interpretability without additional constraints. No-
tably, if both the selector and the classifier are suffi-
ciently flexible function approximators (e.g. neural
networks), the bottleneck structure provides no in-
trinsic interpretability as the selector and classifier
may exploit imperceptible messages, as shown in
Figure 1 (bottom).

We perform a suite of empirical analyses to
demonstrate how rationales lack interpretability.
Specifically, we present modes of instability of
the rationale selection process under minimal and
meaning-preserving sentence perturbations on the
Stanford Sentiment Treebank (SST, Socher et al.,
2013) dataset. Through a user study, we further
show that this instability is poorly understood by
people—even those with advanced machine learn-
ing knowledge. We find that the exact form of
interpretability induced by neural rationale models,
if any, is not clear. As a community, we must criti-
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cally reflect on the interpretability of these models,
and perform rigorous evaluations about any and all
claims of interpretability going forward.

2 Related Work

Most interpretability efforts focus on post-hoc inter-
pretation. For a specific input, these methods gen-
erate an explanation by analyzing model behaviors
such as gradient (Simonyan et al., 2013; Sundarara-
jan et al., 2017) or prediction on perturbed (Ribeiro
et al., 2016; Lundberg and Lee, 2017) or reduced
(Feng et al., 2018) inputs. However, evaluations
of these methods highlight various problems. For
example, Adebayo et al. (2018) showed that many
methods can generate seemingly reasonable expla-
nations even for random neural networks. Zhou
et al. (2022a) found that many methods fail to iden-
tify features known to be used by the model. Zhou
et al. (2022b) share the same principles as us, but
also focus on general post-hoc interpretations of ar-
bitrary black-box models, while we focus on neural
rationale models.

By contrast, neural rationale models are largely
deemed inherently interpretable and thus do not
require post-hoc analysis. At a high level, a model
has a selector and a classifier. For an input sentence,
the selector first calculates the rationale as excerpts
of the input, and then the classifier makes a predic-
tion from only the rationale. Thus, the rationale
is often defined as the explanation due to this bot-
tleneck structure. The non-differentiable rationale
selection prompts people to train the selector using
policy gradient (Lei et al., 2016; Yu et al., 2019)
or continuous relaxation (Bastings et al., 2019), or
directly use a pre-trained one (Jain et al., 2020).

While rationale models have mostly been subject
to less scrutiny, some evaluations have been car-
ried out. Yu et al. (2019) proposed the notions of
comprehensiveness and sufficiency for rationales,
advocated as standard evaluations in the ERASER
(DeYoung et al., 2019) dataset. Zhou et al. (2022a)
noted that training difficulty, especially due to pol-
icy gradient, leads to selection of words known to
not influence the label in the data generative model.
Complementing these evaluations and criticisms,
we argue from additional angles to be wary of inter-
pretability claims for rationale models, and present
experiments showing issues with existing models.

Most related to our work, Jacovi and Goldberg
(2020) mention a Trojan explanation and dominant
selector as two failure modes of rationale mod-

els. We pinpoint the same root cause of a non-
understandable selector in Section 3. However,
they favor rationales generated after the prediction,
while we will argue for rationales being generated
prior to the prediction. Also, in their discussion of
contrastive explanations, their proposed procedure
runs the model on out-of-distribution data (sen-
tence with some tokens masked), potentially lead-
ing to arbitrary predictions due to extrapolation, a
criticism also argued by Hooker et al. (2018).

3 Philosophical Perspectives

In neural rationale models, the classifier predic-
tion causally results from the selector rationale, but
does this property automatically equate rationale
with explanation? We first present a “failure case.”
For a binary sentiment classification, we first train
a (non-interpretable) classifier c′ that predicts on
the whole input. Then we define a selector s′ that
selects the first word of the input if the prediction
is positive, or the first two words if the prediction
is negative. Finally, we train a classifier c to imi-
tate the prediction of c′ but from the rationale. The
c′ → s′ → c model should achieve best achievable
accuracy, since the actual prediction is made by
the unrestricted classifier c′ with full input access.
Can we consider the rationale as explanation? No,
because the rationale selection depends on, and is
as (non-)interpretable as, the black-box c′. This
failure case is shown in Figure 1 (bottom). Re-
cently proposed introspective training (Yu et al.,
2019) could not solve this problem either, as the
selector can simply output the comprehensive ra-
tionale along with the original cue of first one or
two words, with only the latter used by the classi-
fier1. In general, a sufficiently powerful selector
can make the prediction at selection time, and then
pass this prediction via some encoding in the se-
lected rationale for the classifier to use.

To hide the “bug,” consider now s′ selecting the
three most positive or negative words in the sen-
tence according to the c′ prediction (as measured
by embedding distance to a list of pre-defined posi-
tive/negative words). This model would seem very
reasonable to a human, yet it is non-interpretable
for the same reason. To recover a “native” neural
model, we could train a selector s to imitate c′ → s′

via teacher-student distillation (Hinton et al., 2015),
and the innocent-looking s → c rationale model

1In fact, the extended rationale helps disguise the problem
by appearing as much more reasonable.
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remains equally non-interpretable.
Even without the explicit multi-stage supervi-

sion above, a sufficiently flexible selector s (e.g. a
neural network) can implicitly learn the c′ → s′

model and essentially control the learning of the
classifier c, in which case the bottleneck of suc-
cinct rationale affords no benefits of interpretabil-
ity. So why does interpretability get lost (or fail to
emerge)? The issue arises from not understanding
the rationale selection process, i.e. selector s. If
it is well-understood, we could determine its true
logic to be c′ → s′ and reject it. Conversely, if
we cannot understand why a particular rationale is
selected, then accepting it (and the resulting predic-
tion) at face value is not really any different from
accepting an end-to-end prediction at face value.

In addition, the selector-classifier decomposition
suggests that the selector should be an “unbiased
evidence collector”, i.e. scanning through the input
and highlighting all relevant information, while the
classifier should deliberate on the evidence for each
class and make the decision. Verifying this role of
the selector would again require its interpretability.

Finally, considering the rationale model as a
whole, we could also argue that the rationale selec-
tor should be interpretable. It is already accepted
that the classifier can remain a black-box. If the
selector is also not interpretable, then exactly what
about the model is interpretable?

Architecturally, we can draw an analogy between
the rationale in rationale models and the embedding
representation in a typical end-to-end classifier pro-
duced at the penultimate layer. A rationale is a
condensed feature extracted by the selector and
used by the classifier, while, for example in image
models, the image embedding is the semantic fea-
ture produced by the feature extractor and used by
the final layer of linear classifier. Furthermore, both
of them exhibit some interpretable properties: ra-
tionales represent the “essence” of the input, while
the image embedding space also seems semanti-
cally organized (e.g. Figure 2 showing ImageNet
images organized in the embedding space). How-
ever, this embedding space is rarely considered on
its own as the explanation for a prediction, exactly
because the feature extractor is a black-box. Sim-
ilarly, the rationales by default should not qualify
as the explanation either, despite its textual nature.

Finally, from a practical perspective, explana-
tions should help humans understand the model’s
input-output behavior. Such a purpose is fulfilled

Figure 2: Embedding space visualization of an Ima-
geNet classifier. Image from https://cs.stanf
ord.edu/people/karpathy/cnnembed/.

when the human understands not only why an ex-
planation leads to an output, but also how the ex-
planation is generated from the input in the first
place. Our emphasis on understanding the ratio-
nale selection process fulfills the latter requirement.
Such a perspective is also echoed by Pruthi et al.
(2020), who argued that the practical utility of ex-
planations depends crucially on human’s capability
of understanding how they are generated.

4 Empirical Investigation

As discussed above, truly interpretable rationale
models require an understanding of the rationale
selection process. However, since the selector is
a sequence-to-sequence model, for which there is
no standard methods for interpretability, we focus
on a “necessary condition” setup of understanding
the input-output behavior of the model in our em-
pirical investigation. Specifically, we investigate
rationale selection changes in response to meaning-
preserving non-adversarial perturbation of individ-
ual words in the input sentence.

4.1 Setup

On the 5-way SST dataset (Socher et al., 2013),
we trained two rationale models, a continuous re-
laxation (CR) model (Bastings et al., 2019) and
a policy gradient (PG) model (Lei et al., 2016).
The PG model directly generates binary (i.e. hard)
rationale selection. The CR model uses a [0, 1] con-
tinuous value to represent selection and scales the
word embedding by this value. Thus, we consider a
word being selected as rationale if this value is non-
zero. Our CR model achieves 47.3% test accuracy
with 24.9% rationale selection rate (i.e. percentage
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of words in the input selected as rationale), and PG
model 43.3% test accuracy with 23.1% rationale
selection rate, consistent with those obtained by
Bastings et al. (2019, Figure 4). Additional details
are in Appendix A.

4.2 Sentence Perturbation Procedure
The perturbation procedure changes a noun, verb,
or adjective as parsed by NLTK2 (Loper and Bird,
2002) with two requirements. First, the new sen-
tence should be natural (e.g., “I observed a movie”
is not). Second, its meaning should not change (e.g.
adjectives should not be replaced by antonyms).

For the first requirement, we [MASK] the can-
didate word and use the pre-trained BERT (Devlin
et al., 2019) to propose 30 new choices. For the sec-
ond requirement, we compute the union of words
in the WordNet synset associated with each defini-
tion of the candidate words (Fellbaum, 1998). If
the two sets share no common words, we mark the
candidate invalid. Otherwise, we choose the top
BERT-predicted word as the replacement.

We run this procedure on the SST test set, and
construct the perturbed dataset from all valid re-
placements of each sentence. Table 1 lists some
example perturbations (more in Appendix B). Table
2 shows the label prediction distribution on the orig-
inal test set along with changes due to perturbation
in parentheses, and confirms that the change is over-
all very small. Finally, a human evaluation checks
the perturbation quality, detailed in Appendix C.
For 100 perturbations, 91 were rated to have the
same sentiment value. Furthermore, on all 91 sen-
tences, the same rationale is considered adequate
to support the prediction after perturbation as well.

A pleasurably jacked-up piece/slice of action moviemaking .

The use/usage of CGI and digital ink-and-paint make the
thing look really slick .

Table 1: Sentence perturbation examples, with the origi-
nal word in bold replaced by the word in italics.

0 1 2 3 4

CR 8.0 (-0.6) 41.5 (+1.5) 8.9 (-0.4) 28.6 (+1.0) 13.0 (-1.5)
PG 8.6 (-1.6) 40.7 (-1.3) 1.6 (-0.2) 33.9 (+5.0) 15.2 (-1.9)

Table 2: The percentage of predicted labels on the origi-
nal test set, as well as the differences to the that on the
perturbation sentences in parentheses.

4.3 Results
Now we study the effects of perturbation on ratio-
nale selection change (i.e. an originally selected

2i.e. NN, NNS, VB, VBG, VBD, VBN, VBP, VBZ, and JJ
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Figure 3: Scatter plots showing three quartiles of dis-
tance between indirect rationale change to perturbation,
grouped by sentence length.

word getting unselected or vice versa). We use only
perturbations that maintain the model prediction,
as in this case, the model is expected to use the
same rationales according to human evaluation.
Qualitative Examples Table 3 shows examples
of rationale changes under perturbation (more in
Appendix D). Indeed, minor changes can induce
nontrivial rationale change, sometimes far away
from the perturbation location. Moreover, there
is no clear relationship between the words with
selection change and the perturbed word.

PG The story/narrative loses its bite in a last-minute happy
ending that ’s even less plausible than the rest of the picture .

PG A pleasant ramble through the sort of idoosyncratic terrain
that Errol Morris has/have often dealt with ... it does possess
a loose , lackadaisical charm .

CR I love the way that it took chances and really asks you to
take these great/big leaps of faith and pays off .

CR Legendary Irish writer/author Brendan Behan ’s memoir ,
Borstal Boy , has been given a loving screen transferral .

Table 3: Rationale change example. Words selected in
the original only, perturbed only, and both are shown in
red, blue, and green, respectively.
Rationale Change Freq. Quantitatively, we first
study how often rationales change. Table 4 shows
the count frequency of selection changes. Around
30% (non-adversarial) perturbations result in ra-
tionale change (i.e. non-zero number of changes).
Despite better accuracy, the CR model is less stable
and calls for more investigation into its selector.

# Change 0 1 2 3 4 ≥ 5

CR 66.5% 25.5% 6.8% 1.0% 0.1% 0.1%
PG 77.4% 21.4% 1.1% 0.1% 0% 0%

Table 4: Frequency of number of selection changes.

Locations of Selection Change Where do these
changes occur? 29.6% and 78.3% of them happen
at the perturbed word for the CR and PG models
respectively. For the CR model, over 70% of ra-
tionale changes are due to replacements of other
words; this statistic is especially alarming. For
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Figure 4: Locations of all selection changes, with each
one shown as a dot.
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Figure 5: For sentences with a certain number of valid
perturbations, the corresponding column of bar chart
shows the count frequency of perturbations that result
in any rationale change.

these indirect changes, Figure 3 shows the quartiles
of distances to the perturbation for varying sentence
lengths. They are relatively constant throughout,
suggesting that the selection uses mostly local in-
formation. However, the “locality size” for CR is
about twice as large, and changes often occur five
or more words away from the perturbation.

We also compute the (absolute) location of the ra-
tionale changes, as plotted in Figure 4, where each
dot represents an instance. The rationale changes
are distributed pretty evenly in the sentence, mak-
ing it hard to associate particular perturbation prop-
erties to the resulting selection change location.
Sentence-Level Stability Are all the rationale
changes concentrated on a few sentences for which
every perturbation is likely to result in a change,
or are they spread out across many sentences? We
measure the stability of a sentence by the number
of perturbations inducing rationale changes. Obvi-
ously, a sentence with more valid perturbations is
likely to also have more change-inducing ones, so
we plot the frequency of sentences with a certain
stability value separately for different total num-
bers of perturbations in Figure 5. There are very
few highly unstable sentences, suggesting that the
selection change is a common phenomenon to most
of the sentences, further adding to the difficulty of

a comprehensive understanding of the selector.
Part of Speech Analysis Our final automated
analysis studies the part-of-speech (POS) composi-
tion of selection changes. As Table 5 shows, adjec-
tives and adverbs are relatively stable, as expected
because they encode most sentiments. By contrast,
nouns and verbs are less stable, probably because
they typically represent factual “content” that is
less important for prediction. The CR model is
especially unstable for other POS types such as
determiner and preposition. Overall, the instabil-
ity adds to the selector complexity and could even
function as subtle “cues” described in Section 3.
User Study on Selector Understanding While
the automated analyses reveal potential obstacles
to selector understanding, ultimately the problem
is the lack of understanding by users. The most
popular way to understand a model is via input-
output examples (Ribeiro et al., 2020; Booth et al.,
2021), and we conduct a user study in which we ask
participants (grad students with ML knowledge) to
match rationale patterns with sentences before and
after perturbation on 20 instances, after observing
10 true model decisions (details in Appendix E).
Unsurprisingly, participants get 45 correct out of
80 pairs, basically at the random guess level, even
as some participants use reasons related to gram-
mar and atypical word usage (which are apparently
ineffective), along with “lots of guessing”. This
result confirms the lack of selector understanding
even under minimal perturbation, indicating more
severity for completely novel inputs.

5 Conclusion

We argue against the commonly held belief that
rationale models are inherently interpretable by
design. We present several reasons, including
a counter-example showing that a reasonable-
looking model could be as non-interpretable as a
black-box. These reasons imply that the missing
piece is an understanding of the rationale selec-
tion process (i.e. the selector). We also conduct
a (non-adversarial) perturbation-based study to in-
vestigate the selector of two rationale models, in
which automated analyses and a user study confirm
that they are indeed hard to understand. In particu-
lar, the higher-accuracy model (CR) fares worse in
most aspects, possibly hinting at the performance-
interpretability trade-off (Gunning and Aha, 2019).
These results point to a need for more rigorous anal-
ysis of interpretability in neural rationale models.
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POS (frequency) noun (19.2%) verb (14.3%) adj. (10.1%) adv. (5.8%) proper n. (4.4%) pron. (4.9%) other (41.3%)

CR change / all 37.1% / 34.3% 21.9% / 16.0% 14.2% / 24.8% 8.9% / 11.3% 3.5% / 5.8% 2.5% / 1.0% 11.9% / 6.8%
PG change / all 42.7% / 33.6% 30.2% / 16.6% 20.6% / 30.6% 2.4% / 12.9% 1.8% / 3.4% 0.4% / 0.5% 1.9% / 2.4%

Table 5: Part of speech (POS) statistics. The top row shows the POS composition of the test set sentences. The
bottom two rows show POS composition for changed rationale words and for all rationale words.
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A Additional Details on the Experimental Setup

A.1 Training
The models we train are as implemented in (Bastings et al., 2019). The hyperparameters we use are 30
percent for the word selection frequency when training the CR model and L0 penalty weight 0.01505
when training the PG model. Training was done on a MacBook Pro with a 1.4 GHz Quad-Core Intel
Core i5 processor and 8 GB 2133 MHz LPDDR3 memory. The training time for each model was around
15 minutes. There are a total of 7305007 parameters in the CR model and 7304706 parameters in the
PG model. The hyperparameter for the CR model is the word selection frequency, ranging from 0% to
100%, whereas the hyperparameter for the PG model is the L0 penalty weight which is a nonnegative real
number (for penalizing gaps in selections).

These hyperparameter were configured with the goal that both models would select a similar fraction
of total words as rationale. This was done manually. Only one CR model was trained (with the word
selection frequency set to 30 percent). Then, a total of 7 PG models were trained, with L0 penalty weight
ranging from 0.01 to 0.025. Then, the closest matching result to the CR model in terms of word selection
fraction, which was an L0 penalty of 0.01505, was used.

The CR model (with 30% word selection frequency) achieves a 47.3% test accuracy with a 24.9%
rationale selection rate, and the PG model (with L0 penalty of 0.01505) achieves a 43.3% test accuracy
with a 23.1% selection rate, consistent with those obtained by Bastings et al. (2019, Figure 4). The CR
model achieves a validation accuracy of 46.0% with a 25.1% rationale selection rate, and the PG model
achieves a 41.1% validation accuracy with a 22.9% selection rate, comparable to the test results.

A.2 Dataset
We use the Stanford Sentiment Treebank (SST, Socher et al., 2013) dataset with the exact same prepro-
cessing and train/validation/test split as given by Bastings et al. (2019). There are 11855 total entries
(each are single sentence movie reviews in English), split into a training size of 8544, a validation size of
1101, and a test size of 2210. The label distribution is 1510 sentences of label 0 (strongly negative), 3140
of label 1 (negative), 2242 of label 2 (neutral), 3111 of label 3 (positive), and 1852 of label 4 (strongly
positive). We use this dataset as is, and no further pre-processing is done. The dataset can be downloaded
from the code provided by Bastings et al. (2019).

A.3 Sentence Perturbation
The data perturbation was done on the same machine with specs described in Appendix A. This procedure
was done once and took around an hour. This perturbation was an automated procedure using the BERT
and WordNet synset intersection as a heuristic for word substitutions. As a result, we did not collect any
new data which requires human annotation or other work.
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B Additional Examples of Sentence Perturbation

Table 6 shows ten randomly sampled perturbations.

There are weird resonances between actor and role/character here , and they ’re not exactly flattering .

A loving little/short film of considerable appeal .

The film is really not so much/often bad as bland .

A cockamamie tone poem pitched precipitously between swoony lyricism and violent catastrophe ... the most aggressively nerve-
wracking and screamingly neurotic romantic comedy in cinema/film history .

Steve Irwin ’s method is Ernest Hemmingway at accelerated speed and volume/mass .

The movie addresses a hungry need for PG-rated , nonthreatening family movies/film , but it does n’t go too much further .

... the last time I saw a theater full of people constantly checking their watches/watch was during my SATs .

Obvious politics and rudimentary animation reduce the chances/chance that the appeal of Hey Arnold !

Andy Garcia enjoys one of his richest roles in years and Mick Jagger gives his best movie/film performance since , well , Performance .

Beyond a handful of mildly amusing lines ... there just is/be n’t much to laugh at .

Table 6: Ten randomly sampled sentence perturbation examples given in a user study, with the original word shown
in bold replaced by the word in italics.

C Description of the Human Evaluation of Data Perturbation

We recruited five graduate students with ML experience (but no particular experience with interpretable
ML or NLP), and each participant was asked to answer questions for 20 sentence perturbations, for a total
of 100 perturbations. An example question is shown below:

The original sentence (a) and the perturbed sentence (b), as well as the selected
rationale on the original sentence (in bold) are:

a There are weird resonances between actor and role here , and they ’re not
exactly flattering .

b There are weird resonances between actor and character here , and they ’re not
exactly flattering .

The original prediction is: negative.
1. Should the prediction change, and if so, in which way:
2. If yes:

(a) Does the changed word need to be included or removed from the rationale?
(b) Please highlight the new rationale in red directly on the new sentence.

The study takes less than 15 minutes, is conducted during normal working hours with participants being
grad students on regular stipends, and is uncompensated.
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D Additional Rationale Change Examples

Table 7 shows additional rationale change examples.

PG This delicately observed story/tale , deeply felt and masterfully stylized , is a triumph for its maverick
director.

PG Biggie and Tupac is so single-mindedly daring , it puts/put far more polished documentaries to shame.

PG Somewhere short of Tremors on the modern B-scene : neither as funny nor as clever , though an agreeably
unpretentious way to spend/pass ninety minutes .

PG The film overcomes the regular minefield of coming-of-age cliches with potent/strong doses of honesty and
sensitivity .

PG As expected , Sayles ’ smart wordplay and clever plot contrivances are as sharp as ever , though they may be
overshadowed by some strong/solid performances .

CR The animated subplot keenly depicts the inner struggles/conflict of our adolescent heroes - insecure ,
uncontrolled , and intense .

CR Funny and , at times , poignant , the film from director George Hickenlooper all takes/take place in Pasadena
, “ a city where people still read . ”

CR It would be hard to think of a recent movie that has/have worked this hard to achieve this little fun.

CR This road movie gives/give you emotional whiplash , and you ’ll be glad you went along for the ride .

CR If nothing else , this movie introduces a promising , unusual kind/form of psychological horror .

Table 7: Additional rationale change example. Words selected in the original only, perturbed only, and both are
shown in red, blue, and green, respectively.

E Description of the User Study on Rationale Change

Participants were first given 10 examples of rationale selections (shown in bold) on the original and
perturbed sentence pair made by the model, with one shown below:

orig: Escapism in its purest form .
pert: Escapism in its purest kind .

Then, they were presented with 20 test questions, where each question had two rationale assignments, one
correct and one mismatched, and they were asked to determine which was the correct rationale assignment.
An example is shown below:

a orig: Benefits from a strong performance from Zhao , but it ’s Dong Jie ’s face
you remember at the end .
pert: Benefits from a solid performance from Zhao , but it ’s Dong Jie ’s face you
remember at the end

b orig: Benefits from a strong performance from Zhao , but it ’s Dong Jie ’s face
you remember at the end .
pert: Benefits from a solid performance from Zhao , but it ’s Dong Jie ’s face
you remember at the end

In your opinion, which pair (a or b) shows the actual rationale selection by the model?

In the end, we ask the participants the following question for any additional feedback.

Please briefly describe how you made the decisions (which could include guessing),
and your impression of the model’s behavior.

The study takes less than 15 minutes, is conducted during normal working hours with participants being
grad students on regular stipends, and is uncompensated.
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