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Abstract

Large-scale surveys are a widely used instru-
ment to collect data from a target audience.
Beyond the single individual, an appropriate
analysis of the answers can reveal trends and
patterns and thus generate new insights and
knowledge for researchers. Current analy-
sis practices employ shallow machine learn-
ing methods or rely on (biased) human judg-
ment. This work investigates the usage of
state-of-the-art NLP models such as BERT to
automatically extract information from both
open- and closed-ended questions. We also
leverage explainability methods at different
levels of granularity to further derive knowl-
edge from the analysis model. Experiments
on EMS—a survey-based study researching in-
fluencing factors affecting a student’s career
goals—show that the proposed approach can
identify such factors both at the input- and
higher concept-level.

1 Introduction

Surveys and questionnaires are prevalent tools to
inquire about an audience and collect ideas, opin-
ions, and thoughts. Common examples are request-
ing user feedback concerning a specific product or
service, regular reports for scientific studies that
involve human subjects, and census questionnaires
directed to a certain demographic population.

Carrying out an appropriate and thorough analy-
sis of the collected answers is of major relevance
for researchers both in the industry and academia.
However, the generated data are often a combi-
nation of open-ended and closed-ended questions.
While the former gathers a participant’s thoughts
in text form, the latter consists in selecting one
(or more) of the options specified by the survey
designer. Utilizing both types remains a popular
choice as closed-ended questions are very suitable
to derive statistical conclusions but may lack details
which are in turn provided by open-ended answers.

Currently, the two dominant analysis prac-
tices comprise traditional closed-vocabulary and
open-vocabulary methods (Eichstaedt et al., 2021).
Whereas the former introduces human biases and
is resource-intensive, the latter overcomes these
challenges with the help of Natural Language Pro-
cessing (NLP) techniques. Nonetheless, both ap-
proaches fail to consider contextual information
and do not leverage currently available NLP archi-
tectures to deal with more complex patterns.

In this work, we bridge the gap in research and
investigate the usage of deep-learning-based meth-
ods from NLP and explainability techniques to ex-
tract knowledge and interpret correlations from sur-
veys presenting both structured and unstructured
components. Our contribution can be summarized
as follows:

(1) We apply a popular transformer architecture
(DistilBERT) (Sanh et al., 2019) to open-ended
questions. This enables our approach to extract
contextual correlations from the text with high pre-
cision compared to traditional methods.

(2) Due to the model’s black-box characteristics,
we utilize post-hoc explainability methods to in-
terpret the extracted correlations. Specifically, we
utilize several variants of SHapley Additive exPla-
nations (SHAP) (Lundberg and Lee, 2017) to ana-
lyze both instance-level feature importance as well
as high-level concepts learned by the model (Yeh
et al., 2020). These methods are applied to several
components to generate a holistic understanding of
the model used for the analysis.

(3) Our approach delivers promising results on
the EMS 1.0 dataset - studying influencing factors
in students’ career goals (Gilmartin et al., 2017).
First, it identifies the most relevant factors from
closed-ended responses with high precision. Sec-
ond, it also automatically reveals influencing fac-
tors from the open-ended text answers.
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2 Related Work

2.1 The EMS Study and Entrepreneurial
Behavior Predictors

In this paper, we work with the Engineering Major
Survey (EMS) longitudinal study of students’ ca-
reer goals by Gilmartin et al. (2017). Analysis of
the contents of this study was previously conducted
mainly by the social sciences with a focus on qual-
itative approaches to extract the most influential
variables on career goals (Grau et al., 2016; Levine
et al., 2017). Quantitative correlation between vari-
ables was previously explored by Atwood et al.
(2020) relating Social Cognitive Career Theory
(SCCT) (Lent et al., 1994) to different predefined
topics for the purpose of survey design, such as
students demographics, first-generation status, and
family background. Schar et al. (2017) meanwhile
focused on the variables Engineering Task Self-
Efficacy and Innovation Self-Efficacy through ex-
plainable regression models.

2.2 Analysis of Open-ended Survey Question
in the Social Sciences

In the social sciences, textual analysis has a long
history of utilizing manual analysis methods such
as Grounded Theory Method (GMT) Bryant and
Charmaz (2007). However recently, automated text
analysis has been used for both open- and closed-
vocabulary methods.

Closed-vocabulary methods: Analysis is done
by working with a hand-crafted closed-vocabulary
such as LIWC (Pennebaker et al., 2001) and calcu-
lating the relative frequencies of dictionaries with
respect to the text (Eichstaedt et al., 2021).

Open-vocabulary methods: Following the
GMT method, these approaches aim to discover
topics from data, rather than from a predefined
word list (Roberts et al., 2014). For instance,
Guetterman et al. (2018) uses NLP techniques
such as topic modeling and clustering for textual
analysis of survey questions. These approaches
were mostly utilizing well-known bag-of-words
methods such as Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) and Latent Semantic
Analysis (LSA) (Deerwester et al., 1990). Further
work included clustering semantic distances in
adjectives for situation-taxonomies (Parrigon et al.,
2017).

2.3 Post-Hoc Explainability

Methods from eXplainable Artificial Intelligence
(XAI) (Arrieta et al., 2020; Mosca et al., 2021) have
recently gained popularity as deep architectures—
such as transformers—behave like black-boxes
(Brown et al., 2020; Devlin et al., 2019). In partic-
ular, post-hoc explainability techniques are able to
explain the why behind a certain prediction even if
the model is not inherently interpretable.

The literature has classified existing interpretabil-
ity approaches in structured taxonomies depending
on their core characteristics (Madsen et al., 2021;
Doshi-Velez and Kim, 2017). We identify the fol-
lowing two broad categories as the most relevant
for our research objectives and methodology.

Feature attribution methods: They assign each
input feature with a relevance score describing its
importance for the model prediction. Approaches
such as SAGE (Covert et al., 2020) and GAM
(Ibrahim et al., 2019) produce global explanations,
i.e. at the dataset level. Others, instead, focus on
generating insights at the instance-level, i.e. about
a specific model prediction. Prominent local meth-
ods are LIME (Ribeiro et al., 2016) and SHAP
(Lundberg and Lee, 2017).

Concept-based methods: Concept-oriented
techniques aim at extracting human-interpretable
concepts, consisting of sets of (text) features from
several input samples sharing similar activation
patterns within the model. Prominent approaches
are TCAV (Kim et al., 2018), ACE (Ghorbani
et al., 2019), and ConceptSHAP (Yeh et al., 2020).
The latter is unsupervised—i.e. it does not require
a predefined list of concepts to test for—and thus
particularly relevant for our methodology.

Please note that these explainability techniques
can be applied to the whole model—i.e. from in-
put to output—or sub-components of it, such as
(groups of) layers and neurons (Sajjad et al., 2021).

3 Methodology

3.1 EMS Data

We use the EMS 1.0 data as our data source and pre-
diction target. The EMS study 1.0 from 2015 con-
sists of data from 7,197 students enrolled across 27
universities in the United States. The study poses
a mix of closed and free-text questions across 8
different topics, ranging from background charac-
teristics to self-efficacy and career goals. More de-
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Figure 1: Model architecture combining both text and numerical (i.e. categorical) feature classification architec-
tures. The XORs indicate different model choices for various sub-components.

tailed descriptions of these questions can be found
in Gilmartin et al. (2017) or in a more condensed
form in Appendix A of this paper.

While most of the questions in the survey are
multiple-choice, referred to as numerical or cate-
gorical, two questions require open-text answers.
Q22 asks about the short-term plans of students
within five years of graduating while the Inspire
question, asks how the survey itself influenced the
thought process of the students towards their career
goals.

The independent variable we are trying to pre-
dict is Q20 also named Career goal in the survey
and asks for the likelihood of a person to pursue
a career in 8 distinct circumstances, ranging from
corporate employee to non-profit founder. Each of
these cases is given a Likert score from 0 to 4 repre-
senting the likelihood from highly unlikely to very
likely. In our model, we use both the numerical
responses from the 8 topics as well as the free-text
answers to predict career preferences.

3.2 Model Architecture

The architecture for the prediction task is illustrated
in Figure 1 and can be split into three logical parts.
The first section (top left) deals with the open text
variables and is based on DistilBERT and embed-
ding layers. The second input section (top right),
processes the numerical features pertinent to each

topic through a series of Fully Connected (FC) lay-
ers.

After being processed in parallel, the latent rep-
resentations of each open-text question and each
topic are concatenated and processed through an-
other FC block, before generating the final predic-
tion.

The output is generated by two distinct heads: a
regression task trained on mean absolute error loss
approximating the numerical values of the subques-
tions of Q20 and a classification output trained with
a cross-entropy loss, predicting general favorable
or unfavorable tendencies. In each case, there are
eight individual outputs for each prediction, one
for each task.

Open-end text variables: The main part of the
text processing architecture is based on DistilBERT
(Sanh et al., 2019), which is utilized without fine-
tuning to create text representations for the follow-
ing layers. The four branching architecture choices
in this part include (1) the use of the embedding
vector encoding the CLS token, (2) mean averaging
over word token embedding vectors (Wolf et al.,
2020), (3) feeding the word token vectors through
a BiLSTM layer (Graves and Schmidhuber, 2005)
and (4) a single eight-dimensional embedding layer
trained on the free-text task data.
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Numerical feature variables: This part of the
architecture takes all recorded numerical features
(minus the covariate) as input and groups them by
topic according to the SCCT framework. Each
topic is fed through separate FC layer model
streams before being concatenated with the rep-
resentation from the text variables. While most
features can be input directly as a single value,
some represent nominal choices and are input as
one-hot encoding vectors instead.

3.3 Model Explanations

We apply several post-hoc explainability methods
to both explain specific model predictions and gain
a holistic understanding of what our model has
learned.

Low-level feature and neuron explanations
We employ SHAP (Lundberg and Lee, 2017) to
compute local and global feature relevance expla-
nations. This enables us to quantify the most im-
portant input components in terms of overall model
accuracy, but also to identify the features domi-
nating a specific prediction (Wich et al., 2021).
Specifically, we (1) calculate and compare SHAP
values for both the text and numerical value em-
beddings. Then, we (2) look at which parts of the
text input trigger the neurons presenting the highest
activation in the previous analysis. Finally, we (3)
compute SHAP values for the input text w.r.t. the

final model prediction. Figure 2 shows a detailed
overview of all SHAP explanation experiments and
how they relate to the various model inputs and
inner components.

High-level concept explanations: We utilize
ConceptSHAP (Yeh et al., 2020) to understand
how the model captures and organizes higher-level
information for its predictions. This information
is extracted in the form of concepts, i.e. clusters
of embedding vectors each summarized by a con-
cept vector ci which acts as the cluster’s centroid.
Beyond their extraction, we (1) use the K near-
est neighbors of ci to describe each concept, (2)
measure the influence of each concept for a sin-
gle prediction, and (3) report completeness scores -
i.e. how well the set of extracted concepts describe
the model’s behavior (Yeh et al., 2020). Analo-
gous to Figure 2 for SHAP experiments, Figure 12
(See Appendix C) shows a detailed overview of all
ConceptSHAP explanation experiments and how
they relate to the various model inputs and inner
components.

4 Results

Results are presented in two distinct sections.
Firstly, we present the numerical results for the
prediction task in the case of both the regression
and the classification heads for the whole architec-
ture. The performance here is evaluated through
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Architecture T1 T2 T3 T4 T5 T6 T7 T8

Q22 no T
C 51.66 60.10 56.89 44.61 48.40 51.85 52.50 63.70
R 53.82 51.36 50.82 58.75 43.63 42.24 46.71 62.40

Ins. no T
C 46.66 38.20 40.68 42.20 50.21 43.48 46.08 42.69
R 42.26 39.79 36.07 37.77 37.10 41.79 41.88 35.48

Q22+Ins. no T
C 45.69 59.87 52.31 53.11 47.92 59.71 50.91 51.12
R 63.48 47.46 50.59 45.20 41.06 41.29 39.86 58.73

No text all T
C 50.85 53.34 61.03 52.40 57.03 67.88 61.02 72.65
R 50.79 54.17 61.58 57.33 58.94 56.91 59.08 74.65

Q22 all T
C 63.01 60.74 63.53 60.87 50.77 57.76 54.90 73.64
R 59.69 63.64 59.59 55.84 56.62 56.03 62.66 76.23

Ins. all T
C 57.23 59.08 57.63 54.22 54.68 57.48 65.30 69.24
R 48.33 47.00 51.49 50.45 48.92 46.12 58.49 72.47

Q22+Ins. all T
C 58.71 57.52 59.86 55.51 55.16 58.56 62.40 71.55
R 59.49 54.62 63.27 55.50 56.83 49.58 56.60 73.61

Table 1: F1 Scores for the combined model, utilizing different parts of the input data. Architectures differ based
on which parts of the input they use. Question 22 (Q22) and Question Inspire (Ins.) are free text questions, tabular
data (T) is counted separate. All numbers are reported for performance on classification (C) and regression (R)
tasks. Best model for each task (T1 to T8) in bold.

macro F1 score for all eight individual topic pre-
dictions. Secondly, we show explanations for these
model predictions through explainability frame-
works SHAP and ConceptSHAP.

4.1 Task Performance
We conducted a variety of experiments on different
sub-parts of the architecture and finally on different
overall combinations of features for the architecture
presented in Figure 1.

Text-based prediction We tested four different
configurations of the free-text part of the model
architecture, each with a different mode to generate
embeddings as described in section 3.2. Results
are taken individually for each of the eight tasks
and for both regression and classification heads. A
stripped-down version of these results for task 8
Founding for-profit can be found in Table 2. The
full table of results can be found in Appendix D.

CLS Mean BiLSTM Embedding
C 60.66 63.70 37.88 49.66
R 53.96 62.40 58.18 50.27

Table 2: F1 Scores for the Q22 text input, predicting
task 8 (T8) for each architecture. Best model in bold.

In summary, the mean average model performed
best on the label 8 task, scoring an F1 score of
63.70% for the classification and 62.40% for the

regression task. On six of the other tasks, the mean-
model performed better than the other models. The
classification task was overall easier to achieve,
yielding higher scores across all tasks with the no-
table exception of task 4.

Numerical variable-based prediction In this
part of the evaluation, we ran the numerical vari-
able part of the architecture without any text inputs
to compare results on the 8 tasks (T1 to T8). We
evaluated the input of each of the 8 SCCT topics
individually, as well as on the combination of all
topics for prediction.

The best performing model utilized all available
topics concatenated directly before processing with
a mean F1 score of 72.65% (C) for the classification
and 74.65% (R) for the regression head on task 8.
The full list of results is available in Appendix D.
Based on the numerical variables only, it is unclear
whether the classification or the regression head
performed better overall since performance turned
out to be highly task and architecture-dependent.

Combined performance The overall perfor-
mance of the model is evaluated for a variety of
feature combinations. For all the cases we chose
the best performing combinations of the architec-
ture for text-based prediction and the concatenated
input of all SCCT topics for the numerical variable
input. The combination of possible features is then
for text input either no text, Q22, the Inspire ques-
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(a) Global expl., embedding and numerical feature inputs (b) Global expl., text embeddings only

(c) Local explanation: all features (d) Local explanation: text embeddings only

Figure 3: SHAP values for all features (left) and text embedding only (right). Global explanations (top) and local
explanations (bottom). The higher in magnitude the value is, the more important a feature is for the model, while
a positive value contributes to a prediction value of 1 and a negative value to a class value of 0. See appendix E for
a larger scale version of (c) and (d).

tion, as well as all numerical topic variables or none
of them resulting in 8 total possible combinations.

The full evaluation of these input variations is
shown in Table 1. Best results are achieved by the
model combining Q22 text input with the full set
of SCCT topics, resulting in a macro F1 score of
73.64% (C) for classification and 76.23% (R) for
regression. The Inspire text variable instead con-
tributes negatively across tasks as well as scoring
the worst for singular performance at 42.69% (C)
and 35.48% (R) F1 score. Our best model thus
uses all available numerical features, as well as
the free-text input from Q22 as input, processing
the DistilBERT embedding into a mean sentence
embedding vector and a regression head output for
prediction.

4.2 Interpretability examples

For simplicity, we present explanations for the
model reporting the best performance (see Table
1). For the first set of feature attribution explana-
tions, we focus on the eighth head—capturing the
likelihood of starting a for-profit company. For
the concept-based explanations, instead, we exam-
ine all heads as concepts describe the information
captured by the model overall.

Low-level feature and neuron explanations
We begin by looking at the global importance of

numerical features and text embeddings w.r.t. the
model prediction. As one can see in Figure 3, the
ten most important features are numerical features
and no single embedded word is as relevant for the
model. This is coherent with the observation in sec-
tion 4.1 that additionally considering text led only
to a slight performance improvement. Moreover,
we can observe that the four most relevant features
are q14new, q17give, q18sell, and q30aparr, which
are particularly related with entrepreneurial behav-
ior.

Figure 3 also shows two local explanations re-
sulting from the first experiment. These again show
the SHAP values for the text embeddings and the
numerical features. The colors indicate whether the
features push the prediction in a positive (pink for
class 1) or negative (blue for class 0) direction. The
strength of each feature’s contribution is indicated
by the length of its corresponding segment. Taking
variable q14cnew as an example, low feature values
impact the model negatively, while high values im-
pact it positively, while in-between feature values
land in between those values.

Examples of local explanations generated by the
second and third experiments are visualized in Fig-
ure 4. In particular, we can observe the text fea-
tures’ influence both on the most influential neuron
identified in the first experiments (4a) and on the
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Concept Nearest neighbors Word cloud

1

want to be successful. software (5), my (6),
find a job no (17), thanks (6),
my own business idea (5), company (5),
no thanks have (6), work (7)
work hard
ill do whatever.
no concrete plans yet
run my own business.
no comments
no idea

2

i want to attend medical school I (63), my (13),
i plan to find a mechanical work (10), plan (24),
i am planning to be a product find (5), graduate (8),
i plan on working as a will (17), be (17),
i would like to go into manufacturing go (7), am (5), career (6),
and continue education with goal get (6), job (7), would (13),
i would first like to pursue doctoral degree like (14), engineering (7),
having my own company working (13)
i will be starting a career as an
seeking law degree, to move into

3

business learn skills, turn hobbies into company (19), my (13),
i hope to run my own business industry (14), work (22),
start a company overseas engineering (18), start (12),
earn experience in a small I (21), business (6), go (12),
.. either go into industry or go own (6), job (9), pursue (5),
gain experience in the industry. will (8), plan (6),
would like to get into management engineer (5), get (7),
own company when i have the expertise degree (6), masters (5),
my feet in a start up company early working (13), be (5)
a good paying job at a company that

4

school within the next two years. at (19), my (13),
work there for 3 years go (12), industry (14),
in the next five years i hope work (22), engineering (18),
work abroad at some point. start (12), I (21), business (6),
5 to 6 years. engineer (5), be (5),
at least the next two years, i own (6), job (9), pursue (5),
there for at least three years. tentative will (8), plan (6),
at that point in time i want get (7), degree (6),
in the next five years i masters (5), working (13)
field at least once.

Table 3: The four concepts with 10 examples from the top 100 nearest neighbors and the word clouds containing
the most frequent words from the nearest neighbors

model’s output (4b). It is instructive to notice that—
in contrast to the model as a whole—SHAP values
w.r.t. to this specific neuron are all non-negative.
This indicates that this unit has specialized in cap-
turing only positive features, i.e. desire to start a
for-profit company.

Higher-level concept explanations While Con-
ceptSHAP (Yeh et al., 2020) does not require a
predefined list of concepts, we still need to manu-
ally set how many we want to model. We choose
four as we are seeking to extract broad and general
concepts.

For each concept, we look at the 100 nearest
neighbors’ word embeddings. We then map these
back to their corresponding word token and include
four neighboring tokens from their corresponding

sentence. Furthermore, we count the word tokens
appearing in the top 100 nearest neighbors and
construct a word cloud with the ones occurring
more than five times.

Once the concepts have been extracted automati-
cally, they can be inspected manually by humans
who can look for a common theme in the word
cloud and the nearest neighbors. Table 3 presents
an overview of the extracted concepts via showing
the ten nearest neighbors in addition to the word
cloud extracted from the top 100.

The first concept mainly contains nearest neigh-
bors describing a lack of orientation and concrete
career plans. Indeed, "no" is one of the words dom-
inating this word cloud. The second, in contrast,
captures a strong sense of having a clear path for
the own future career. Here, most sentences start
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(a) Local explanation: text relevance w.r.t. specific neuron

(b) Local explanation: text relevance w.r.t. model output

Figure 4: Local SHAP values describing the impact of
the embedding layer and numerical feature inputs on
the model’s prediction for 4 different samples, 2 be-
longing to class 0 (not wanting to start a for-profit com-
pany) and 2 belonging to class 1 (wanting to start a
for-profitcompany). See E for a larger scale version.

with "I" and contain words like "will" and "plan",
indicating strong traits of self-centeredness and de-
termination. Both these concepts match what also
discovered by Grau et al. (2016, p.8): i.e. the clar-
ity of plans.

The third concept revolves around the plan type
rather than its certainty or concreteness. For in-
stance, we find general words like "company",
"work", and "engineering", which indicate the goal
of founding a company, joining a startup, or work-
ing in the industry. This matches the idea of career
characteristics, also found in Grau et al. (2016,
p.8). Finally, the last concept is the most distinc-
tive as it captures the plan timeline, clearly present
in all the nearest neighbors listed. This concept,
connecting career plans to the time dimension, can-
not be found in previous works such as Grau et al.
(2016). The completeness scores achieved by these
concepts are reported in the appendix (see C).

5 Discussion and Comparison

We employed several architectures to solve the the
problem of career choice prediction to improve
over prevailing closed and open-vocabulary meth-
ods. While for some survey responses correlations
were strenuous, we found general success in pre-
dicting variables relating to entrepreneurial aspira-
tions.

We see an overall increase in performance by
combining textual and numerical input data. While
numerical data is generally more predictive in our
experiments, the 119 numerical variables are also
a lot more nuanced than the free-text answers Q22
and Inspire. Despite this, prediction from text alone
still manages to perform relatively well across dif-
ferent tasks. The negative impact on performance
of including the Inspire variable in models is likely

due to the limited amount of text in the answers to
the question.

To back up our model findings with explanations,
we applied SHAP and ConceptSHAP as post-hoc
approaches. The first confirmed what we observed
in terms of model performance and provided us
with a good understanding of the global and local
relevance of each component: numerical features,
text features, and embeddings. The second, in-
stead, led to the identification of relevant concepts
—clarity of plans, career characteristics, and plan
timeline—in line with the human judgment of pre-
vious works.

6 Conclusion and Future Work

This work investigated the usage of state-of-the-
art NLP and XAI techniques for analyzing user-
generated survey data. Instead of manually exam-
ining individual answers, our methodology heav-
ily relies on analyzing and interpreting a predic-
tor model trained to extract correlations and pat-
terns from the whole data set. We proposed a
multi-modal architecture consisting of a Distil-
BERT transformer architecture and FC layers. The
former is used to extract information from open-
ended textual answers while the latter process the
numerical features representing closed-ended an-
swers. The model achieves satisfactory accuracy in
predicting students’ career goals and aspirations.

We leveraged SHAP and ConceptSHAP to gen-
erate both instance-level and concept-level expla-
nations. These methods were applied at different
levels of granularity to assemble a holistic under-
standing of the model’s reasoning. Experiments on
the EMS survey show promising results in predict-
ing the students’ entrepreneurial ambition. More-
over, local explanations provide us insights about
the most relevant questions overall as well as rele-
vant factors w.r.t. a single student. The automatic
high-level concept analysis also led to insightful
findings which were very similar to what was found
in previous research including human judgment.

We release our code to the public to facilitate
further research and development 1.
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A Appendix: Details on the EMS 1.0
survey data

The longitudinal Engineering Major Survey (EMS)
by Gilmartin et al. (2017) consists of three surveys
in total, conducted between 2015 and 2019. In this
paper we only focus on the EMS 1.0 data from
2015 consisting of 7197 surveyed students of engi-
neering enrolled at 27 universities in the US. The
study is based on the Social Cognitive Career The-
ory (SCCT) framework (Lent et al., 1994) about
how a students decision making is influenced by 8
specific topics.

These topics are:

• Topic 1: Learning experiences

• Topic 2: Self-efficacy (Engineering task, pro-
fessional/interpersonal, innovation)

• Topic 3: Innovation outcome expectations

• Topic 4: Background characteristics / influ-
ences (gender, ethnicity, family background)

• Topic 5: Innovation interests

• Topic 6: Career Goals: Innovative work

• Topic 7: Job Targets

• Topic 8: Current contextual influences (major,
institutional, peer)

Independent variables: Our independent vari-
ables come from topic 7 and surmise the following
question Q20: "How likely is it that you will do
each of the following in the first five years after
you graduate?". It provides eight career possibili-
ties which constitute our tasks 1 through 8 for each
of the prediction heads:

1. Work as an employee for a small business or
start-up company.
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2. Work as an employee for a medium- or large-
size business.

3. Work as an employee for a non-profit
organization (excluding a school or col-
lege/university).

4. Work as an employee for the government, mil-
itary, or public agency (excluding a school or
college/university).

5. Work as a teacher or educational professional
in a K-12 school.

6. Work as a faculty member or educational pro-
fessional in a college or university.

7. Found or start your own for-profit organiza-
tion.

8. Found or start your own non-profit organiza-
tion.

Each entry can be answered with a Likert scale
score ranging from 0 ’Definitely will not’ to 4 ’Def-
initely will’.

For classification, the 5 classes (0 through 4)
are binned into a binary label: low interest and
high interest. The binning is done depending on
the median of each label as illustrated in Figure
5. However this strategy ultimately still leads to
unbalanced classes in some cases.

Lastly, we also analyze Pearson Correlation be-
tween all remaining labels after list-wise dele-
tion, to determine whether they can be considered
unique tasks. Our analysis illustrated in Figure 6
illustrated this point with most classes showing low
correlation (less than 0.5).

Numerical variables: There are 119 numerical
feature variables that operate on a categorical or
five-point scale split across 30 distinct questions.
Scale design, as well as the order of questions was
based on minimizing bias in survey response.

An additional test of correlation between numer-
ical features and task labels showed only weak
linear correlation, indicating that solving the task
is more complex.

Open text variables: We consider two open text
variables, which are the following:

1. Q22: "We have asked a number of questions
about your future plans. If you would like to
elaborate on what you are planning to do, in

the next five years or beyond, please do so
here."

2. Inspire: "To what extent did this survey in-
spire you to think about your education in
new or different ways? Please describe."

While these questions nominally fall under topic
7 in the SCCT framework, we treat them as disjoint
topics during processing.

We additionally evaluated text length and corre-
lation between the description of tasks of our target
variable and the contents of the free text fields. Text
length does not correlate with our label classes as
shown in Figure 7. At the same time we could
detect some correlation through keyword match-
ing with Q22, especially relating to a lower score.
Meanwhile there is no strong correlation between
keywords for the Inspire variable. Results of the
correlation analysis can be found in Figure 8 and
Figure 9.

B Appendix: Non-combined
architectures

This appendix shows the schematics for both archi-
tectures which omit either the textual or numeri-
cal variable part which was used for the detailed
experiments listed in Appendix D. The text-only
architecture can be found in Figure 10 while the
numerical-only model can be found in Figure 10.

C Appendix: Higher-Level
ConceptSHAP Experiments

Figure 12 shows an overview of the experiments
involving ConceptSHAP (Yeh et al., 2020). Com-
pleteness scores for the retrieved concepts are re-
ported in Table 4.

D Appendix: Detailed experiment results

This section lists the full results for the text-only
classification and regression tasks across topics in
table 5 as well as the results for the numerical vari-
able prediction in table 6.

E Further SHAP Examples

To improve their readability, we now present again
the SHAP force plots already included in 4.2. We
also present further examples not previously in-
cluded.
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Figure 5: Splits binning 5 classes into two by median for each task.

Figure 6: Pearson Correlation between each of the 8 labels. Values range from 0.0 to 1.0.

Figure 7: Overall text length distribution of Q22 and distribution grouped by classes per label.

Figure 8: Model architecture for numerical features with FC layers.
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Figure 9: Model architecture for numerical features with FC layers.
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Figure 10: Model architecture for prediction through text processing. The XOR signifies different model choices
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Figure 11: Model architecture for numerical features with FC layers. The XOR indicates the different model
choices w.r.t. different output heads choices.

L1 L2 L3 L4 L5 L6 L7 L8

-0.66 -0.79 0.17 -0.59 0.18 0.93 0.89 0.73

Table 4: The completeness scores for each of the 8 prediction heads measuring how well the concepts can be used
to recover predictions from the original model (3)
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Figure 12: Explainability experiments with a concept-based method called ConceptSHAP. The original model is
extended to a surrogate model to train concept vectors cj , which function as the centroids of the concepts. These
concepts are then being formed by the top k nearest neighbour tokens embeddings to the concept vectors (1). In
addition to the pure concept extraction, we can measure their importance for the prediction of the model by using
the principle of SHAP, (2).

T1 T2 T3 T4 T5 T6 T7 T8

CLS
C 57.12 58.05 48.49 48.17 42.26 46.42 44.74 60.66
R 54.05 51.26 36.41 44.24 35.21 42.74 43.44 53.96

mean
C 51.66 60.10 56.89 44.61 48.40 51.85 52.50 63.70
R 53.82 51.36 50.82 58.75 43.63 42.24 46.71 62.40

BiLSTM
C 42.75 38.74 39.17 37.73 35.36 43.11 42.18 37.88
R 52.82 54.49 36.70 49.77 34.91 42.38 42.62 58.18

embedding
C 54.57 47.62 50.52 50.06 48.31 48.05 46.45 49.66
R 52.21 47.68 47.83 43.04 48.06 43.56 51.22 50.27

Table 5: F1 Scores for the Q22 text input, predicting all tasks. Best model for each task in bold.

(a) Local explanation: all features

(b) Local explanation: text embeddings only

Figure 13: Larger scale version of plots (c) and (d) from Figure 3
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T1 T2 T3 T4 T5 T6 T7 T8

topic 1
C 44.39 41.74 57.46 41.36 52.21 49.62 58.07 66.83
R 41.63 40.48 44.78 42.77 44.04 44.92 46.51 64.92

topic 2
C 48.42 44.83 54.36 42.51 40.32 42.60 42.74 62.39
R 43.56 39.98 36.46 38.16 35.17 43.68 43.09 55.41

topic 3
C 42.74 46.80 48.03 42.17 54.85 46.05 48.10 50.18
R 43.33 39.68 45.84 38.02 48.54 46.42 47.09 48.60

topic 4
C 42.28 39.33 45.18 47.16 45.22 44.94 44.71 54.37
R 42.17 40.39 44.03 51.85 41.54 48.91 48.24 48.06

topic 5
C 44.94 51.00 58.68 45.98 55.64 46.77 43.44 64.33
R 44.33 48.75 53.58 41.33 51.86 43.06 43.51 62.98

topic 6
C 49.26 40.35 44.68 47.18 38.39 42.71 42.57 57.70
R 44.36 44.39 37.53 38.89 35.85 42.46 43.16 61.96

topic 7
C 46.40 61.60 56.66 46.20 54.11 58.03 43.02 44.29
R 47.32 62.69 50.31 51.28 52.65 60.86 43.59 48.98

topic 8
C 46.41 44.39 52.06 51.84 45.58 45.68 44.04 48.69
R 48.92 56.72 49.96 53.97 49.65 53.29 43.37 38.91

all topics sep.
C 51.41 60.80 60.90 57.35 61.06 60.79 59.29 70.25
R 51.81 55.66 52.38 56.31 52.84 55.83 53.32 67.74

dir.
C 50.85 53.34 61.03 52.40 57.03 67.88 61.02 72.65
R 50.79 54.17 61.58 57.33 58.94 56.92 59.08 74.65

Table 6: F1 Scores for the numerical data differing on inputs only. Best model for each task in bold.

(a) Local explanation: text relevance w.r.t. specific neuron

(b) Local explanation: text relevance w.r.t. model output

(c) Local explanation: text relevance w.r.t. specific neuron

(d) Local explanation: text relevance w.r.t. model output

Figure 14: Larger scale version of SHAP plots presented in Figure 4. Two additional examples have also been
added - i.e. (c) and (d).
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