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Introduction

As the number of users and their web-based interaction has increased, incidents of a verbal threats,
aggression and related behaviour like trolling, cyberbullying, and hate speech have also increased
manifold globally. The reach and extent of the Internet have given such incidents unprecedented power
and influence to affect the lives of billions of people. Such incidents of online abuse have not only
resulted in mental health and psychological issues for users, but they have manifested in other ways,
spanning from deactivating social media accounts to instances of self-harm and suicide.

To mitigate these issues, researchers have begun to explore the use of computational methods for
identifying such toxic interactions online. In particular, Natural Language Processing (NLP) and
ML-based methods have shown great promise in dealing with such abusive behaviour through early
detection of inflammatory content.

In fact, we have observed an explosion of NLP-based research on offensive content in the last few
years. This growth has been accompanied by the creation of new venues such as the WOAH and
the TRAC workshop series. Community-based competitions, like tasks 5/6 at SemEval-2019, task 12
at SemEval-2020, and task 5/7 at SemEval-2021 have also proven to be extremely popular. In fact,
because of the huge community interest, multiple workshops are being held on the topic in a single year.
For example, in 2018 ACL hosted both the Abusive Language Online workshop (EMNLP) as well as
TRAC-1 (COLING). Both venues achieved healthy participation with 21 and 24 papers, respectively.
Interest in the topic has continued to grow since then and given its immense popularity, we are proposing
a new edition of the workshop to support the community and further research in this area.

As in the earlier editions, TRAC focuses on the applications of NLP, ML and pragmatic studies on
aggression and impoliteness to tackle these issues. As such the workshop also includes shared tasks
on ‘Aggression Identification. The task consisted of two sub-tasks - (1) Bias, Threat and Aggression
Identification in Context and (2) Generalising across domains - COVID-19. For task 1, the participants
were provided with a "thread" of comments with information about the presence of different kinds of
biases and threats (viz. gender bias, gendered threat and none, etc) and its discursive relationship to the
previous comment as well as the original post (viz. attack, abet, defend, counter-speech and gaslighting).
In a series/thread of comments, participants were required to predict the presence of aggression and
bias in each comment, possibly making use of the context. In this task, a total dataset of approximately
60k comments (approximately 180k annotation samples) in Meitei, Bangla and Hindi, compiled in the
ComMA Project, were provided for training and testing.

Both the workshop and the shared task received a very encouraging response from the community. The
proceedings include 4 oral, 3 posters, and 2 system description papers. In addition to this, the workshop
also includes 1 Demo to be presented in the workshop.
We would like to thank all the authors for their submissions and members of the Program Committee
for their invaluable efforts in reviewing and providing feedback to all the papers. We would also like to
thank all the members of the Organising Committee who have helped immensely in various aspects of
the organisation of the workshop and the shared task.

Workshop Chairs
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Abstract:
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Abstract

Social media platforms are used by a large
number of people prominently to express
their thoughts and opinions. However,
these platforms have contributed to a sub-
stantial amount of hateful and abusive
content as well. Therefore, it is impor-
tant to curb the spread of hate speech
on these platforms. In India, Marathi is
one of the most popular languages used
by a wide audience. In this work, we
present L3Cube-MahaHate, the first ma-
jor Hate Speech Dataset in Marathi. The
dataset is curated from Twitter and an-
notated manually. Our dataset consists
of over 25000 distinct tweets labeled into
four major classes i.e hate, offensive, pro-
fane, and not. We present the approaches
used for collecting and annotating the data
and the challenges faced during the pro-
cess. Finally, we present baseline classi-
fication results using deep learning mod-
els based on CNN, LSTM, and Trans-
formers. We explore mono-lingual and
multi-lingual variants of BERT like Ma-
haBERT, IndicBERT, mBERT, and xlm-
RoBERTa and show that mono-lingual
models perform better than their multi-
lingual counterparts. The MahaBERT
model provides the best results on L3Cube-
MahaHate Corpus. The data and models
are available at https://github.com/l3cube-
pune/MarathiNLP .
Keywords: Natural Language Process-
ing, Convolutional Neural Networks, Long
Short Term Memory, FastText, BERT,
Hate Speech Detection.

1 Introduction
In the past decade, there has been an expe-
ditious rise in the popularity of online social
media platforms all over the globe. People
have become more open to sharing their opin-
ions without thinking excessively. This often

leads to the spread of hate or offensive speech
thereby causing violence and cyberbullying.
Hate speech is a kind of abusive language
directed towards a community that is under-
privileged in terms of race, gender, ethnic
origin, disability, etc., or can be an insult or
threat to an individual (MacAvaney et al.,
2019; Matamoros-Fernández and Farkas,
2021). The users often defy the boundaries
of freedom of speech without even realizing it
by posting harmful messages and comments
(Waseem and Hovy, 2016). Therefore it is
today’s need to neutralize these activities
from proliferating further.

In this work, we consider hate speech de-
tection in the Marathi language, a regional
language in India, spoken by over 83 million
people across the country (Joshi, 2022).
Despite being one of the popular languages
in India, work in the area of hate speech
detection in Marathi is extremely limited
(Mandl et al., 2021; Velankar et al., 2021;
Glazkova et al., 2021; Bhatia et al., 2021) as
compared to other languages (Del Vigna12
et al., 2017; Romim et al., 2021; Corazza
et al., 2020; Schmidt and Wiegand, 2019).
Even general text classification in Marathi
has received limited attention (Kulkarni
et al., 2022, 2021). In this paper, we present,
L3Cube-MahaHate Corpus, the largest pub-
licly available hate speech dataset in Marathi.
The dataset is collected from Twitter, tagged
with four fine-grained labels which are defined
as follows-

Hate (HATE): A Twitter post abusing
a specific group of people or community based
on their religion, race, ethnic origin, gender,
geographical location, etc. stimulating violent
behaviors.
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Offensive (OFFN): A tweet contain-
ing harmful language leading to insulting
or dehumanizing, at times threatening a
particular individual.

Profane (PRFN): A tweet including
the use of typical swear words or profane,
cursing language which is ordinarily insup-
portable.

Not (NOT): A post that does not con-
tain any insulting or abusive content or
profane words in the language used.

The dataset consists of over 25000 samples
tagged manually with the classes explained
above. We further provide an extensive study
of the data collection approaches, different
policies used, and challenges faced during
the annotation process as well. We also
provide the statistical analysis of our dataset
along with the distribution of train, test, and
validation data. Lastly, we perform multiple
experiments to evaluate state-of-the-art deep
learning models on the dataset and provide
the baseline results to the community. All the
resources will be publicly shared on Github.

The MahaBERT model fined-tuned on
L3Cube-MahaHate is termed as MahaHate-
BERT12 and is shared publicly on model
hub. All the resources are publicly shared on
github3.

2 Related Work

Hate speech detection is considered to be a
highly critical problem and a lot of attempts
have been made to control it. A significant
amount of work can be seen in English text
analysis. But recently, efforts have been made
towards widening the research in regional
languages like Marathi as well.

Gaikwad et al. (2021) presented the Marathi
Offensive Language Dataset (MOLD), with
nearly 2,500 annotated tweets labeled as
offensive and not offensive. It is considered

1https://huggingface.co/l3cube-pune/mahahate-
bert

2https://huggingface.co/l3cube-pune/mahahate-
multi-roberta

3https://github.com/l3cube-pune/MarathiNLP

the first dataset for offensive language identi-
fication in Marathi. Also, they evaluated the
performance of several traditional machine
learning models and deep learning models
(e.g. LSTM) trained on MOLD.

Bhardwaj et al. (2020) collected over 8200
hostile and non-hostile Hindi text samples
from multiple social media platforms like
Twitter, Facebook, WhatsApp. Hostile posts
were further extended into fake, defamation,
hate, and offensive. A total of 8192 posts
were collected and tested on various machine
learning models using mBERT encoding.

A Hindi-English code-mixed corpus was
constructed in Bohra et al. (2018) using
the tweets posted online for the duration
of five years. Tweets were scrapped using
Twitter python API by selecting certain
hashtags and keywords from political events,
public protests, riots, etc. After removing
noisy samples a dataset of 4575 code-mixed
tweets was created. The experiments were
performed with SVM and Random Forest
algorithms along with character and word
N-gram features.

In Kulkarni et al. (2021) authors presented
a dataset containing over 16000 Marathi
tweets, manually tagged in three classes
namely positive, negative and neutral. They
also provided a policy for tagging sentences
by their sentiment. Analysis was performed
on CNN, BiLSTM, and BERT models.

Davidson et al. (2017) collected hate phrases
identified by Hatebase.org and then used
those phrases to collect English tweets from
Twitter using Twitter API. The final set of
25k tweets was annotated by CrowdFlower
workers with labels hate, offensive and neither.
This dataset was then tested on Logistic Re-
gression, Naive Bayes, Decision Trees, random
forests, and linear SVMs.

In Geet D’Sa et al. (2021), the authors
evaluated the effect of filtering the generated
data used for Data Augmentation (DA). This
demonstrates up to 7.3% and up to 25% of
relative improvements on macro-averaged F1
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on two widely used hate speech corpora.

Ajao et al. (2019) proposed a hypothesis
that there exists a relation between fake
messages or rumors and sentiments of the
texts posted online. The experiments were
performed on the standard Twitter fake news
dataset and showed good improvement on the
same.

Gao and Huang (2018) provided an an-
notated corpus of hate speech with the
context information. This evaluates by using
logistic regression and neural network models
for hate speech detection around 3% and 4%,
and it improves to 7% by combining these
two models together.

Mathur et al. (2018) presented MIMCT
to detect offensive(Hate or Abusive) Hinglish
tweets from the proposed Hinglish Offensive
Tweet dataset. Demonstrated the use of
the multi-channel CNN-LSTM model for
sentiment analysis.

3 Dataset Creation

3.1 Collection
We created the Hate Speech dataset using
the tweets posted online by different users
across the Maharashtra region considering
the period of over the last 5 years. There are
plenty of different python libraries available
such as Twint4, GetOldTweets5, Snscrape6,
etc. which can be used to collect Twitter
posts. Twitter provides its own API as well.
We used the Twint python library for scraping
the tweets.

To obtain the hateful tweets, firstly, we
created a list of over 150 bad words in
Marathi which are predominantly used by
online users to spread hostility. Some of these
are typical swear words in Marathi and other
offensive words. These words were in Marathi
Devanagari script as we are not concerned
about Roman or code-mixed text in this work.
We will be publishing the final list on GitHub.

4https://pypi.org/project/twint/
5https://pypi.org/project/GetOldTweets3/
6https://github.com/JustAnotherArchivist/snscrape

These words were used as a search query to
obtain hate, offensive, and profane tweets.
The majority of the tweets that we obtained
are related to political and social issues. We
also made a note of controversial events
with their time frame happening in India in
the last couple of years which particularly
triggered violence on social media. To avoid
bias towards certain words or phrases, we
have limited the tweets for a particular search
query to a number less than 150. Also, while
collecting the tweets, we have not included
any reference to the author of the tweet
thereby eliminating the bias towards that
author.

In our publicly available version of the
dataset, we have kept all the hashtags,
symbols, emojis, and URLs for anyone to
experiment on. However, we have removed
all of these while performing the baseline ex-
periments. Furthermore, we will be removing
the user mentions from the public dataset to
maintain complete user anonymity.

3.2 Annotation
The entire dataset has been labelled manually
by the 4 annotators considering four major
classes viz. hate, offensive, profane, and
not. All the annotators were native Marathi
speakers and were fluent in reading and
writing in Marathi. The annotation guidelines
were set before the tagging exercise. The
first 200 sentences were tagged together to
further improve the consistency post which
sentences were tagged in parallel except for
ambiguous sentences. The tweets which
were targeted at a single individual thereby
criticizing or dehumanizing the individual
are tagged as offensive. These tweets were
mainly attributed to an individual politician,
celebrity, or any random person with the use
of singular phrases. The tweets which were
targeted at a group of people describing the
deficiencies towards race, political opinion,
sexual orientation, gender, etc. are tagged as
hate. These tweets were majorly concentrated
towards political parties or the ruling govern-
ment. Also, a few samples belong to negative
comments on minority groups and gender
bias. The tweets which contain swear or
profane words are strictly tagged as profane,
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even if they describe the offensive or hateful
category. The tweets that do not satisfy any
of the above criteria are simply tagged as
NOT. Congratulatory and thanking tweets
are tagged as NOT as well. Some sample
tweets for the above classes are given in Table
3.

In some cases, the intention of the user
behind a tweet cannot be suitably identified.
In such cases, the tweets were reviewed again
and voting among 4 annotators was used to
decide on the labels. Also, we encountered
a few tweets where hateful comments were
quoted by a news handle. As these posts may
indirectly promote violence, we tagged them
in the hateful category. To collect the NOT
tweets, we selected many Marathi Twitter
handles and scraped their tweets, which gave
us unbiased data.

Figure 1: Average characters and words per label

3.3 Dataset Details
Initially, we collected over 40k tweets in
Marathi. Among these, we annotated ∼28000
samples. After removing over 3k noisy tweets
which particularly included poorly written
text i.e. the text with the use of regional words
which are not commonly spoken in Marathi or
a large number of grammatical mistakes, we
randomly selected 6250 samples from each of
the 4 classes giving the total count of 25000
tweets. Although this uniform distribution of
tweets does not represent the true distribu-
tion it makes the model building easier and
does not require imbalance handling. We an-
alyzed a few statistics on the dataset. The

average number of words per tweet in an en-
tire dataset is 21 and the average number of
characters is 113. The label-wise distribution
is given in Figure 1. The length of samples
varies in the range of 2 to 93. The distribu-
tion of the length of tweets and the number
of characters per tweet is given in Figures 2
and 3 respectively. The dataset can be used
for binary classification as well. To match the
number of hateful samples viz. Hate, Offen-
sive, Profane all included, we collected over
12500 extra NOT samples apart from that of
4-class corpus giving an equal distribution of
18750 samples in hateful and non-hateful cate-
gories. This binary corpus of 37.5k will also be
provided along with the original dataset. The
binary dataset is distributed into train, test
and validation sets in the ratio of 80:10:10 per-
cent of the total dataset. Table 1 shows the
4-class dataset distribution in training, testing
and validation samples.

Figure 2: Distribution of the length of a tweet

Figure 3: Distribution of the number of characters
in a tweet
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Split HATE OFFN PRFN NOT TOTAL
Train 5375 5375 5375 5375 21500
Test 500 500 500 500 2000

Validation 375 375 375 375 1500

Table 1: Dataset label distribution

Model Variant 2-Class Accuracy 4-Class Accuracy

CNN
Random 0.880 0.703
Trainable 0.866 0.710

Non-Trainable 0.870 0.751

LSTM
Random 0.857 0.681
Trainable 0.860 0.691

Non-Trainable 0.869 0.751

BiLSTM
Random 0.858 0.699
Trainable 0.860 0.664

Non-Trainable 0.870 0.761

BERT

IndicBERT 0.865 0.711
mBERT 0.903 0.783

xlm-RoBERTa 0.894 0.787
MahaALBERT 0.883 0.764
MahaBERT 0.909 0.803

MahaRoBERTa 0.902 0.803

Table 2: Classification results on different architectures

(a) 2-class classification (b) 4-class classification

Figure 4: Confusion matrices for the best models

4 Experiments

4.1 Model architectures

We have used multiple state-of-the-art deep
learning architectures (Velankar et al., 2021),
(Joshi et al., 2021), (Joshi et al., 2019) to
obtain the baseline results on 2-class as
well as 4-class classification. Before training
the models, we have cleaned the data by

removing unwanted symbols, user mentions,
hashtags. Following algorithms are used for
the evaluation of results:

CNN: The CNN model has a 1D convo-
lution layer with a filter of size 300 and a
kernel of size 3. It used ReLU activation,
followed by max-pooling with pool size 2.
the same layers were added again which is
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followed by a dense layer of size 50 and ReLU
activation. Lastly, the layer with softmax
activation and 2 nodes was used. A dropout
of 0.3 was used after the 1D max-pooling layer.

LSTM: The LSTM layer with 32 nodes
was used. It was followed by a 1D global max-
pooling. The dense layer with 16 nodes along
with ReLU activation was used, followed by
0.2 dropout. A dense layer with 2 nodes and
softmax activation was used as a final layer of
the model.

BiLSTM: Bi-LSTM layer with 300 nodes
followed by a 1D global max-pooling layer
was used. The dense layer was used with 100
nodes and ReLU activation was used with it.
This was followed by a dropout of 0.2. At last,
the final layer with 2 nodes with activation
softmax was used.

BERT: BERT is a bi-directional transformer-
based model (Devlin et al., 2019) pre-trained
over large textual data to learn language
representations. It can be fine-tuned for
specific machine learning tasks. We used
the following variations of BERT to obtain
baseline results:

• Multilingual-BERT (mBERT) - trained
on and usable with 104 languages with
Wikipedia using a masked language mod-
eling (MLM) objective (Devlin et al.,
2018).

• IndicBERT - a multilingual ALBERT
model released by Ai4Bharat, trained on
large-scale corpora (Kakwani et al., 2020),
covering 12 major Indian languages: As-
samese, Bengali, English, Gujarati, Hindi,
Kannada, Malayalam, Marathi, Oriya,
Punjabi, Tamil, Telugu.

• XLM-RoBERTa - a multilingual version
of RoBERTa (Conneau et al., 2019). It is
pre-trained on 2.5TB of filtered Common-
Crawl data containing 100 languages with
the Masked language modeling (MLM)
objective and can be used for downstream
tasks.

• MahaBERT - a multilingual BERT
model (Joshi, 2022) fine-tuned on

L3Cube-MahaCorpus and other publicly
available Marathi monolingual datasets
containing a total of 752M tokens.

4.2 Results
We performed our experiments on CNN,
LSTM, and Transformer based models. For
CNN and LSTM models, we have used ran-
dom and fast text initialization for the word
embeddings. The pre-trained embeddings
were used in both trainable and non-trainable
modes. The former means it was used by
letting the embedding layer adapt to the
training data and the latter by preventing
it from being updated during training. Ad-
ditionally, we used pre-trained language
models, particularly the variations of BERT
such as IndicBERT, Multilingual BERT,
XLM-RoBERTa, and a few custom BERT
models to obtain the results. All the 2-class
and 4-class accuracies are displayed in Table 2.

In CNN and LSTM based models, non-
trainable fast text mode is outperforming
other configurations in both the binary and
4-class results. All the monolingual Marathi
BERT models are surpassing the multilingual
versions of BERT models i.e IndicBERT,
mBERT, and xlm-RoBERTa. It was observed
that the non-trainable fast text setting for
CNN and LSTM based models is performing
competitively with the BERT models even
surpassing the indicBERT for both classes.
The MahaBERT model gives the best binary
classification results whereas MahaRoBERTa
gives the best 4-class accuracy. The confusion
matrices for respective best results  are shown
in figures 4a and 4b.

5 Conclusion
In this paper, we have presented
L3CubeMahaHate - a hate speech dataset
containing 25000 distinct samples equally
distributed in 4 classes. This is the first
major dataset in the domain of hate speech.
We also provide the binary version of the
dataset of over 37500 samples. We further
perform experiments to obtain baseline re-
sults on various deep learning models like
CNN, LSTM, BiLSTM, and transformer-
based BERT models such as IndicBERT,
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S.No. Tweet English Translation Tag
1

अशा प्रकारे खोडसाळ बातम्या देणार्‍या या वृ-
त्तसंस्थाना जोडयाने मारले पािहजे.

In this way, the news agencies
which spread vicious news should be
beaten up by the pair of shoes.

HATE

2
स्वतःचे Ǻखसे भरत आहेत. यांना सामान्य
जनता मेली तरीही काही फरक पडत न्हाई.
स्वाथɁ राजकारण नीच वृत्ती ह्या लोकांची.

They are filling their own pockets.
Even if the general public dies, it
makes no difference to them. Self-
ish politics, and the mischievous at-
titude of these people.

HATE

3
काहीही मािहती नसताना दसुयार्ंना नालायक
म्हणतोस म्हणजे तुझं खपुचं ʺशक्षण झालं आहे
असं वाटते. मुखार् कुठंही तोंड घालत जाऊ
नकोस बेअक्कल.

Calling others incompetent when
you don’t know anything means you
seem to have a lot of education. Id-
iot, don’t put your mouth every-
where, stupid.

OFFN

4
तुझी लायकɃ काय तू बोलतो कोणा बद्दल काय
लाज लज्जा आहे कɃ नाही.

What are your qualifications? Who
are you talking about? Do you have
any shame or not?

OFFN

5
या मा**द ला वेळीच आवरा नायतर पȼरणाम
भोगायला तयार राहा.

Restraint this m*f*ker on time, oth-
erwise be prepared to suffer the con-
sequences.

PRFN

6
लोकांना असेच चु**या बनवा तुम्ही.. सर-
सकटआरक्षण काढून टाका आʺण सवार्ंना ʹज-
ल्हा पȼरषद शाळेत ʺशकवा.

You make people moron like that..
Remove all reservations and teach
everyone in Zilla Parishad schools..

PRFN

7
सरकारला आता उत्तर द्यावं लागेल, सामान्य
जनतेचा िवचार करावा लागेल आता.

The government has to answer now,
need to think now of the general
public.

NOT

8
तुमचं प्रेम आʺण आशीवार्द यामुळे माझी वा-
टचाल व्यवȥस्थत सुरू आहे. अशीच साथ
कायम राहू द्या. त्यातूनच मला मातीतल्या मा-
णसांचे प्रश्न, त्यांच्या प्रेरणादायी गोष्टी सांगायचं
बळ िमळत.ं

Thanks to your love and blessings,
my journey is going smoothly. Al-
ways keep up this support. It gives
me strength to tell the questions of
the people of the soil, their inspiring
stories.

NOT

Table 3: Sample tweets for each of the 4 classes with English translation .
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mBERT and RoBERTa. The dataset is also
evaluated on monolingual Marathi BERT
models like MahaBERT, MahaALBERT,
and MahaRoBERTa. For CNN and LSTM
based models, the non-trainable fast text
mode outperforms its trainable counterpart
in both binary and 4-class classification. In
transformer-based models, MahaBERT and
MahaRoBERTa give the best results in binary
and 4-class classification respectively.
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Abstract

The proliferation of online hate speech has ne-
cessitated the creation of algorithms which can
detect toxicity. Most of the past research fo-
cuses on this detection as a classification task,
but assigning an absolute toxicity label is often
tricky. Hence, few of the past works transform
the same task into a regression. This paper
shows the comparative evaluation of different
transformers and traditional machine learning
models on a recently released toxicity sever-
ity measurement dataset by Jigsaw. We further
demonstrate the issues with the model predic-
tions using explainability analysis.

Note: This paper contains examples of toxic
posts. But owing to the nature of work, we
cannot avoid them.

1 Introduction

In social media, toxic language denotes a text con-
taining inappropriate language in a post or a com-
ment. The presence of toxic language on social
media hampers the fabric of communication in the
social media posts; e.g., toxic posts targeting some
community might silence members of the commu-
nity (Das et al., 2020). Subsequently, social me-
dia platforms like Facebook (Facebook, 2022) and
Twitter (Twitter, 2022) have laid down moderation
guidelines. They also employ various automatic
and manual detection techniques to detect such
forms of language and apply appropriate modera-
tion (Schroepfer, 2021). Henceforth, researchers
have started looking into this direction (Das et al.,
2021b; Banerjee et al., 2021; Das et al., 2021a).
Most of the past research focused on developing
a classification task which again varies based on
the classification labels the researchers choose, i.e.,
abusive/non-abusive, hate speech/offensive/normal,
troll/non-troll etc. (Nobata et al., 2016; Mathew
et al., 2021; Saha et al., 2021; Das et al., 2022a,b)
This variation in the classification labels makes
transferring models across different datasets tricky.

Secondly, assigning a label to a post in terms of
toxicity labels is complicated as many of the posts
can be subjective (Aroyo et al., 2019). Finally,
a further challenge is that after encountering sev-
eral highly toxic comments, an annotator might
find subsequent moderately toxic comments as not
toxic (Kurrek et al., 2020).

Research is currently trying to situate the toxicity
detection tasks as regression tasks. In its simplest
form, an annotator is provided two samples, and
they have to decide which one is more toxic. Even-
tually, these annotated comparisons are converted
to a scalar value which denotes the level of the
toxicity of the post. Hada et al. (2021) uses best-
worst scaling (Kiritchenko and Mohammad, 2017)
to assign toxicity scores to a post based on the
comparison annotated by annotators. Besides, an-
other study (Kennedy et al., 2020) used Rasch mea-
surement theory for converting the comparisons to
scalar values.

In this shared task, Jigsaw released a new dataset
for understanding the severity of toxic language.
The organizers select a set of 14,000 datapoints.
They used these datapoints to create multiple pairs,
which were then annotated by some annotator. The
annotators marked one of the comments as toxic
based on their notion of toxicity. These compar-
isons were compared with the ones received from
models, and average agreement was used as the
final score.

Jigsaw is a unit within Google that explores
threats to open societies, and builds technology that
inspires scalable solutions. They forecast emerging
threats like Disinformation, Censorship, Toxicity
and Violent Extremism and explore how technol-
ogy can protect individuals and societies.

In this paper, we focus on developing models for
this task. Since the shared task did not provide any
training dataset, we utilized different classification-
based toxic language datasets and converted their
labels to a scalar value based on various strategies.
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Finally, we use simple models like TF-IDF to com-
plex models like Transformers. We conclude the
paper with a detailed error analysis to understand
the behavior of the models.

2 Datasets

In this section, we illustrate the datasets used for
this task. The first section 2.1 describes the task
dataset, and the second section 2.2 exhibits the
dataset used for training the models since we don’t
have any training dataset associated with this task.

2.1 Task dataset

In the task dataset 1, pairs of comments were pre-
sented to expert raters, who marked one of two
comments more harmful – each according to their
notion of toxicity. The final label for each pair is de-
cided with a majority vote. The validation dataset
contains ∼ 30k data points where each datapoint
was a pair of toxic posts with the annotation men-
tioning which one is more toxic. However, this data
cannot be used to train the models as they do not
contain a toxicity score value for each comment.
Apart from this we were provided with 5% of the
test dataset for validating our models. The rest,
95%, is private and was used as hidden test data.
Our results are discussed for the validation dataset
and entire test dataset (150k posts).

2.2 External datasets

2.2.1 Ruddit
This dataset (Hada et al., 2021) contains English
language Reddit comments that have fine-grained,
real-valued scores between -1 (maximally support-
ive) and 1 (maximally offensive). The annotators
were given a set of 4 comments and asked to ar-
range them in order of their toxicity/abusiveness.
These were converted to scalar scores using best-
worst scaling (Kiritchenko and Mohammad, 2017).
We transformed these scores to a value between 0
and 1 to keep the distribution of values uniform to
other datasets. This dataset contains ∼ 16k data
points.

2.2.2 Jigsaw Toxic Comment Dataset(JTC)
This dataset contains a large number of Wikipedia
comments labeled by human raters for toxic behav-
ior. The types of toxicity are toxic, severe toxic,
obscene, threat, insult, and identity hate. Each com-
ment can have any one or more of these labels. It

1https://www.kaggle.com/c/jigsaw-toxic-severity-rating

contains ∼230k data points. This dataset is a part
of the Toxic Comment Classification Challenge
hosted on Kaggle 2. We converted the labels into a
single score. The different toxicity categories were
given different weights, and the final toxicity score
was the sum of weights for each example. Our fi-
nal weighing scheme was, severe toxic:12, identity
hate:9, threat:8, insult:6, obscene:5, toxic:4

2.2.3 Jigsaw Unintended Bias Dataset
This dataset is part of a Kaggle Competition, Jigsaw
Unintended Bias in Toxicity Classification 3. Each
comment has a toxicity label that lies between 0 and
1. It has ∼ 2 million samples. This attribute (and
all others) are fractional values representing the
fraction of human raters who believed the attribute
applied to the given comment. For evaluation, test
set examples with a target >= 0.5 will be considered
to be in a positive class (toxic).

The data also has several toxicity sub-type at-
tributes like severe toxicity, obscene, threat, insult,
identity attack, and sexually explicit. We have used
mapping similar to that used for the Jigsaw Toxic
Comment dataset for assigning the toxicity score.

2.2.4 Davidson
The dataset is sourced from (Davidson et al., 2017).
The data is compiled using a hate speech lexicon,
and all the instances are from Twitter. A mini-
mum of 3 coders labeled tweets into classes Hate
speech, Offensive, and Neither. The final sample
consisted of ∼ 24,000 examples, and only about
5% fell into the Hate Speech class. We map the
toxicity score using the formula - (3∗(# hate speech
annotations)+2∗(# offensive annotations)+(# nei-
ther annotations))/No.of labelers. We then nor-
malise this value between 0 and 1.

2.2.5 Founta
Similar to the previous dataset, (Founta et al.,
2018) analyzed comments from Twitter and pub-
lished a dataset with ∼ 80k examples. It has three
labels (0, 1, 2) with an increasing level of toxicity.
We scaled it between 0 and 1 by normalizing it.

3 Methodology

We preprocessed the datasets using standard tech-
niques like stemming, lemmatization, removing
contractions, and hyperlinks. For the toxic sever-
ity rating, we first tried traditional techniques

2https://tinyurl.com/2p85bsnj
3https://tinyurl.com/9cbyp3ry

11



like TF-IDF (Rajaraman and Ullman, 2011) and
doc2vec (Le and Mikolov, 2014) based regressors
to set the baseline. We further add other deep learn-
ing setups based on Transformers (Vaswani et al.,
2017) to check if the scores improve further.

3.1 Baselines

Initially, we used TF-IDF and Doc2Vec as feature
extractors. TFIDF is a method to find the impor-
tance of a word to a document in a text corpus (Ra-
jaraman and Ullman, 2011). Doc2Vec is an un-
supervised method to represent a document as a
vector. To train using these features, we use ridge
regression, which enhances linear regression by
adding L2 regularization.

We used a hyperparameter optimization frame-
work, Optuna, to automate the hyperparameter
search for TFIDF. We found the Tfidf vectorizer
to work best with the ‘charwb’ analyzer, n-gram
range (3,5) & vocabulary of ∼ 30k most frequent
words. The ridge regressor had a regularization
strength of ∼ 1.

Doc2Vec was trained with a feature vector of
size 300, learning rate α of 0.025. Both distributed
memory and distributed bag of words methods
were tested. As the performance was unsatisfac-
tory, we did not conduct hyperparameter tuning for
doc2vec.

3.2 Transformers

We take a pre-trained transformers model (Vaswani
et al., 2017) that outputs a 768-dimensional vec-
tor representation of an input sentence. As this
output cannot be directly used as a score for tox-
icity, we added a single linear layer on top of the
encoder to get a single value for toxicity. As we
feed input data, the entire pre-trained transform-
ers model and the additional untrained regression
layer is trained on our specific task. We focused on
tuning hyperparameters manually instead of using
any hyperparameter search library due to resource
constraints. All the transformers were trained for
three epochs with a batch size of 16.

In the following section, we discuss the specifics
of the pre-trained models used in detail.

3.2.1 bert-base-multilingual-cased (M-BERT)

This language representation model is a modifica-
tion of BERT, introduced by (Devlin et al., 2018).
It was pretrained on a large corpus of multilingual
data from Wikipedia with the objective of Masked

language modeling(MLM) in a self-supervised set-
ting. In the masked language model pre-training,
the model learns using predicting some of the mask
tokens in the text, and it should also be noted that
this model is case sensitive.

3.2.2 bert-base-uncased (BERT)
Similar to the above model, this was also pre-
trained using MLM objective, except this model
was trained only on English text corpus, specifi-
cally on the BookCorpus, and is not case sensitive.

3.2.3 Hate-speech-CNERG/dehatebert-mono-
English(dehateBERT)

(Aluru et al., 2020) benchmarked hate speech clas-
sification models for 9 different languages and 16
datasets. All their models are based on the multilin-
gual BERT model. We used their model that was
finetuned on an English text corpus.

3.2.4 cardiffnlp/twitter-roberta-base-
hate(HRoBERTa)

This model is derived from the RoBERTa-base
model (Liu et al., 2019) trained on ∼ 58M tweets
and finetuned on for hate speech detection with
the TweetEval benchmark (Barbieri et al., 2020).
Unlike the previous two models, this is an end-to-
end regression model, meaning given a sentence, it
directly outputs a number between 0 and 1.

3.2.5 GroNLP/hateBERT
This is a re-trained BERT model for abusive lan-
guage detection in English by (Caselli et al., 2020).
It was trained using MLM objective on RAL-E, a
large-scale dataset of Reddit comments in English.

3.2.6 sentence-transformer/mpnet-base-
v2(mpnet)

This is a sentence embedding model introduced
by (Reimers and Gurevych, 2019) trained using
a self-supervised contrastive learning objective. It
is trained on 1 billion sentence pairs and is based
on the pretrained Masked and Permuted Network
introduced by (Song et al., 2020). It solves the
problems of MLM in BERT and PLM (permuted
language modeling) in XLNet and achieves better
accuracy.

3.3 Ensembles
Finally, we experimented with ensembles of the
models described in the previous sections. To do
the ensembling, we predict the scores for a typical
post using various models and then combine the
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Less Toxic Sentence More Toxic Sentence

real encyclopedia So f**k you f**king all f*g f**ks vandalism will you please stop vandalizing my talk page ? it very irritating
and borderlining outright harassment

Hey f*ck you c*nt bag ! you dont own wikpedia and please report my i
want to close my account any way you creep

Please stop your disruptive editing If your vandalism continues you will
be blocked from editing Wikipedia andemu

i said P**S OFF YOU GEEKY LITTLE S**T

And yes people should recognize that but they usually do not One of
the first objections you hear directed at someone who says he favors free
markets is invariably There no such thing as a free market Ridiculously
trivial

F**k up.
Wikinfo, and purge devils from here. Muzemike damned for being enemy
of God: I was banned for this: So be damned, MuZemike, daemon in
human skin.

Why don’t you go s*rew Why don’t you go s*rew instead of harassing
me?

I also think ... For example i can say that Muslims go to mosques, pray,
beat, up their wives, blow, up, etc, what do atheists do?.

Table 1: Samples mislabeled by human labeler (top 3) and model misclassifications (bottom 2). The highlighted text denotes how words affect the model
predictions. Darker highlight denotes that the model is paying more attention to that words.

scores using a weighted average. The weights are
decided based on the performance of the validation
dataset. We used the weights as a variable using
the Limited-memory BFGS (LM-BFGS) method,
which is an optimization function in the family of
quasi-Newton methods that approximates the Broy-
den–Fletcher–Goldfarb–Shanno algorithm (BFGS)
using a limited amount of computer memory. It
is a popular algorithm for parameter estimation in
machine learning. The algorithm’s target problem
is to minimize f(x) over unconstrained values of
the real-vector x where f is a differentiable scalar
function.

Dataset Models Val. Acc. Test Acc.
TF-IDF 57.54 69.38
M-BERT 59.83 74.71

Ruddit BERT 60.71 78.41
HRoBERTa (A) 61.06 79.47
hateBERT 60.69 78.46
dehateBERT 58.52 71.28
TF-IDF 61.01 78.57
doc2vec 59.87 68.80
M-BERT (B) 61.31 79.17

JTC BERT (C) 61.32 78.79
HRoBERTa (D) 61.53 80.16
hateBERT (E) 61.25 78.90
dehateBERT 59.81 74.95

Founta TF-IDF 64.58 72.66
BERT 51.50 75.67

Toxic TF-IDF 62.64 72.47
Unintended BERT 59.92 77.70
Davidson TF-IDF 62.64 72.47

BERT 52.38 76.64
A+B+C+D+E 76 80.74

Table 2: Performance on Jigsaw Rate Severity of Toxic
Comment Dataset for the validation and entire test
dataset.

4 Results and Inference

In this section, we present a detailed analysis of the
performance of our models.

4.1 Comparative study of performance

Table 2 shows the performance of our model
on the validation dataset and total test dataset.

As expected, the transformer-based approaches
outperform the traditional approaches like TF-
IDF/doc2vec. We found that HRoBERTa model
performed the best among the transformers models.
It is interesting to note that BERT & M-BERT give
comparable results to language models already pre-
trained for detecting toxicity(hateBERT & dehate-
BERT). Experiments on the transformed Founta,
Davidson, and Toxic unintended did not give good
scores; hence we did not perform further experi-
ments on them.

Our team secured a rank of 145 out of 2301 in
the Kaggle Jigsaw Rate Severity of Toxic Com-
ments Competition with an accuracy of 79.84%
in the private leaderboard. However, one of our
ensembles which was not part of our final sub-
mission, performed even better. We achieved an
accuracy of 80.74% in the final standings (Table 2).
It is also worth mentioning that our approach was
quite similar to the winning approach(accuracy of
81.39%), except they used Genetic Algorithm (Xu)
to find weights for their ensemble. Our method
using an ensemble of 5 models performs half a
percent worse than their 15 ensemble model.

4.2 LIME

We also conducted local interpretable model-
agnostic explanations extensively on our best
model (HRoBERTa) to identify potential issues
with model predictions on the validation dataset.
The validation set contains pairs of sentences la-
beled as less toxic and more toxic.

We ranked the model predictions and checked
the top 100 wrong predictions manually. The top
100 wrong predictions were found by ranking the
difference between the score assigned to less toxic
to more toxic sentence. For most of the cases, it was
not the model but the human annotator who was
at fault. There were several cases where we found
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difficult to select the more toxic comment. We
found 68 samples where the annotator was wrong,
3 samples where our model was wrong and found
29 samples to be equally toxic. We add some of
the samples from each category in Table 1.

The top 100 worst predictions were selected on
the following basis. At first, for each sample we
compared the scores generated by our model. The
samples where the more toxic sentence had a lower
score than less toxic sentence(similarly, less toxic
with higher score than more toxic sentence) were
marked as incorrectly classified samples. For all
the incorrect classifications, the difference between
the scores generated for less toxic and more toxic
comment was computed. This list was sorted in
descending order according to the difference. The
top 100 samples were selected for LIME analy-
sis. Hence, the samples where the model is more
confident about the prediction yet wrong are se-
lected. We believe that this method captures the
worst errors of the model.

5 Conclusion

We present a detailed analysis of both the tradi-
tional and modern machine learning algorithms for
toxicity detection. Instead of a binary classification,
a relatively new notion of toxic speech rating is ex-
plored. The existing toxicity classification datasets
are modified to train the models to output a toxicity
score in a continuous range. We test our models on
a new dataset proposed by Jigsaw. Additionally we
present the LIME analysis to understand the model
predictions.
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Abstract

Automated textual cyberbullying detection is
known to be a challenging task. It is sometimes
expected that messages associated with bully-
ing will either be a) abusive, b) targeted at a spe-
cific individual or group, or c) have a negative
sentiment. Transfer learning by fine-tuning pre-
trained attention-based transformer language
models (LMs) has achieved near state-of-the-
art (SOA) precision in identifying textual frag-
ments as being bullying-related or not. This
study looks closely at two SOA LMs, BERT
and HateBERT, fine-tuned on real-life cyber-
bullying datasets from multiple social network-
ing platforms. We intend to determine whether
these finely calibrated pre-trained LMs learn
textual cyberbullying attributes or syntactical
features in the text. The results of our compre-
hensive experiments show that despite the fact
that attention weights are drawn more strongly
to syntactical features of the text at every layer,
attention weights cannot completely account
for the decision-making of such attention-based
transformers.

1 Introduction

Repeated hostile and aggressive online behaviour
to intentionally hurt or embarrass someone
through digital communication technologies are
generally understood as Cyberbullying. (Patchin
and Hinduja, 2006). Recent research findings by
(B et al., 2021) and (Milosevic, 2021), indicate
that 44% children in 11 European countries and
nearly 50% children in Ireland have reported an
increase in cyberbullying during the COVID-19
lockdown restrictions across multiple social net-
working sites (SNS) and multiplayer online gaming
(MOG) platforms. This growing amount of cyber-
bullying content emerging across multiple SNS and
MOG platforms is alarming and necessitates more
effective content moderation, as earlier studied by
(Gillespie et al., 2020; Milosevic, 2018; Gillespie,
2018). Therefore, one crucial step toward efficient

and effective content moderation is the ability to
recognize and define the basis for automated cy-
berbullying detection systems to classify a textual
expression or phrase as cyberbullying.

Recent computational cyberbullying research
claim to have outstanding accuracy and precision
in automating the identification of cyberbullying
using state-of-the-art (SOA) deep learning algo-
rithms like attention-based Transformers, Gated
Recurrent Units (GRUs), Long-Short Term Mem-
ory (LSTMs). However, upon close examination of
such research, including those by (Paul and Saha,
2020; Yadav et al., 2020; Behzadi et al., 2021;
Tripathy et al., 2020; Pradhan et al., 2020; Fang
et al., 2021) among others, reveal that they rely
on datasets for hate-speech or personal-attacks by
(Founta et al., 2018; Waseem and Hovy, 2016; Wul-
czyn et al., 2017) for cyberbullying identification.
In reality, despite their inventive attempts, these
studies can only determine whether a text is abu-
sive or hateful. We consider it a poor decision
to detect cyberbullying using such out-of-domain
datasets.

Additionally, work by (Ruder et al., 2019;
Howard and Ruder, 2018; Dodge et al., 2020) has
demonstrated the efficacy of transfer learning by
fine-tuning pre-trained deep layered language mod-
els (LMs) for a variety of natural language pro-
cessing (NLP) tasks, such as text classification,
thereby yielding impressive results. (Verma et al.,
2022), have demonstrated that fine-tuning LMs
like BERTbase−uncased by (Devlin et al., 2018),
and Hate−BERTbase−uncased by (Caselli et al.,
2020) outperform traditional machine learning al-
gorithms and aid in more accurate detection of tex-
tual cyberbullying across multiple SNS platforms.
Research by (Vaswani et al., 2017; Devlin et al.,
2018) demonstrates that the attention-based mech-
anisms within the deeply layered architecture of
such pre-trained LMs can display dependencies be-
tween input and output. High attention weights for
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inputs (such as words) are frequently referred to
be accountable for the output, which provides the
model’s interpretability (Mullenbach et al., 2018;
Xie et al., 2017; Martins and Astudillo, 2016; Lei
et al., 2017; Choi et al., 2016; Xu et al., 2015). To
our knowledge, these assertions and presumptions
have not undergone a formal evaluation for user-
generated content (UGC) datasets collected from
various SNS and MOG platforms categorically la-
belled for cyberbullying.

(Kitchin, 2017; Ananny and Crawford, 2018;
Katzenbach and Ulbricht, 2019) question the exist-
ing opaqueness of automated algorithmic content
moderation and decision-making practices by SNS
and MOG platforms. It has thus become necessary
to design and develop transparent and equitable
algorithms for moderation and regulation. To that
effect, we attempt to extend the work by (Verma
et al., 2022) on multiple platform cyberbullying de-
tection, by addressing the following research ques-
tion,

• RQ.1 Can attention-weights of attention-
based LMs fine-tuned on real-life cyberbul-
lying datasets be relied upon to detect and
explain cyberbullying in an interpretable and
understandable way?

Hence, we hypothesize that if attention-based
LMs fine-tuned on real-life cyberbullying datasets
learn textual cyberbullying traits for detecting cy-
berbullying; they would have higher attention
weights for a) Parts-of-speech (POS) tags like ad-
jectives, nouns, proper nouns, pronouns, and b)
words with more negative sentiment. We also hy-
pothesize that this assumption will be valid for text
samples categorically annotated as cyberbullying
across different datasets sourced from varied SNS
and MOG platforms.

Content Warning: This article contains examples of abu-

sive language in Section 5.4. All examples are taken from

existing datasets (Section 3) to illustrate its composition.

2 Related Work

2.1 Cyberbullying Detection on Multiple
platforms

There has been research on cross-platform cyber-
bullying detection, but they have had a narrow fo-
cus. (Edwards et al., 2020) devise a dataset from
direct messages (SMS) shared between participants
across multiple SNS platforms, social media posts

collected from now-defunct Formspring.me 1 and
tweets from Twitter2 focusing only on one topic
(2016 USA elections). However, despite their novel
attempts at developing a cross-platform cyberbully-
ing dataset and devising supervised machine learn-
ing classifiers to identify cyberbullying, their focus
on a specific type of text-based communication
like SMS and only on two types of SNS platforms,
of which one is now defunct. On the other hand,
(Nikhila et al., 2020; Yi and Zubiaga, 2022) also
devise novel techniques to identify textual cyberbul-
lying using adversarial neural network algorithms.
Nevertheless, for training the classifiers, they rely
on datasets by (Waseem and Hovy, 2016; Wul-
czyn et al., 2017) marked for either personal at-
tacks or hate speech. On the contrary, work by
(Van Bruwaene et al., 2020) is both novel and apt
for cyberbullying research. They devise a high-
quality dataset and experiment with Support Vector
Machines (SVM), Convolutional neural networks
(CNNs), and XGBOOST algorithms to develop
a cross-platform cyberbullying detection system.
To our knowledge, the work by (Van Bruwaene
et al., 2020) is the only one that leverages real-life
cyberbullying datasets. However, due to propri-
etary reasons, it is not yet made publicly available.
(Verma et al., 2022) leverage real-life cyberbully-
ing datasets collected by computational researchers
from multiple SNS and MOG platforms such as
Instagram3, Twitter, ASK.fm4, now-defunct SNS
platforms Formspring.me, and Vine5. On training
multiple binary cyberbullying classifiers on single
platforms and benchmarking their efficacy on dif-
ferent platforms, they found that attention-based
LMs could achieve better precision and recall than
traditional machine learning algorithms at classify-
ing cyberbullying samples as cyberbullying. How-
ever (Verma et al., 2022) were unable to determine
why these phenomena occur, and were also unable
to establish whether the attention-based LMs were
dependent on any textual cyberbullying traits (eg.
profanities or negative sentiment words).

1an anonymous question-answering SNS
2https://twitter.com
3https://www.instagram.com
4ASK.fm - https://ask.fm; is an anonymous

question-answering SNS platform
5Video-sharing platform like TikTok https://en.

wikipedia.org/wiki/Vine_(service)
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2.2 Analysing Attention in attention-based
language models

Attention-based transformer LMs developed by
(Devlin et al., 2018; Yang et al., 2019; Caselli et al.,
2020) consists of a deep architecture with many hid-
den layers stacked on top of one another. Within
these layers are many attention-heads or sub-layers
that assign attention-weights to a token (word) for
learning the importance of the token. Substantial
research conducted by (Zhang et al., 2019; Adadi
and Berrada, 2018; Sundararajan et al., 2017) and
others have demonstrated frameworks for explain-
ing and interpreting these deep-layered LMs by
analyzing these attention-weights at every layer.
Moreover, (Vig, 2019a; Vig and Belinkov, 2019)
have developed tools and resources that aid in visu-
alizing the attention weights. This allows human
users to comprehend and trust the results of such
deep-layered LMs. However, studies by (Jain and
Wallace, 2019; Serrano and Smith, 2019; Sun and
Lu, 2020; Vashishth et al., 2019) have demonstrated
that these attention-based mechanisms solely can-
not be relied upon for interpreting and explaining
the intricate workings of LMs. The work by (El-
safoury et al., 2021) for interpreting the attention
mechanism of BERT for cyberbullying is closest
to our research. We thank the authors (Elsafoury
et al., 2021) for their contributions and for mak-
ing the code repository reproducible. However,
they a) rely on out-of-domain datasets like hate
speech and personal attack datasets and b) lack in-
depth analysis of LMs decision-making for both
textual cyberbullying and non-cyber bullying sam-
ples. Moreover, they do not report the attention-
based LM(s) interpretation for real-world binary
instances of cyberbullying in text.

3 Datasets

To overcome current dataset-related gaps in cyber-
bullying research, we select datasets that are a) an-
notated by either cyberbullying domain experts or
b) clear and precise annotation guidelines aided the
annotation for cyberbullying. To our knowledge,
there are only seven real-life datasets in English
language that have been devised for cyberbullying
markers with such annotations. We categorise the
seven datasets into four groups based on a) type of
SNS or MOG platform and b) average length of
tokens observed from each of the seven platforms
(See Figure 1). These groups include,

• Question-answering SNS: Question-

answering SNS are both anonymous and
non-anonymous platforms like ASK.fm,
Reddit6, and Quora7 that allow platform users
to respond to questions posted by other users.
Dataset devised by (Van Hee et al., 2018)
from the ASK.fm platform is available in
both English and Dutch. Annotations in this
dataset are both binary and fine-grained, i.e.,
it is annotated for different cyberbullying
forms and varied cyberbullying participant
roles. (Reynolds et al., 2011) collected
English language dataset from now-defunct
Formspring.me. Annotations in this dataset
are binary, i.e., textual samples are labelled as
cyberbullying and non-cyber bullying.

• Twitter SNS: (Xu et al., 2012) formulated a
dataset by collecting tweets8 from Twitter in
the English language. Their dataset annota-
tions are annotated as binary textual cyberbul-
lying samples and for varied author roles such
as victim, bully, reporter, and others. (Salawu
et al., 2020) formulated a dataset from tweets
in the English language. They have various
labels such as profanity, insult, spam, sarcasm,
threat, exclusion, and bullying.

• User-comment SNS: User-comment SNS are
platforms that allow users to comment on
images or videos posted by other platform
users. Such platforms include but are not lim-
ited to Instagram, Facebook, TikTok, Vine,
etc. (Hosseinmardi et al., 2015) collected
multi-modal data (inclusive of images and
textual comments) from Instagram. The an-
notations in this dataset are for both cyber-
bullying and cyber aggression. (Rafiq et al.,
2015) also collected multi-modal data (inclu-
sive of videos and textual comments) from
now-defunct Vine platform. The annotation in
this dataset includes both cyberbullying and
cyber-aggression.

• MOG platforms: On MOG platforms, play-
ers communicate on forums, in-game chats, or
via voice (either in-built or by plug-in voice-
call platforms like Discord). (Bretschnei-
der and Peters, 2016) collected text from fo-

6https://www.reddit.com
7https://www.quora.com
8https://help.twitter.com/en/

resources/twitter-guide/topics/
how-to-join-the-conversation-on-twitter/
how-to-tweet
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Figure 1: Length of tokens in every dataset

rums of highly popular MOG platforms like
like World-of-Warcraft (WoW)9 and League-
of-Legends (LoL)10. The annotations in this
dataset are of two types a) role-based binary
annotations, i.e., bully and victim, and b) bi-
nary labels for cyberbullying for each text
sample.

As seen in Table 1, number of sentences for
cyberbullying content is very low across all seven
datasets. Each of the four grouped datasets were
split into training, validation, and test sets. The
training set makes up 80% for each of the grouped
dataset, while the validation set and test set each
make up for 10% of the datasets. The test set was
further broken into two parts a) 90% was used to
evaluate performance of fine-tuned LMs performed,
and b) 10% was used to analyze attention weights
and gradient-based feature importance scores for
each layer and head in the architecture of the LMs.

4 Experiment Setup

Tasks depicted in the first block of Figure 7 (See
Appendix A.3) are described in detail in sections
4.1 and 4.3. As depicted in other two blocks of the
Figure 7, we discuss the strategies for fine-tuning,
hyper-parameter optimization strategies, and the
attention-weight and gradient-based feature impor-
tance score at each layer for both bullying and non-
bullying sentences in Sections 4.2 and 4.4. The

9https://us.forums.blizzard.com/en/
wow/

10https://www.leagueoflegends.com/
en-us/news/community/

code repository for reproducing this study can be
found online11.

4.1 Data anonymization, pre-processing and
handling data imbalance

4.1.1 Data Anonymization
Adhering to General Data Protection Regulation
(GDPR) directive (Council of European Union,
2016), we fully anonymised and normalised the
datasets for any Personally Identifiable Informa-
tion (PII) data. Such data included but was not
limited to email-address, user names, geographical
locations, and user-profile details, among others.
Using GATE Cloud (Tablan et al., 2013) and the
TwitIE API (K. Bontcheva, 2013), PII data was
de-identified by masking and replacing the original
words with masked value. For example, the sen-
tence "mary@gmail.com is based in London", was
masked as "email-address is based in location".

4.1.2 Pre-processing
Due to the abundance of non-standard language in
the datasets, including lexical variants like supa→
super, and acronyms, e.g., tbh→ to be honest, and
spelling errors, we applied several normalization
heuristics for spelling and slang corrections. We
removed a) URLs, user mentions, and non-ASCII
characters for all datasets, b) retweet (RT) markers
in text for twitter datasets, and c) lower-cased all
text, and d) converted contractions to formal for-
mat. We also gathered a list of slang words and
acronyms with their standardized forms from an
online website12. Finally, we developed an algo-
rithm (See Appendix A.1 for details) to fix spelling
errors with the most accurate semantic corrections.

4.1.3 Data Imbalance
The percentage of cyberbullying content in Ta-
ble 1 shows a high imbalance skewed towards
the non-bullying class. Handling the imbalance
was paramount to avoid learning the bias towards
the majority class in imbalanced datasets. Due to
the limited nature of the dataset and to avoid the
risk of losing context and sequence of words in a
sentence, we leveraged the simple random over-
sampling technique (Moreo et al., 2016) over Syn-
thetic Minority Oversampling Technique (SMOTE)
(Bunkhumpornpat et al., 2009). It is worth noting

11https://gitlab.computing.dcu.ie/
vermak3/xai-cyberbullying-attention

12https://www.webopedia.com/reference/text-
abbreviations/
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Platform-Type Study % Cyberbullying Content # of Sentences
Question-Answering (Van Hee et al., 2018) 4.73 113,698

(Reynolds et al., 2011) 9.42 25,802
User-Comment (Hosseinmardi et al., 2015) 41.28 32,074

(Rafiq et al., 2015) 34.58 78,249
Twitter (Xu et al., 2012)* 5.99 9,965

(Salawu et al., 2020)* 4.67 4,009
Gaming (Bretschneider and Peters, 2016) 2.3 34,229

Table 1: Dataset Description.
"*" Numbers vary to original dataset, as the tweet is unavailable due to deletion by tweet authors.

that the random oversampling was done in only one
training set, and data imbalance was not handled
in the validation and test set to match real-life sce-
narios. Also, to verify if over-sampling techniques
affect the classification models’ accuracy, we run
experiments with imbalanced and over-sampled
datasets.

4.2 Language Models and Hyper-parameters
To ascertain which SOA LMs is able to a) bet-
ter capture dependencies and b) learn better rep-
resentation of cyberbullying text from noisy UGC
data, we leverage pre-trained BERTbase−uncased by
(Devlin et al., 2018), and Hate-BERTbase−uncased

by (Caselli et al., 2020). BERTbase−uncased is a
bi-directional auto-encoding attention-based trans-
former with twelve layered transformer blocks,
with each block containing twelve self-attention
layers and a total of 768 hidden layers, result-
ing in approximately 110 M parameters. Hate-
BERTbase−uncased is a BERT LM re-trained on
hateful comments from RAL-E Reddit’s banned
communities (Chandrasekharan et al., 2017). We
utilized the implementation provided by Hugging-
Face’s Transformer Library (Wolf et al., 2019) and
by (Caselli et al., 2020), and follow (Verma et al.,
2022) experiments to fine-tune the pre-trained LMs.
To find optimal hyper-parameters, we used the
Weights & Biases (Biewald, 2020) plug-ins to con-
duct multiple grid-based experiments with a var-
ied range of hyper-parameters and optimized it to
achieve maximum validation accuracy. The range
of hyper-parameters includes,

• Maximum Token Length(s): [128, 256]

• Batch-size(s): [8, 16, 32]

• Epochs: [2, 3, 4]

• Loss Function: Binary Cross Entropy

• Optimizer Function: Adam Weighted

• Learning Rate(s): 1e−5, 2e−5, 3e−5, 4e−5,
5e−5

4.3 Collecting Parts-of-speech (POS) Tags &
Sentiment Scores

To formally evaluate our hypothesis and assump-
tions addressed in Section 1. As the datasets lever-
aged in this study are a) sourced from SNS and
MOG platforms, b) are not in formal language, and
c) do not include POS tags or sentiment scores, we
leveraged Spacy’s POS tagger 13 (Honnibal and
Montani, 2017) to collect POS tags and VADER
by (Hutto and Gilbert, 2014) to collect sentiment
scores. Please note that both POS tags and sen-
timent scores were collected only for 10% of the
test-set, (See Table 4 in Appendix A.2).

4.4 Attention-weights and gradient-based
importance scores

To address our RQ.1 and compare with other exper-
iments (Jain and Wallace, 2019; Serrano and Smith,
2019; Sun and Lu, 2020; Vashishth et al., 2019), we
extract attention-weights of the fine-tuned LM(s)
on 10 % of test-set reserved for attention analysis.
Many experiments on transformer-based attention-
analysis refer to gradient-based feature importance
scores as a measure for providing importance of
individual features with known semantics (Clark
et al., 2019; Serrano and Smith, 2019; Sun and
Lu, 2020). We leveraged the Integrated Gradients
algorithm by (Sundararajan et al., 2017) for py-
torch14 to model interpretability by (Kokhlikyan
et al., 2020) to compute the gradient-based feature
importance scores on 10% of the test-set reserved
for attention analysis. As the pre-trained LMs used

13https://spacy.io/usage/
linguistic-features#pos-tagging

14A python language framework for deep learning https:
//pytorch.org/
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in this study have 12 transformer block layers and
12 attention heads, we computed the mean attention
weights for each head of every layer. Extending
(Jain and Wallace, 2019)’s work, we use Pearson’s
correlation coefficient (PCC) to measure the linear
correlation between mean importance scores and
mean attention weights. Moreover, we also a) com-
pute mean-attention weights and gradient-based
feature importance scores for every token for every
POS tag of the reserved test-set and b) observe both
mean-attention weights and gradient-based feature
importance scores for tokens in the reserved test-set
that have a greater negative sentiment.

5 Results

5.1 Impact of Data Imbalance

To assess if our simple oversampling strategy on
training data referred to in Section 4.1.3 yields
any significant improvement over the no-sampling
strategy on training data, we check the model’s
validation accuracy on the non-sampled validation
dataset. As depicted in Table 5 (See Appendix A.4)
, we find no significant differences in the perfor-
mance of either oversampling or no-sampling when
both BERT and HateBERT LMs are fine-tuned
on user-comment, twitter, and question-answering
datasets, except for the gaming dataset. Both LMs
fine-tuned on over-sampled gaming dataset perform
better than fine-tuning on no-sampled datasets. We
believe this is because, as seen in Table 1, there are
only 2.3% bullying samples in the gaming dataset,
and it is highly skewed towards non-bullying sam-
ples.

5.2 Hyper-parameters Finetuning

As discussed in Section 4.2, we experiment with
different combinations of hyper-parameters with
the help of the Weights & Biases plug-in for grid-
based experiments. Table 2 represents the results of
optimal hyper-parameters on validation-set for both
fine-tuned LMs on each of the four datasets. We
find that hyper-parameters vary for each model on
every dataset. Overall, optimal hyper-parameters
include, token-length of 128, batch-sizes ranging
from 8 to 32, learning-rates between 1e-5, 2e-5,
3e-5, and 5e-5, and with 2 Epochs. With the help
of these hyper-parameters, maximum accuracy can
be achieved on validation sets.

5.3 Cyberbullying Detection

After training and validating both
BERTbase−uncased and HateBERTbase−uncased

with the optimal hyper-parameters (See Table
2) for every dataset, we assessed both LMs
performance for their F1-scores for a) bullying,
and b) non-bullying samples. In cyberbullying
detection, false negatives and false positives are
crucial, especially in cases of imbalanced data. We
believe that F1 scores for each class are an apt
metric for evaluating classifiers. As depicted in the
Table 3 fine-tuning the HateBERT LM for each
of the four platform datasets, does perform better
than just fine-tuning the BERT LM. Moreover,
these generalized LMs perform better with the
grouped Twitter datasets.

5.4 Attention-weights & Gradient-based
feature analysis

5.4.1 Correlation between attention-weights &
gradient-based feature importance
scores

As observed in the Figure 2, the Pearson’s correla-
tion coefficient (PCC) between attention-weights
and gradient-based feature importance scores
for fine-tuned HateBERT ranges from 0.0129
for bullying-samples in user-comment dataset to
0.1202 for bullying-samples in gaming datasets.
Whereas, for fine-tuned BERT the PCC between
attention-weights and gradient-based feature im-
portance scores ranges from 0.0042 for bullying-
samples in question-answering datasets to 0.19 in
twitter dataset. Overall, as depicted in the Figure 2,
this PCC is close to zero for both BERT and Hate-
BERT LMs fine-tuned on user-comment dataset.
For BERT LM fine-tuned on twitter and gaming
datasets, the PCC between attention-weights and
gradient-based feature importance scores is in the
range of 0.08 to 0.19. However, for HateBERT LM
fine-tuned on twitter datasets, this is not the case;
the PCC between attention-weights and gradient-
based feature importance for this data is nearly zero
(0.070-0.078).

From Table 3, we can deduce that HateBERT
LM fine-tuned on twitter datasets has better F-
scores than BERT LM fine-tuning on the same
dataset. The near zero-correlation observed be-
tween mean attention-weights and gradient-based
importance scores for both generalized LMs, espe-
cially for better performing HateBERT LM fine-
tuned on twitter datasets, helps us substantiate
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Model Dataset Token length Batch-size Learning Rate Epochs Val-Accuracy
BERT+ Gaming 128 8 5e−5 4 0.7746

UC 128 32 3e−5 2 0.7476
QA 128 8 5e−5 2 0.9496
Twitter 128 32 2e−5 2 0.94

HateBERT+ Gaming 128 8 1e−5 2 0.7478
UC 128 16 3e−5 2 0.7497
QA 128 16 1e−5 2 0.9498
Twitter 128 32 5e−5 2 0.939

Table 2: Optimal Hyper-parameters for every model with every dataset
Note: UC→ user-comment; QA→ question-answering

Model Dataset Bullying F1 Non-Bullying F1 Average F1
BERT+ QA 0.62 0.68 0.65

UC 0.65 0.77 0.71
Twitter 0.75 0.79 0.77
Gaming 0.68 0.79 0.72

HateBERT+ QA 0.73 0.73 0.73
UC 0.68 0.84 0.76
Twitter 0.78 0.84 0.81
Gaming 0.74 0.78 0.76

Table 3: Cyberbullying Classification Results
Note: UC→ user-comment; QA→ question-answering

Figure 2: Pearson’s Correlation between Mean
Attention Weights and Mean Gradient-Importance

Score for all LMs and Datasets

the claims by (Jain and Wallace, 2019; Serrano
and Smith, 2019; Sun and Lu, 2020; Vashishth
et al., 2019). They claim that while attention-
mechanisms improve classification performance,
relying on attention-weights for interpretation is
questionable at best, holds true even for real-life
SNS and MOG cyberbullying datasets.

5.4.2 Layer-wise attention Analysis

In this section, we examine the mean-attention
weights at each layer for each POS tag as well
as sentences with both stronger negative & pos-
itive sentiment that were taken from fine-tuned
LMs that had a) a higher positive correlation be-
tween the mean attention weights and the mean
gradient-based feature importance scores and b)
a higher classification F-1 score. These models
are BERT+twitter and HateBERT+gaming as de-
picted in the Table 3 and the Figure 2. So, using

data from both Twitter and gaming datasets, we
provide layer-wise analysis as follows,

• Layer-wise Attention for Parts-of-speech
Tags &
In Figures 3 and 4, we represent mean-
attention attention weights at each layer for
every POS tag in the twitter and gaming
datasets. For adjectives in both bullying and
non-bullying samples in these datasets, fine-
tuned BERT and HateBERT models have
mean attention weights ranging from 0.051
to 0.062. For verbs in bullying samples, fine-
tuned BERT has 0.1 mean attention weight at
layer 6, and at the end of layer 12, it drops
to 0.09, whereas in the fine-tuned HateBERT
model for bullying samples, the mean atten-
tion weight is as low as it is for adjectives. For
nouns in bullying samples, fine-tuned BERT
has a mean attention weight of 0.051, and fine-
tuned HateBERT has a mean attention weight
of 0.14 at the starting layers, but by layers 11
and 12, it drops down to 0.074. For proper
nouns, fine-tuned BERT and HateBERT have
a much higher mean attention weight for bul-
lying samples. However, in non-bullying sam-
ples, fine-tuned HateBERT has a lower mean
attention weight of 0.051 throughout all layers.
This, in a way, disproves our hypothesis that
words that are adjectives, verbs, nouns, and
proper nouns will have higher mean attention
weights. As depicted in Figures 3 and 4, mean
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Figure 3: BERT+ Mean-attention weights per Layer
POS-tag wise

attention weights for auxiliaries, determiners,
ad-positions, conjunctions, and interjections
in comparison to adjectives, verbs and nouns
are consistently higher at almost all layers for
fine-tuned BERT and HateBERT models in
both bullying and non-bullying samples.

• Negative Words & Attention
As discussed in an earlier section , we as-
sume that negative sentiment words will have
greater mean attention weights, so we com-
pare these weights with the mean attention
weights of positive sentiment words. Also,
as mentioned in Section 4.3, we leveraged
Vader to generate sentiment scores for all to-
kens in the reserved test set. We selected four
words with greater negative sentiment (f*ck,
a*s, b*tch, stu*id) and four words with greater
positive sentiment (like, cute, pretty, truth).
The Figures 5 and 6 represent mean-attention
weights per layer for each of the words. We
find that the positive sentiment word pretty has
a similar mean attention weight as the nega-
tive sentiment words b*tch and a*s at all lay-
ers for both fine-tuned BERT and HateBERT
models. This disproves our second assump-
tion that negative sentiment words will have
greater mean attention weights. For brevity,
our analysis on two sample sentences at ev-
ery layer and head are briefly discussed in
Appendix A.5.

6 Conclusion & Future Work

Our comprehensive experiments using two LMs
and four grouped real-life cyberbullying datasets
from various SNS and MOG platforms revealed
that: a) a fine-tuned HateBERT is better at classi-
fying cyberbullying samples as cyberbullying; b)

Figure 4: HateBERT+ Mean-attention weights per
Layer POS-tag wise

Figure 5: Attention per layer for Negative Sentiment
words

Figure 6: Attention per layer for Positive Sentiment
words

there is almost no correlation between the attention-
weights and gradient-based feature importance
scores; and c) an attention-based transformer model
tuned for cyberbullying classification relies more
on syntactical features in text, and d) attention-
based transformer model fine-tuned for cyberbully-
ing classification have similar "attention" for both
negative and positive sentiment words. While our
experiments show that to some level, attention-
based transformers fine-tuned on real-life cyberbul-
lying datasets do aid in interpreting and explaining
its decision-making based on cyberbullying fea-
tures, there is still a lot more work to be done in de-
vising transparent and fair LM(s) for cyberbullying
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detection. While we demonstrate comprehensive
methods to interpret and explain fine-tuned LMs
on real-life SNS and MOG text cyberbullying clas-
sification, we acknowledge that due to the diverse
forms and roles of cyberbullying, our work is lim-
ited by binary cyberbullying categories. Due to
the current paucity of fine-grained cyberbullying
datasets, in the future, we will attempt to use the
learned representation of these fine-tuned LM(s) on
fine-grained pre-adolescent datasets by (Sprugnoli
et al., 2018).
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A Appendix

A.1 Data Normalisation Algorithm
As SNS and MOG text is short, an incorrect re-
placement of misspelt words can make the sentence
lose its context. For example, if in the sentence
"i got a tkn to play" "tkn" is replaced as "taken"
instead of "token", the sentence will lose its mean-
ing. So, to avoid such an incorrect spell correc-
tion, it is important to understand the context of
the sentence. To that effect we developed an al-
gorithm 1 to fix spelling spelling errors with the
most accurate semantic corrections by leveraging
the existing python library py-spell-checker15 and
(Goldberg and Levy, 2014)’s word2vec word em-
bedding technique. The python spell-check library
py-spell-checker16 checks every word for a mis-
spelling and suggests two or more possible correct
words. The original sentence is then parsed through
the word2vec (Goldberg and Levy, 2014) model
to get obtain its word embedding. The candidate
words suggested by the spell check library are then
replaced in the original sentence, and the new sen-
tence is parsed through the word2vec model again.
We then calculate the cosine distances between the
original and possible replacement sentences, and
the sentence with the highest cosine score or cosine
score above 0.9 i.e., most similar to the original sen-
tence, replaces the original sentence in the dataset.

15https://pypi.org/project/pyspellchecker/
16https://pypi.org/project/pyspellchecker/

Algorithm 1 Algorithm for contextual misspelled
word correction using Word2Vec

1: import spellcheck() ▷ Python Package
2: import slang word dictionary ▷ Python

dictionary of slang words
3: import word2Vec ▷ Word2Vec Model
4: for sentence in list sentences do
5: spellcheck ← sentence
6: word2vec← sentence
7: wordoptions← spellcheck(sentence)
8: newsentence ←word options+sentence
9: newword2vec ←new sentence

10: similarity = word2vec.cosine -
newword2vec.cosine

11:12: if similarity > threshold (0.90) then sen-
tence = newsentence −

13: return sentences

Figure 7: Experiment Schema

A.2 Dataset Split

The table 4 represents each grouped dataset’s train-
ing, validation, and test-set size.

A.3 Experiment Schema

A.4 Imbalance Handling Results

Table 5 presents the results of no-sampling and
over-sampling techniques leveraged in this study
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Dataset-Type Total Size Training-set Validation-set Test-set
90% for Performance 10% for Attention

Question-Answering 139,500 111,600 13,950 12,555 1,395
User-Comment 110,323 88,259 11,032 9,929 1,103
Twitter 13,974 11,179 1,397 1,258 140
Gaming 34,229 27,383 3,423 3,081 342

Table 4: Dataset split-size

Figure 8: Attention analysis for Positive Sentiment
Word

for fine-tuning pre-trained LMs.

A.5 Sentiment Attention Analysis
To analyse if negative and positive sentiment words
have more attention in a text sequence. We se-
lected the following two sentences, "f*ck the st*pid
b*tch" (negative sentiment), and "i love this per-
son" (positive sentiment), and visualized the se-
quence to sequence attention by leveraging BertViz
(Vig, 2019b). Our findings for both positive and
negative words in sample sentences for almost all
layers and attention-heads on both fine-tuned BERT
and HateBERT are depicted in Figure 8 and 9. As
seen in Figure8, the word "love" in positive sen-
tence "i love the person", has higher attention distri-
bution with neutral words like "the" and "person".
As seen in Figure9, the word "b*tch" in negative
sentence has higher attention distribution with neu-
tral words like "i, the" and "person". This too
disproves our hypothesis, and shows attention is
not fully at negative sentiment words, instead its
similar for positive sentiment words and at times
higher for neutral sentiment words.

Figure 9: Attention analysis for Negative Sentiment
Word
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Model Dataset No-sampling Oversampling
BERT+ Gaming 0.7478| 0.7746

UC 0.8476 0.8224|
QA 0.9496 0.939|
Twitter 0.94 0.365|

HateBERT+ Gaming 0.6857| 0.7468
UC 0.8497 0.8261|
QA 0.9498 0.9076|
Twitter 0.939 0.938|

Table 5: Model’s performance on balanced and imbalanced training datasets
Note: UC→ user-comment; QA→ question-answering
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Abstract

In this paper, we presented our team
“IIITRanchi” for the Trolling, Aggression
and Cyberbullying (TRAC-3) 2022 shared
tasks. Aggression and its different forms on
social media and other platforms had tremen-
dous growth on the Internet. In this work we
have tried upon different aspects of aggression,
aggression intensity, bias of different forms and
their usage online and its identification using
different Machine Learning techniques. We
have classified each sample at seven different
tasks namely aggression level, aggression inten-
sity, discursive role, gender bias, religious bias,
caste/class bias and ethnicity/racial bias as spec-
ified in the shared tasks. Both of our teams tried
machine learning classifiers and achieved the
good results. Overall, our team “IIITRanchi”
ranked first position in this shared tasks compe-
tition.

Keywords— Aggression, Multilingual com-
ments, Tokenization, TF-IDF, BoG, Logistic
Regression.

1 Introduction
Social media is an open platform where users can inter-
act, share, learn and behave openly with other online
users. Due to the high demand and popularity of these
media, aggression and its manifestations in different
forms have taken unprecedented proportions. Users of
these media are generally writing their posts in multi-
lingual forms (Kumar et al., 2022; Kumari and Singh,
2020b,a). So, identification of such kinds of aggression,
threats and biases are not an easy task due to various
reasons like these comments are unstructured, multi-
lingual, short forms and highly contextual in nature.
Due to these challenges, the research communities are
very much interested in such kinds of automated iden-
tification. We have tried to develop systems that could
automatically identify and separate these posts from the
normal posts on the aggression shared dataset (Kumar
et al., 2022).

For the given tasks, we have attempted all seven dif-
ferent categories of the text and classified them into their
classes using different machine learning classifiers. The

main motive of the work is to develop an efficient Ma-
chine Learning system to detect the aggression, biased
and threatening contents on the social media platform
which can be removed and altered afterwards. This will
prevent the negative impact on many users and hate that
may spread in society. The proposed models have differ-
ent machine learning algorithms and we have fine tuned
the models with different hyper-parameters which we
have found for testing and cross validation phases. We
found better results for all the shared tasks and ranked
first. Our team (IIITRanchi) ranked first on all the Task1,
Task1 surprise tests, and also in Task2.

In the preceding section, we have discussed a detailed
description of the some related works, dataset, the pre-
processing steps involved, the initial challenges and the
models which we used for our use case.

2 Related Work

The variety of aggression related works have been pro-
posed by researchers in the last few years. Aggression
related shared tasks were proposed by the organising
team of Shared Tasks on Aggression Identification in ev-
ery second year 2018 (Kumar et al., 2018), 2020 (Bhat-
tacharya et al., 2020) and 2022 (Kumar et al., 2022).
Some of the recent works are discussed as:

At first, we are discussing some of the important
works on 2018 aggression dataset (Kumar et al., 2018).
The work (Risch and Krestel, 2018) used ensemble
learning and data augmentation techniques. They aug-
mented English training dataset with the help of ma-
chine translation using three languages (French, Ger-
man and Spanish) by preserving the meaning of com-
ments with different wording. Their system was not
stable for Hindi dataset across the platforms (Facebook
and Twitter). Their system is not stable, especially for
Hindi dataset for the same domain it was performed
well, but for other domain, it fails to classify the tweets
with good accuracy. Aroyehun and Gelbukh (Aroyehun
and Gelbukh, 2018) used various deep learning models
such as Long Short Term Memory (LSTM), CNN, and
FastText as word representation and data augmentation
techniques by machine-translating the original post into
different languages and then translated back to the orig-
inal language. Their system was not clearly classified
covertly aggressive comments from overtly aggressive
comments with significant accuracy. Julian and Krestel
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(Risch and Krestel, 2018) and Aroyehun and Gelbukh
(Aroyehun and Gelbukh, 2018) found that augmenta-
tion of training data gives a better result. Raiyani et
al. (Raiyani et al., 2018) used dense system architec-
ture and compared several models such as dense neural
network, FastText and voting-based ensemble model.
They found that simple three-layer dense neural net-
work was performing better than the other two (FastText
and voting-based ensemble classification) models. Their
system has continued to suffer from false-positive cases
and has also overlooked words that are not available in
their vocabulary.

Some important works on 2020 aggression dataset
(Bhattacharya et al., 2020; Kumar et al., 2020). Julian
and Krestel (Risch and Krestel, 2020) uses transformer
based multiple fine-tuned BERT models based on bag-
ging technique and found very good results. THe work
(Mishra et al., 2020) also used the transformer based
BERT models and achieved good performance.

3 Dataset
In this section, we discuss brief descriptions about
datasets (Kumar et al., 2022) and given shared tasks.

3.1 Tasks
The following tasks defined by the organizing teams
as: (a) Aggression, Gender Bias, Racial Bias, Reli-
gious Intolerance and Bias and Casteist Bias on so-
cial media and (b) the "discursive role" of a given
comment in the context of the previous comment(s).
Further these task are subdivided into some sub-
classes as: Gender Bias: It has three subclasses
problem: Gender (GEN), Gender Threat (GENT)
and Non-Gender (NGEN). Ethnicity/Racial Bias: It
has three subclasses Ethnic/Racial comments (ETH),
Ethnic/Racial Threat(ETHT), Non Ethnic/Racial com-
ments(NCOM). Communal bias: It has three sub-
classes Communal (COM), Communal Threat (COMT),
Non-Communal (NCOM). Caste/class bias: It has
three subclasses Casteist/Classist comments (CAS),
Casteist/classist Threat (CAST), Non-Casteist/Classist
comments (NCAS). Aggression Level: It has three
subclasses ‘Overtly Aggressive’(OAG), ‘Covertly Ag-
gressive’(CAG) and ‘Non-aggressive’(NAG) text data.
Aggression Intensity: This level gives a 4-way clas-
sification in between ‘Physical Threat’(PTH), ‘Sex-
ual Threat’(STH), ‘Non-threatening Aggression’(NtAG)
and ‘Curse/Abuse’(CuAG). Religious Bias: At the level
E, the task is to develop a 3-way classifier for clas-
sifying the text as ‘communal’ (COM), ‘Communal
Threat’(COMT) and ‘non-communal’(NCOM).

The dataset (Kumar et al., 2022) is multilingual with
a total of over 140,000 samples (over 60,000 unique
samples) for training and development and over 15,000
unique samples for testing in four Indian languages
Meitei, Bangla (Indian variety), Hindi and English. The
dataset consists of comments from a total of 158 videos
i.e., it has a comment thread in total. All the data is

collected from YouTube. This dataset is manually an-
notated by multiple annotators. The phenomena of ag-
gression/bias is a function of certain parameters. These
parameters have been discussed properly in the article
(Agha, 2006). The three contextual factors included
in the tasks are aggression, gender bias and commu-
nal bias. The training data contains a mixed corpus
of multilingual code-mixed comments in four Indian
languages:

• Meitei

• Bangla

• Hindi

• English

Language-wise distribution is approximately 26.3%
Meitei, 27.8% Bangla, 45.9% Hinglish(Hindi and En-
glish). The detailed description of the dataset can be
found in the article (Kumar et al., 2022).

Figure 1: Pie chart for language-wise distribution of the
given training dataset.

3.2 Initial challenges
The major challenges in the dataset were the unwanted
words and the code-mixed nature of the dataset. We
started out by cleaning the dataset with the help of cer-
tain techniques. We went for transliteration first but due
to the change in meaning of many words we didn’t go
forward with that method. We then used some of the
text data preprocessing techniques and discussed in the
following section.

4 Preprocessing
In this section we are going to describe the preprocess-
ing steps we did for cleaning the dataset.

4.1 Removing noise:
The dataset has data from youtube hence mention
of users, other hyperlinks are noise for us. Simple
regex(regular expression) based rules were used to re-
move discrepancy : The general method was

• Anything which was followed by @ such as @user
was removed as it didn’t add much of a context to
our tasks.

• Anything starting with https//: was removed.
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• Unidentified characters such as emojis with no
general meanings were also removed.

4.2 Removing Punctuation and special symbols:
Since, we were going for Bag of Words(BoG) model
and Term-Frequency Inverse Document Frequency (TF-
IDF) vectorizer concept usage of punctuation didn’t
have any impact on the dataset, hence we removed the
punctuations and other special characters as well.

4.3 Lowering of dataset:
We have lowered the case of the sentences of the dataset
to form uniformity in the dataset and we don’t have to
care about the case of the dataset then for code-mixed
data. Words such as ‘ACHA’ were converted to ‘acha’
for uniformity and space complexity constraints.

4.4 One Hot Encoding:
Categorical values corresponding to each class were
label encoded as 0,1,2,3 to respective tasks having dif-
ferent classes.

4.5 Vectorization:
For vectorization, we used TF-IDF vectorizer as we
used classical Machine Learning (ML) models for clas-
sification. Since the tasks were binary in nature (mostly
as we had to predict whether a certain comment was
aggressive or not and then its extent) so just the presence
of certain words made it offensive and non-offensive
and aggressive and non-aggressive . Therefore a sim-
pler approach such as TF-IDF was used instead of the
word2vec technique . Example : @user Agiye cholo
aamra aachhi #goodfeels After cleaning we get - Agiye
cholo aamra aachhi, goodfeels The final sparse matrix
after vectorization was then feeded to the models for
predictions.

5 Models
We have considered Naïve Bayes, Decision Tree based
Random Forest, Logistic Regression and Support Vec-
tor Machines (SVM) for text classifications. We have
used training data on each model by performing Grid-
SearchCV for all the combinations of feature parame-
ters. We have analyzed performance on the basis of a
weighted average micro f1-score of the cross validation.

5.1 Support Vector Machine
The first model with which we started out was SVM as
its state of the art for classification tasks. The parame-
ters we used were C = 1 and the kernel was linear but it
didn’t perform well mostly due to the non linearly sep-
arable nature of the dataset .Then we moved on to the
polynomial kernel . With degrees as high as 8-9 also the
model didn’t perform well as it failed to generalize. The
next change we made was : kernel = ‘rbf’ C = 1 , this
performed well on train data. This model generalized
well and gave better classification results as compared
to above methods.

5.2 Multinomial Bayes (MNB)
The next model we used was Multinomial Bayes which
is commonly used for text classification. The initial
model didn’t perform well with value of = 0 , as the
minimum count of many words was zero in many of
the cases so the joint probability was returning zero
and hence the classes were being misclassified. We
used grid search cross validation for finding the best
and found best results on train data with = 1e-03 But
due to a sparse dataset from TfidfVectorizer it had some
limitations and even with hyper parameter tuning the
performance didn’t improve much.

5.3 Decision Trees and Random Forest
We started the tree methods with a decision trees classi-
fier but even with higher values of max depth and other
parameters it didn’t perform well. Then we moved to
ensemble techniques such as random forest. Random
Forest overfitted on the training dataset, and hence it
was not able to capture a general trend in the dataset
and failed to provide good results on validation set. We
choose the criterion for split to be entropy and the max
depth of each tree to be 4 in Random Forest.

5.4 Logistic Regression (LR)
The last model, we used was Logistic Regression. A
simple classifier model with different C values. Due to
its (almost) binary nature and multi-class solver newton-
cg logistic regression performed really well on the train-
ing dataset. We got a very generalized model for all
tasks. We modified the value of penalty parameter C to
higher values also and got the best result at C = 5. With
the generalized models ready, we used these models to
assess the results on the unseen testing data which con-
tained three types - dataset with surprise text, COVID
comments dataset and data with no surprise text.

5.5 Ensemble techniques
We then moved on with ensemble based boosting meth-
ods. We used XGB Classifier and Adaboost techniques
in view of better variance and better results.

5.5.1 XGB classifier
Due to the sparse nature of the data, single decision trees
couldn’t perform well. We chose many hyperparameters
for this model but it failed to provide better results .
Hence we didn’t move forward with this model in the
training phase. We choose the criterion for split to be
entropy and the max depth of each tree to be 4 in XGB
classifier and the final criteria to be Softmax.

5.5.2 AdaBoost
The last model we used was Ada Boost. Being a boost-
ing method we expected the variance to be better in this
case. For base learners we chose a decision tree with
max-depth =3 and the criterion of split to be entropy.
Since the model was unable to make proper decisions
on the basis of sparse data the performance was not par
with the models we used before.
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Task SVM LR RF MNB ADB XGB
Aggression 0.76 0.78 0.54 0.74 0.52 0.54
Aggression Intensity 0.79 0.76 0.66 0.72 0.63 0.66
Discursive Role 0.91 0.86 0.71 0.85 0.68 0.71
Gender Bias 0.92 0.91 0.82 0.89 0.81 0.82
Communal Bias 0.96 0.95 0.85 0.94 0.82 0.85
Ethnicity-Racial Bias 0.99 0.99 0.867 0.99 0.82 0.867
Caste bias 0.99 0.99 0.87 0.98 0.74 0.87
Overall 0.90 0.89 0.75 0.87 0.717 0.75

Table 1: Micro averages of training dataset tasks with
different models

Task SVM LR MNB
Aggression 0.66 0.70 0.70
Aggression Intensity 0.66 0.67 0.69
Discursive Role 0.71 0.87 0.82
Gender Bias 0.87 0.89 0.90
Communal Bias 0.93 0.95 0.95
Ethnicity-Racial Bias 0.98 0.99 0.99
Caste bias 0.96 0.98 0.98
Overall 0.76 0.86 0.84

Table 2: Micro averages of testing dataset on task-1 with
different models.

With the generalized models ready, we used these
models to assess the results on the unseen testing data
which contained three types - dataset with surprise text ,
covid comments dataset and data with no surprise text.

6 Results and Discussion
In this section, we present our findings and observations
of this work.

6.1 Training data
The results, we present here are based on a weighted
average micro F1-Score and some abbreviation used as:
*LR - logistic regression *MNB - Multinomial bayes
*SVM - support vector machines *RF- random forest
*ADB - Adaboost * XGB - XG boost

The SVM model tends to fit perfectly to training data
with a weighted average micro f1-score over 0.90 for
many of the tasks due to its soft margin nature and
flexibility in C value . The kernel used is Gaussian
hence the model tends to mimic the training data really
well.

6.2 Testing data
The testing data consisted of three tasks which had dif-
ferent datasets for evaluation in the competition.

• Task-1 Data without surprise language

• Task -2 Covid comments data

• Task-3 Data with surprise language

6.2.1 Task-1 Data without surprise data
In the above task we have seen, Logistic Regression
performs better in all tasks even though SVM performed
better on train dataset.

Task SVM LR MNB
2018 Aggression 0.38 0.47 0.48
2020 Aggression 0.45 0.65 0.66
2022 Aggression 0.40 0.70 0.70
covid Aggression 0.30 0.63 0.60
Overall 0.30 0.63 0.60

Table 3: Micro averages of testing dataset on Task-2
with different models.

Task SVM LR MNB
Aggression 0.60 0.62 0.63
Aggression Intensity 0.46 0.46 0.47
Discursive Role 0.69 0.88 0.84
Gender Bias 0.91 0.92 0.92
Communal Bias 0.95 0.96 0.96
Ethnicity-Racial Bias 0.99 0.99 0.99
Caste bias 0.98 0.98 1.00
Overall 0.81 0.87 0.87

Table 4: Micro averages of testing dataset on task-3
with different models.

6.3 Task-2 Data with Covid-19 comments
This data contains comments in codemixed languages
where the context is based on Covid-19. So many of the
texts are offensive and many have negative aspects to it
as well. Logistic regression again outperforms all other
models.

6.3.1 Task-3 Data with surprise data
In this case Logistic Regression and MNB both perform
equally but MNB performs well on each of the subtasks
individually.

6.4 Reasons for not moving towards deep learning
techniques

When we talk about Natural Language Processing task,
we directly take into account the popular models such as
various forms of BERT models. But since in our case the
simpler model (Logistic Regression) was performing
well, hence we didn’t move on to the deep learning
model. While analysing our dataset, we found that the
BERT based existing models had tokenizers which use
sentence piece methods and hence while our dataset
was code-mixed it would break the useful words into
irrelevant tokens can be seen in the following example.
For example: BERT’s tokenizer doesn’t have the word
‘ANNA’ (brother). So, it breaks down the word into
‘AN’ ,’NA’ , which isn’t even close to brother. One of
the other major reasons was the size of the dataset, since
it was small, we couldn’t make our own embeddings for
better performance as many of the things were required
such as sentence piece tokenization and that requires a
lot of data. The other reason was, these were simple
classification tasks: i.e: whether a sentence is aggressive
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or not. So the presence of certain words were the only
parameters we had to take care of. Hence, in our case
Logistic Regression performed really well. We used
Sklearn package (Pedregosa et al., 2011) to develop the
models.

7 Error Analysis
In this section, we presented error analysis of our mod-
els. The size of training data was sufficient for ML
models as we came across a large number of vocabulary.
Since the metric used was micro F1-Score and most of
the tasks had only 2-3 classes we got good results as the
micro F1-Score came out to be above 0.70 on an average
therefore class wise classification scores were also bet-
ter. Model performs well on most of the tasks. By good
performance, we mean good class wise F1-Score on all
the respective classes. Few of the tasks where there was
a surplus of one class had a lesser macro average due
to absence of context aware classification but mostly
the model has outperformed all other techniques. The
confusion matrix and classification reports of Logistic
Regression model’s performance on training data are
given below: All the respective classes are encoded to
one categorical numeral below is the dictionary for that.

’Aggression’: ’CAG’: 0, ’OAG’: 1, ’NAG’: 2,

Figure 2: Classification report for Aggression task on
training data.

Figure 3: Confusion matrix for Aggression task on train-
ing data.

’Aggression Intensity’: ’NtAG’: 0, ’NA’: 1, ’CuAG’:
2, ’STH’: 3, ’PTH’: 4,

’Discursive Role’: ’NA’: 0,’CNS’: 1,’ATK’: 2,’AIN’:
3,’DFN’: 4,’GSL’: 5,

’Gender Bias’: ’NGEN’: 0, ’GEN’: 1, ’GENT’: 2,
’Communal Bias’: ’NCOM’: 0, ’COM’: 1, ’COMT’:

2,

Figure 4: Classification report for Aggression Intensity
task on training data.

Figure 5: Confusion matrix for Aggression Intensity
task on training data.

Figure 6: Classification Report for Discursive Role task
on training data.

Figure 7: Confusion Matrix for Discursive Role task on
training data.

’Caste/Class Bias’: ’NCAS’: 0, ’CAS’: 1, ’CAST’:
2,

’Ethnicity/Racial Bias’: ’NETH’: 0, ’ETH’: 1,
’ETHT’: 2

8 Conclusion
Our team secured the first position in the competition
of the given shared tasks on bias, threat and aggression
detection for given datasets. We found that the Logistic
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Figure 8: Classification Report for Gender Bias task on
training data.

Figure 9: Confusion Matrix for Gender Bias task on
training data.

Figure 10: Classification Report for Communal Bias
task on training data.

Figure 11: Confusion Matrix for Communal Bias task
on training data.

Regression classifier outperforms all the models on test
data due to more generalization and better prediction
nature in sparse data. The possible reason was that the
dataset in sparse form was linearly separable, but the
SVM model being soft margin was not a generalized
model for our case. SVM model was overfitting on train
data but Logistic Regression generalized the metrics and
hence performed really well in our case. At the end, we
would like to conclude with the possibility that there

Figure 12: Classification Report for Caste/Class Bias
task on training data.

Figure 13: Confusion Matrix for Caste/Class Bias task
on training data.

Figure 14: Classification Report for Ethnicity/Racial
Bias task on training data.

Figure 15: Confusion Matrix for Ethnicity/Racial Bias
task on training data.

exists many of the techniques other than what we have
presented in this paper. In order to improve the model’s
performance, we can go for ensemble techniques of the
models which have performed well in order to increase
the variance and make the model more generalized.
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Abstract
Online hate speech detection is an inherently
challenging task that has recently received
much attention from the natural language pro-
cessing community. Despite a substantial in-
crease in performance, considerable challenges
remain and include encoding contextual infor-
mation into automated hate speech detection
systems. In this paper, we focus on detecting
the target of hate speech in Dutch social me-
dia: whether a hateful Facebook comment is
directed against migrants or not (i.e., against
someone else). We manually annotate the rele-
vant conversational context and investigate the
effect of different aspects of context on perfor-
mance when adding it to a Dutch transformer-
based pre-trained language model, BERTje.
We show that performance of the model can
be significantly improved by integrating rele-
vant contextual information.

1 Introduction

Hate speech detection models play an important
role in online content moderation and promotion of
healthy online debates (Halevy et al., 2020). This
has motivated a considerable interest in the task
within a variety of disciplines, including social sci-
ences and the natural language processing (NLP)
community.

Recent advances in the field of NLP, which in-
clude the use of deep learning and ensemble archi-
tectures, have led to the development of automated
hate speech detection approaches with an increased
performance (Kumar et al., 2020; Zampieri et al.,
2020; Markov and Daelemans, 2021). However,
the task remains challenging from multiple perspec-
tives, e.g., the use of figurative language and cross-
domain scalability, amongst others (van Aken et al.,
2018; Vidgen and Derczynski, 2020; Pamungkas
et al., 2021; Lemmens et al., 2021). These chal-
lenges constrain the performance and generalizabil-
ity of hate speech detection models, and include
the problem of integrating contextual information,

that is, improving hate speech detection models
by making them context aware (Pavlopoulos et al.,
2020; Menini et al., 2021; Vidgen et al., 2021).

Modeling contextual information is indisputably
important for developing robust hate speech detec-
tion systems (de Gibert et al., 2018; Pavlopoulos
et al., 2020; Vidgen et al., 2021). For instance, the
comment ‘go back home’ is clearly hate speech if
it is posted under a news article about refugees and
asylum seekers. However, previous work on detect-
ing both the type and target of online hate speech
has mostly focused on message content alone, with-
out accounting for the context of the target com-
ments (Risch and Krestel, 2020; Zampieri et al.,
2020). This is partially related to the lack of con-
textual information in the vast majority of datasets
annotated for hate speech, which implies that hate
speech detection models cannot exploit the conver-
sational context when they are trained on existing
datasets (Vidgen and Derczynski, 2020).

More recent studies have specifically looked into
the effect of context on hate speech detection. For
instance, Pavlopoulos et al. (2020) experimented
with various strategies for integrating contextual in-
formation into BiLSTM and BERT models, where
context is limited to the preceding (‘parent’) com-
ment in the Wikipedia conversations dataset. The
authors report that though context significantly af-
fects annotation process by both amplifying or miti-
gating the perceived toxicity of posts, they found no
evidence that adding context leads to a large or con-
sistent improvement in performance of the exam-
ined models. Menini et al. (2021) highlighted simi-
lar challenges: while showing that context affects
annotation process (fewer tweets were annotated as
abusive when context was provided to annotators),
they report that when experimenting with differ-
ent models (BERT, BiLSTM, SVM) and a context
window ranging from one to all preceding tweets,
contextual information did not lead to a better clas-
sifier performance. Vidgen et al. (2021) introduced
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the Contextual Abuse Dataset composed of Reddit
messages, where previous or several previous mes-
sages were considered as the context and “every
annotation has a label for whether contextual infor-
mation was needed to make the annotation”. The
authors report that 25-32% of content was labelled
as context-dependent, and these messages are more
challenging for detection, leaving integrating con-
text for future work.

In this paper, we address hate speech target detec-
tion in hateful Dutch Facebook comments: whether
the target of hateful content is the social group
of interest, that is, migrants or someone else (see
Section 2). While in previous work the preced-
ing comment(s) in the discussion thread or the text
of the post was used as context (Gao and Huang,
2017; Karan and Šnajder, 2019; Pavlopoulos et al.,
2020; Menini et al., 2021; Lemmens et al., 2022),
we manually annotate the relevant context, that is,
we look specifically at the part of the prior con-
versation that provides the context, and use that
annotation to demonstrate its utility in hate speech
target prediction by adding relevant contextual in-
formation to a Dutch transformer-based pre-trained
language model, BERTje (de Vries et al., 2019).

Hate speech is deeply contextual, and while most
previous work ignores the conversational context,
and more recent work, which looked into it based
on previous comments or post, comes away con-
cluding that such surface-level information is not
helpful in prediction, this study shows and quan-
tifies the impact that can be brought by relevant
context on classifier performance when detecting
the target of online hate speech.

2 Data

We used the LiLaH dataset, as in (Markov et al.,
2021). The dataset is composed of Facebook posts
by mainstream media outlets in Dutch (i.e., news
articles that were published by the media outlets
and are (re-)published or shared as Facebook posts)
and readers’ comments on these posts in a com-
ment section, which were manually annotated by
three trained annotators for fine-grained types and
targets of hate speech (see below in this section)
with a ‘moderate’ agreement. The annotations were
performed in-context, that is, annotators first read
entire comment threads and then labeled each com-
ment.

We randomly selected a subset of the dataset
composed of 35 posts and around 6,000 comments

discussing the migrants topic and annotated this
data for context dependency: if context influences
the annotators’ decision to assign a label to a com-
ment, that is, if assigning hatefulness to a comment
depends on understanding its context, or if the tar-
get of hate speech is not sufficiently clear without
the context, the annotator marked the target com-
ment as context-sensitive and indicated the ID of
the post or the ID of the previous comment (not nec-
essarily directly preceding) in the discussion thread
that serves as the corresponding context. For exam-
ple, the comment ‘I would have served pork steaks’
(Ik zou varkenslapjes geserveerd hebben) is hate
speech directed against migrants if we take into
account that the article is about a Muslim woman
who was served alcohol at a show and was upset
since this was against her religion. In this case,
the annotator would mark the comment as context-
dependent and indicate the ID of the post under
which the comment was made.

We merged the fine-grained types of hate speech
present in the data (e.g., violence, offensiveness,
threat) into a single hate speech category, remov-
ing comments that belong to the non-hate speech
class, which is the commonly used set-up for the
hate speech target detection task (Zampieri et al.,
2019a,b; Caselli et al., 2021), and used the binary
target classes within the hateful messages. That
is, we distinguish between migrants as the target
of hate speech and merge all other fine-grained
target classes into the ‘other’ category in order to
have a sufficient amount of training and test exam-
ples per class. In more detail, the ‘other’ category
consists of hate speech directed against (1) the ar-
ticle’s author or the media spreading the article;
(2) the author of another preceding comment under
the same post; (3) other entities related to the mi-
grants group, as they represent a positive attitude
towards this group; and (4) people or institutions
that do not belong to any of the above categories.
For the binary target classes used in this study, the
inter-annotator agreement was ‘moderate’ (Cohen’s
Kappa = 0.46).

We used training and test partitions splitting the
dataset by post boundaries in order to avoid within-
post bias, that is, all comments belonging to the
same thread are in the same split. The splitting
was done so that the distribution of ‘migrants’ and
‘other’ classes is as balanced as possible (roughly
40%–60%, respectively), while the proportion of
80% training and 20% test messages is preserved.
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Train (28 posts) Test (7 posts) Total (35 posts)
# messages % context # messages % context # messages % context

Migrants 1,017 60.2 238 57.6 1,255 59.8
Other 1,660 28.9 431 38.3 2,091 30.8
Total 2,677 40.8 669 45.1 3,346 41.7

Table 1: Statistics of the dataset used in terms of the number of posts, number of comments per class and the
percentage of messages annotated as context-dependent within each class.

The statistics of the dataset used in terms of
the number of posts and comments in the training
and test sets, as well as the percentage of context-
dependent messages per class is provided in Table 1.
We note that context-sensitive comments are fre-
quent within both categories. Context-dependent
messages within the ‘migrants’ category (59.8%;
750 messages) are more frequent than within the
‘other’ category (30.8%; 644 messages), which
could be explained by the characteristics of the
dataset used: it consists of discussion threads on
the migrants topic, while in order to direct hate
speech against someone else (e.g., previous com-
menter, article’s author) hateful content creators
would have to deviate from the original discussion
topic by explicitly specifying the target of their hate
speech. Out of 1,394 messages labeled as context-
dependent, the vast majority (88%) refer to original
post as the source of relevant context, 7% to previ-
ous comment and 5% to a comment located higher
up in the discussion thread.

3 Experiments and Results

We use the monolingual Dutch transformer-based
pre-trained language model, BERTje (de Vries
et al., 2019), from the Hugging Face transformers
library1, which showed near state-of-the-art results
in previous work on Dutch hate speech detection,
e.g., (Caselli et al., 2021; Markov et al., 2022). The
model was pre-trained using the same architecture
and parameters as the original 768-dimensional
BERT model (Devlin et al., 2019) on a dataset of
2.4 billion tokens.

We set the maximum sequence length parameter
to 512 in order to account for the context, the other
parameters have default values, and fine-tune the
model for a single epoch. Following the approach
proposed in (Pavlopoulos et al., 2020), we concate-
nate the context and the text of the target comment
separated by BERTje’s [SEP] token, as in the next
sentence prediction task in BERTje’s pre-training

1https://huggingface.co/GroNLP/bert-base-dutch-cased

stage, and fine-tune the model on this data.
We use only the content of the target comment

as the baseline and examine the following ways for
adding contextual information: (1) adding the text
of the post on which the comment was made (com-
ment & post); (2) adding the preceding comment (if
any) in the discussion thread (comment & preced-
ing comment); (3) adding the preceding comment
and the post (comment & preceding comment &
post); and (4) adding the relevant annotated context
(comment & context). Since BERTje is sensitive
to random seeds, we report the results in terms of
precision, recall and F1-score (macro) averaged
over five runs, and standard deviations in Table 2.

The obtained results are in line with previous
findings in the sense that adding the content of a
preceding comment does not facilitate classifier
performance (Karan and Šnajder, 2019; Pavlopou-
los et al., 2020; Menini et al., 2021). However,
we observe a moderate improvement by adding
the content of the post (2 F1 points) and a signif-
icant improvement (according to McNemar’s sig-
nificance test (McNemar, 1947) with α < 0.05)
caused by pointing at the actual context in the dis-
cussion thread (6 F1 points). The results partially
reflect the annotation process, described in Sec-
tion 2, where most of the hateful messages contain
the relevant context in the post text.

To further examine the importance of contextual
information, we conducted an additional experi-
ment using only the relevant context (while discard-
ing the content of the target message), obtaining
the following results: precision = 0.60 (±0.009),
recall = 0.60 (±0.007), F1 = 0.60 (±0.009) (average
over 5 runs). Considering that the majority baseline
precision = 0.32, recall = 0.50, and F1 = 0.39, this
experiment confirms that context contains useful
information and can be used in isolation to predict
the label of the target message.

The detailed results per class for one of the exper-
iments reported in Table 2 for the baseline (com-
ment only) and ‘comment & context’ strategies
are presented in Table 3. We note that with the
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Precision Recall F1-score
Comment (baseline) 0.65 (±0.008) 0.66 (±0.008) 0.63 (±0.011)
Comment & post 0.66 (±0.008) 0.67 (±0.004) 0.65 (±0.008)
Comment & preceding comment 0.64 (±0.007) 0.65 (±0.004) 0.63 (±0.015)
Comment & preceding comment & post 0.64 (±0.004) 0.65 (±0.008) 0.63 (±0.000)
Comment & context 0.69 (±0.005) 0.71 (±0.008) 0.69 (±0.008)

Table 2: Results for the baseline and examined strategies for adding contextual information averaged over five runs.
The standard deviations are also reported. The best results are highlighted in bold typeface.

Comment (baseline) Comment & context
Precision Recall F1-score Precision Recall F1-score

Migrants 0.51 0.69 0.58 0.56 0.74 0.64
Other 0.79 0.63 0.70 0.83 0.68 0.74
macro avg 0.65 0.66 0.64 0.69 0.71 0.69

Table 3: Results per class for the baseline and ‘comment & context’ approaches.

Figure 1: Confusion matrices for the baseline and ‘comment & context’ approaches.

additional contextual information, there is an im-
provement in performance for both ‘migrants’ and
‘other’ categories in terms of both precision and re-
call. In line with de Gibert et al. (2018) and Vidgen
et al. (2021), we observed that context-sensitive
messages are more challenging for classification:
out of 302 context-dependent messages within the
both categories 57% were identified correctly by
the baseline approach, while out of 367 messages
not dependent on the context, 71% were assigned
the correct label. Integrating the relevant context
lead to an improvement for both context-dependent
and independent messages, resulting in 60% and
87% correctly-identified messages, respectively.

While for the ‘migrants’ class integrating the
context lead to an improvement for the context-
dependent messages (81% instead of 67% were
identified correctly after adding the context), and
no improvement was observed for the context-
independent messages (65% vs. 71% without the
context), for the ‘other’ class, the main source of

improvement is the context-independent messages
(84% instead of 72% were identified correctly),
while the number of correctly-identified context-
dependent messages within this category dropped
from 48% to 42%. Zooming in on the fine-grained
classes within the ‘other’ category, we note that
the results are improved for all the classes, except
for the hate speech directed towards article’s au-
thor or media spreading the news, where only two
more messages were misclassified after adding the
contextual information.

The confusion matrices for this experiment, pre-
sented in Figure 1, demonstrate that integrating the
context improves the results both in terms of false
positives and false negatives, providing additional
evidence that context plays an important role in
detecting the target of online hateful comments.

4 Conclusions

Despite recent advances, there are multiple chal-
lenges that remain and limit the development of ro-
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bust real-world hate speech detection systems. One
of such challenges, addressed in this work, is to
explicitly account for relevant conversational con-
text when developing context-aware hate speech
detection approaches.

While prior work has shown that the easy-to-
obtain contextual information such as previous
comment or post does not provide a large or con-
sistent improvement, we demonstrated that if the
model can zoom in on the relevant context, the
performance increases significantly.

A limitation of this work is that we use hand-
labeled contextual information, and thus report
an upper bound of improvement in performance.
Nonetheless, we believe that this study is an im-
portant step towards developing more robust and
context-aware automated hate speech detection ap-
proaches.

Given the great potential for encoding contextual
information and its significant effect on detecting
the target of hate speech presented in this work,
the directions for future work include detecting
relevant context for a target comment automatically
and exploring its effect on performance, as well
as investigating the impact of context on detecting
fine-grained types and targets of online hate speech.
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Abstract

In this paper, we discuss an interpretable frame-
work to integrate toxic language annotations.
Most data sets address only one aspect of the
complex relationship in toxic communication
and are inconsistent with each other. Enrich-
ing annotations with more details and infor-
mation is, however, of great importance in or-
der to develop high-performing and compre-
hensive explainable language models. Such
systems should recognize and interpret both
expressions that are toxic as well as expres-
sions that make reference to specific targets to
combat toxic language. We, therefore, create
a crowd-annotation task to mark the spans of
words that refer to target communities as an ex-
tension of the HateXplain data set. We present
a quantitative and qualitative analysis of the
annotations. We also fine-tune RoBERTa-base
on our data and experiment with different data
thresholds to measure their effect on the clas-
sification. The F1-score of our best model on
the test set is 79%. The annotations are freely
available and can be combined with the exist-
ing HateXplain annotations to build richer and
more complete models.

1 Introduction

Communication through social media has ex-
ploded in the last decades. The ease of posting
opinions and the relative anonymity of posters has
also unleashed problematic communication that
can take many different forms: offensive language,
hate speech, discriminatory language, abusive lan-
guage, cyberbullying, etc., which can be all cap-
tured under the umbrella term toxic. Such com-
munication is often very complex and involves dif-
ferent values and perspectives. A comprehensive
interpretation of such communication requires dif-
ferent aspects to be detected and combined, among
which expressions that make a judgement or sug-
gest negative implications and expressions that re-
fer to targets such as a specific group of people

or an individual belonging to such a group. An
explainable system that can act as an automated
moderator should be capable of "understanding"
such phrases, reason over their content and bring
specific aspects to posters’ attention to explain what
is wrong with a post and why it has to be, for ex-
ample, removed by moderators (Kiritchenko and
Nejadgholi, 2020). An explainable model not only
produces the desired outputs, but also explains why
such output are produced.

The Natural Language Processing community
has started many initiatives to automatically detect
and classify toxic language and created a plethora
of datasets (Vidgen and Derczynski, 2020; Poletto
et al., 2021). However, these data sets often ad-
dress only one of the above-mentioned aspects.
Furthermore, they use slightly different terminolo-
gies and definitions for annotation and their anno-
tation guidelines lack compatibility, which makes
it difficult to combine their annotations. Another
problem is that annotation is often done at a global
level, such as the whole sentence instead of spe-
cific phrases and tokens. Some recent initiatives
have started to annotate specific spans within the
text itself (Mathew et al., 2020; Pavlopoulos et al.,
2021) but this is limited to toxic spans only.

Although previous studies did annotate the target
community (e.g., women, Muslims, immigrants,
etc.) at the post level, none of these studies marked
the words that describe or refer to such a group. Be-
ing able to detect these phrases is, however, crucial
to reason over who is targeted and how they are ref-
erenced. Furthermore, annotating references to tar-
gets separately from toxic spans makes it possible
to also process larger contexts of communication,
among which conversations where references to tar-
gets and toxic expressions may be dispersed over
multiple posts. By building a framework where
target spans are annotated, it is possible to train
explainable models that not only tell which com-
munity groups are targeted in a piece of text, but
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also indicate which words and phrases this deci-
sion is based on. This will make the model and its
decision more understandable for end users.

In this study, we describe a crowd-annotation
task to annotate such target spans. We used this
framework to add target spans to the HateXplain
data set (Mathew et al., 2020) and tested classifi-
cation models by fine-tuning with different quality
selections of data.

Our contributions are as follows:

• An explainable framework to combine differ-
ent toxic data annotations has been discussed.

• A crowd-annotation task, which aims at the
identification of target spans, i.e., sequences
of targeting tokens that together refer to a tar-
get community, has been created.

• An existing data set has been extended
(Mathew et al., 2020) with annotations of tar-
get spans.

• A preliminary quantitative and qualitative
analysis of the annotations has been provided.

• Three RoBERTa-base models have been fine-
tuned on our data and the results have been
reported.

The paper is organized as follows. In Section
2, we summarize the related work on target anno-
tations and position our work. In Section 3, we
describe the resources that we use to sample data
in order to obtain sufficiently diverse annotations
from each source. Section 4 explains our annota-
tion framework and the crowd-annotation task that
we designed, while in Section 5 we describe the
results of the annotation. In section 6, we report on
the language models we fine-tuned with our data
and explain the results. We conclude and discuss
future work in Section 7.

Please beware that this paper may contain some
examples of hateful content. This is strictly for the
purpose of enabling this research and we seek to
minimize the number of examples wherever pos-
sible. Please be aware that this content may be
offensive and cause you distress, which is certainly
not the intention of the authors of this article.

2 Related work

The number of studies on the automatic identifi-
cation of hate speech and other forms of toxic lan-
guage has rapidly increased in recent years. Several

definitions for toxic language have been proposed
and many different annotation schemes have been
designed and applied.

Part of these annotation studies focuses on the
target community that has been victimized by such
language and acknowledges that the description of
these targets is relevant in different ways for the
automatic detection of toxic language. Early stud-
ies (De Gibert et al., 2018), (Davidson et al., 2017)
presented this task as a binary task labeling data as
hateful or not. In these studies, only toxic expres-
sions targeting people were considered hateful. For
example, according to the annotation guidelines of
(De Gibert et al., 2018), an expression should be
labeled as hate speech only if all of the three fol-
lowing conditions are met: (1) There is a deliberate
attack. (2) The attack is on a specific group of peo-
ple. (3) The motive for this attack regards aspects
of the group’s identity. Although the identity of
the target group is decisive in determining whether
an expression is considered hate speech or not, no
details on this were annotated.

Another widely used annotation scheme (see e.g.
(Basile et al., 2019), (Zampieri et al., 2020)) was
developed by (Zampieri et al., 2019) who addressed
the need for identifying more specific information
about the target communities and therefore intro-
duced several annotation layers as follows: (1) De-
termine whether the message is offensive. (2) If the
message is offensive, determine whether it is tar-
geting people or not. (3) If the message is targeting
people, determine (a) whether the message is tar-
geting an individual, or (b) whether the message is
targeting a group or member of a group considered
a unity due to the same ethnicity, gender or sexual
orientation or any other common characteristic, or
(c) whether the message is targeting other entities
like an organization, a situation or an event.

Finally and most recently, several studies ((Mol-
las et al., 2022),(Kennedy et al., 2020), (Vidgen
et al., 2021), (Ousidhoum et al., 2019)) have taken
the target annotations one step further by providing
the group aspect on which basis it was targeted (
e.g. gender, race, national origin, disability, reli-
gion, sexual orientation, etc.) and by mentioning
the specific target communities (e.g. Africans, im-
migrants, Muslims, homosexuals, politicians, etc.)
This information would allow further research into
differences in the framing of specific target com-
munities and the building of classifiers that avoid
bias in hate speech detection ((Shah et al., 2021))
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or permit researchers to delve into issues related to
such bias. Although all of these studies considered
target detection in hate speech as challenging and
important, none of them annotated target spans at
the token level.

Our work builds on the already existing anno-
tations of the HateXplain data set (Mathew et al.,
2020) by adding such span annotations that refer to
a target/ target community. In combination with the
annotations already present in HateXplain, this al-
lows us to train systems to detect both the phrases
making reference to the targets as well as infer-
ring the group aspect of these targets together with
pointing at the phrases that represent the insulting
content or judgement expressed about them.

3 Source data overview and sampling

HateXplain is the first hate speech data set that
covers many aspects of toxic language (Mathew
et al., 2020). Each post in this data set has been
annotated from three different perspectives: 1) the
three main classes: hate speech, offensive or nor-
mal 2) the target community (i.e., the community
that has been the victim of hate speech/ offensive
language in the post) 3) rationales that are the parts
of a post based on which annotators have decided
to label it as such. The annotations were carried
out at the word and phrase levels except for the
target information which was done at the utterance
level. According to (Mathew et al., 2020), the data
was collected from Twitter and Gab with a total of
9,055 and 11,093 samples, respectively.1

For this study, we added target spans to the al-
ready existing annotations in this data set. This
means that, for each sample targeting a target com-
munity, we wanted to determine which tokens in
that sentence referred to that target community. For
this reason, we selected only those samples that a)
were instances of offensive language or hate speech
b) targeted only one target community c) at least 2
out of 3 annotators agreed on its target label and d)
had more than two and fewer than 61 tokens. We
had extracted the distribution graphs of sentences
per number of words and noticed that there are very
few sentences that had more than 60 words in our
data set. Also, the more words a sentence has, the
more complex it becomes. In addition sentences
with fewer than 3 words seem to have not enough

1However, we observed that only 9,027 samples were la-
belled with the source Twitter, resulting in 28 samples that
were not identified.

and useful information for analysis. That is why
we selected only sentences whose number of words
was within the range described. The reason why
we chose sentences with only one target group was
mainly to be make the task as easy and simple as
possible for the crowd. Nonetheless, we later found
that there were still a number of sentences that tar-
geted more than one target group even though they
were annotated in HateXplain as having only one
target group. This is also referred to and explained
in 5.4. As a result, a total of 6,445 samples were
selected. From these, we selected 3,480 samples
that were representative of different target commu-
nities and data sources, which constituted about
54% of the full sample set. The number of selected
samples per target community are shown in Table
1. Only those target communities that appeared at
least 10 times are shown in the table. The rest of
them together with the "Other" target community
are referred to as "Other target communities".

Target community Gab Twitter Other Total
Hispanic 160 2 0 162

Men 5 7 0 12
Homosexual 457 331 2 790

Islam 145 111 0 256
Arab 64 39 0 103

Refugee 105 83 1 189
Asian 82 68 0 150

Disability 3 29 0 32
African 355 278 0 633
Jewish 75 47 0 122

Caucasian 47 94 0 141
Women 225 385 0 610

Other target communities 150 130 0 280
Total 1873 1604 3 3480

Table 1: Data selected for annotation across target com-
munities and sources (Gab, Twitter, Other)

To prepare the data set for the crowd-annotation
task described in the next section, we sorted the
data per target community and created separate
batches of 30 samples. Each batch contained 29
samples from HateXplain and 1 attention check
sentence randomly selected from a list of 60 sen-
tences. These attention check sentences were man-
ually generated and annotated, and were both tar-
geting and toxic. Attention check sentences were
included to inspect the crowd-annotators’ annota-
tion and make sure that they did not simply an-
notate the data samples haphazardly or even skip
them. The total number of batches amounted to
120. The first 25 batches only contained "Hispanic"
and Homosexual" target communities. From batch
26 onward, however, each batch contained a mix-
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ture from different target communities and sources
(Gab and Twitter) to reduce imbalanced data bias.

4 Crowd annotation task

For the crowd-annotation task, annotators were
provided with batches of 30 toxic sentences pre-
sented one-by-one, where each sentence was fol-
lowed by a list of tokens with tick-boxes. They
were asked to read each sentence carefully before
determining who the target was and select the to-
kens that referred to that target. At the start, they
received an instruction page with examples. They
were instructed to choose all the words - includ-
ing the pronouns - that referred to the target no
matter how many times they appeared in the sen-
tence. Also, complete noun phrases including any
adjectives had to be selected. Below are a few ex-
amples that demonstrate how sentences should be
annotated:

1. You Bangladeshi guys are f***ing gangsta.
Target spans: You, Bangladeshi, guys

2. Just because we don’t let groups of creepy
Moroccan rapists into the club doesn’t make
us racist.
Target spans: creepy, Moroccan, rapists

3. They do no shit other than going to the
mosque.
Target spans: They

4. Fuck the ignorant assholes from America, UK,
and all other countries who try and soil the
wonderful ties between all democratic nations.
Target spans: the, ignorant, assholes, from,
America, UK, and, all, other, countries

5. SHUT UP WHITE BOY!
Target spans: WHITE, BOY

6. What’s up nigger?
Target spans: nigger

7. You spics are worthless.
Target spans: You, spics

8. He is a stupid Muslim.
Target spans: He, a, stupid, Muslim

9. I need a new gay hashtag.
Target spans: gay

It is worth noting that there are certain words
and phrases that are toxic and specifically used for

referring to a target community, such as "spic" in
7, which generally refers to Hispanics, or "nigger"
in 6, which refers to Black people. These words
should be also annotated as target words although
they are toxic as well, because they are ultimately
used to address specific target communities.

We used LINGOTurk (Pusse et al., 2016) as
the platform to design our task, which is a free
and available crowdsourcing client/ server experi-
ment management system. Furthermore, we used
Prolific (Palan and Schitter, 2018), as the online
platform for recruiting crowdworkers. The advan-
tage of Prolific over other crowdsourcing platforms,
such as Amazon Mechanical Turk, is that it pro-
vides more prescreening options, such as nation-
ality, first language, ethnicity, political affiliation,
socio-economic status, etc. Also, Prolific is not
only limited to US participants. When recruiting
annotators, we clearly described the aim of the
study to them and explained what they had to do in
detail. No specific sensitive information about an-
notators was stored. We also informed them before-
hand that they should be aware of the inappropriate
content of the sentences and they were not sup-
posed to participate in this study if they were not
comfortable with being exposed to such a language.
Since the study was closely related to one’s cultural
understanding of the context and there were a lot
of slang words and phrases used, we recruited only
participants that met the following criteria:

• Both their nationality and country of birth had
to be at least one of the following: United
Kingdom (England, Wales, Scotland, North-
ern Ireland), United States, Ireland, Aus-
tralia, Canada, Guyana, Jamaica, Liberia,
New Zealand

• Their first, fluent, and primary language had
to be English.

In order to determine the optimal number of an-
notators to recruit for each batch, we ran a test
batch with 15 annotators and then extracted 10
random subsets, once with 5 and once with 10 an-
notators. mathtools

Following the CrowdTruth framework (Dumitra-
che et al., 2018), we used the Media Unit Quality
Score (UQS) to analyze the collected results from
different sets of annotators. UQS expresses the
overall worker agreement over a so-called media
unit. In our case, each token was considered to
be a media unit with the binary classification as
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either targeting (1) or non-targeting (0). In order
to calculate the UQS, one needs to first calculate
the average cosine similarity between all worker
vectors, weighted by the worker quality (WQS) and
annotation quality (AQS). For more details on how
each of these scores is calculated, please refer to
(Dumitrache et al., 2018). The advantage of using
UQS in comparison to other metrics for calculating
the inter-annotator agreement is that CrowdTruth
interprets both the disagreement among the anno-
tators and the ambiguity of the token. The quality
of an annotation is considered as the interaction
between the quality of the annotator in terms of
how often she/ he agrees with others as well as the
complexity of the input data and set of annotation
categories.

We calculated the UQS for the complete set with
15 annotators and each of its subsets including 10
and 5 annotators, respectively. Next, we took the
average of the obtained results over all subsets. By
doing so, we could test in which cases and with
what number of annotators the results were more
consistent. In Table 2, the average overall UQS, av-
erage UQS for targeting tokens, and average UQS
for non-targeting tokens across the test batch with
different numbers of annotators are given. Tar-
geting tokens refer to the tokens the majority of
annotators labeled as targeting while non-targeting
tokens refer to the tokens labeled as non-targeting
by the majority. Also, the standard deviations of
the 3 metrics per subset are given. In the case
where there were 15 annotators, the average was
taken over the media units and not different sub-
sets, since no subset was created in this case. The
closer the UQS and standard deviation are to 1 and
0, respectively, the higher the quality is.

Number of annotators 15 10 5
Avg UQS 0.81 0.80 0.80
Avg UQS for targeting tokens 0.78 0.80 0.80
Avg UQS for non-targeting tokens 0.86 0.86 0.87
SD of Avg UQSs 0.17 0.18 0.23
SD of Avg UQSs for targeting tokens 0.16 0.14 0.16
SD of Avg UQSs for non-targeting tokens0.12 0.12 0.14

Table 2: Comparison of the annotation quality with
different numbers of annotators. Avg=average; SD =
standard deviation;

As can be seen in Table 2, the differences be-
tween the values are quite marginal and, especially
for 10 and 15 annotators, most values are the same.
Therefore, we decided to recruit 10 annotators per
batch to do the annotations.

To select 10 annotators within the Prolific plat-
form, the above pre-screening criteria were applied
to the total pool of annotators. After running each
batch, we analyzed the data to make sure the an-
notation quality was good enough and annotators
acted according to our instructions. In order to do
so, we compared the performance of each annotator
to that of other participants, validated the attention
check sentences, and considered the time taken
on the whole for each annotator to finish the task.
We also validated the annotations of some other
randomly selected sentences. Finally, we checked
whether the data provided by each participant cor-
responded with their Prolific ID and if they had
entered a completion code showing that they had
completed the whole task. If annotators failed any
of the above-mentioned criteria, their submissions
were rejected and another annotator was recruited
in their place. We added the IDs of rejected an-
notators to our blocklist after each batch, which
would exclude them from the next batches. In the
next section, the results will be described in more
detail.

5 Annotated Data

5.1 Statistical analysis of the crowd labels

We ran the batches for several weeks on the Pro-
lific platform to obtain 10 annotations per sentence,
eliminating problematic annotators as explained
above. Table 3 gives a numerical overview of the
result of the crowd annotation. In total, 5,799 tar-
get spans were identified, of which 4,747 (82%)
were single-token. Interestingly, Gab samples had
more references to target communities (the average
number of target spans per sample was 1,82) than
tweets did (with 1,48 spans on average). Addition-
ally, the target spans found in Gab were a bit longer
(with 1,52 tokens per span on average) than those
found in tweets (1,44 tokens on average). These
numbers can be explained by the fact that the Gab
samples were generally longer than tweets, having
24,8 tokens on average, whereas this number was
14,6 for Tweets. However, it also shows that the
two data sources had different characteristics with
respect to how they referred to target communities.

5.2 Gold data annotated by experts

To get an independent evaluation of the quality
of the crowd annotation, we did an expert annota-
tion on two batches (2 and 23) through the same
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Gab Twitter Total
nr of samples 1873 1604 3480
avg nr of tokens per sample 24,8 14,6 20,3
nr of target spans 3417 2378 5799
avg nr of spans per sample 1,82 1,48 1,66
avg tokens per span 1,52 1,44 1,5

Table 3: Annotation statistics

platform. The annotators were the authors of this
paper (A1, A2, A3). We calculated the Cohen’s
kappa coefficient per pair of annotators. The results
can be seen in Table 4.

A1-A2 A2-A3 A1-A3
Batch 2 Percent agreement 0.90 0.90 0.91

Kappa score 0.67 0.65 0.67
Batch 23 Percent agreement 0.87 0.89 0.89

Kappa score 0.62 0.66 0.69

Table 4: Inter-annotator agreements among expert anno-
tators (A1, A2, and A3) on the batches 2 and 23

The results show a reasonable agreement with
kappa scores ranging from 0.62 to 0.69 across dif-
ferent annotators, different batches, and different
classes (targeting vs. non-targeting). The percent
agreement scores are above 87%. We discussed
each case of disagreement and resolved these us-
ing predefined guidelines in order to have a fully
adjudicated gold data set with expert annotations.
The adjudicated annotations were used to deter-
mine the optimal settings for selecting the final
label assigned to each token (see section 5.3).

5.3 Aggregating the crowd annotations
The expert annotation was used to determine

the best threshold for selecting the labels of the
tokens annotated by 10 annotators. We used the
already explained UQS score per token as a basic
measure to assign the final label and compared the
results with the expert annotations for batches 2 and
23. We repeated this 3 times with different UQS
thresholds: 50, 60, and 70. Tokens below these
thresholds were considered as non-targeting since
the crowd could not reach sufficient consensus. For
the tokens with a UQS above these thresholds, we
selected the label with the highest majority score,
which could be either targeting or non-targeting.
Table 5 shows the Kappa scores by comparing the
crowd data with different UQS thresholds to the
expert annotations.

We can see that the scores are lower than those
for the expert annotations, as could be expected,
but still reasonably high. Interestingly, we got the

Batch UQS 50 UQS 60 UQS 70
2 0.55 0.48 0.37
23 0.58 0.56 0.45

Table 5: Kappa scores comparing the crowd data to the
expert data with different UQS thresholds

highest agreement using the lowest UQS thresh-
old, which was 50. Therefore, we selected this
threshold for creating a test set from the crowd
annotations done on all batches.

5.4 Patterns of agreement and disagreement
in the crowd annotations

We performed an error analysis in order to
find which disagreement issues occurred most fre-
quently and whether we could find any patterns.
We illustrate the issues by making references to
the examples below. The tokens marked with [T]
are those that were annotated by a vast majority of
annotators as targeting, tokens marked with [T*]
were annotated by only a small number of annota-
tors as targeting, which caused disagreement. The
underlined tokens are those that were considered
to be targeting by the authors of this paper.

1. Go back to France[T*] you[T*]
anti-american[T] commie[T] socialist[T]
traitor[T]

2. One must wonder how long she[T*] will do in
jail[T*] on the taxpayers dime before they de-
cide to toss her[T*] spic[T] ass[T] out; as for
the guy[T*] castrate[T*] him[T*] and jail[T*]
him[T*] for life

3. I[T*] am black[T*] with all white[T*]
friends[T*], taco[T] man[T*]

4. the wall is not the final solution these[T*]
beaners[T] will keep having babies[T*] keep
balkanizing[T*] our society(T*)

5. i saw a[T*] couple[T*] of[T*] baums[T*]
and[T*] steins[T*]

6. as if it only okay when you are a cute gay[T]
boy

The main sources of disagreement can be sum-
marised as follow:

Length of target span Not all annotators anno-
tated the complete target span. Typically the begin-
ning (cf. these in ex. 4 and her in ex. 2) or the end
(cf. man in ex. 3) are missing.
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Additional information about the target com-
munity It seems that some annotators annotated
properties, descriptions and behaviours of the target
communities, whereas these tokens are not refer-
ences to the community, but describing them (cf.
France in ex. 1; jail in ex. 3; babies, balkanizing,
society in ex. 4)

Inconsistent identification of referring pronouns
Pronouns that refer to the target community were
often missed (cf. you in ex. 1; she, her, him, him
in ex. 2). This pattern is further confirmed by the
words listed in Table 6: the references with the
highest agreement were ethnic slurs (right column),
whereas the references with the lowest agreement
were pronouns (left column).

Multiple candidate target communities Appar-
ently, there was confusion among annotators when
multiple communities were referred to. In ex.3,
black and white friends were both incorrectly an-
notated as targeting, whereas no target community
was targeted in this particular sample.

Different interpretations In many cases, anno-
tators did not agree about whether a reference to a
target community was toxic or not. For example,
those who considered the expression ’Baums and
Steins’ (cf. ex. 5) to be ironic rather than offensive,
did not label it as a targeting expression. xxxxxcbIn
these cases it is not much possible to give the cor-
rect answers as these considerably depend both on
the context and the annotator’s individual perspec-
tive (cf. (Basile et al., 2021)).

No explicit target word There were cases where
no target community was explicitly targeted, but
because of the assumption that all sentences must
be targeting (as explained in the instructions),
annotators selected the existing community
referred to in the sentence despite the absence of
any obvious toxic reference to it (cf. ex. 6).

The analysis showed that toxic references to
the target communities (such as beaners, her
spic ass) were more easily identified than neutral
ones such as man and the pronominal references.
Moreover, it showed that annotations with a
relatively low agreement required further analysis.

6 Automatic classification

After having obtained the labels for each token
and having determined the best UQS threshold, we

Low UQS High UQS
You (206) Nigger (357)
They (90) Faggot (265)
The (77) Bitch (211)

Table 6: Most frequent words targeting tokens: high vs.
low agreement

tested how well a language model could learn to
detect the target spans and which UQS threshold for
the training data would work best. Setting a high
UQS threshold would give fewer data with a higher
consensus, whereas a UQS threshold of 50, which
had resulted in the highest Kappa score when the
crowd annotations were compared with the expert
annotations, would give us more targeting samples
in the training data.

To test this, we fine-tuned a pretrained language
model for a token classification task to predict
whether each token was targeting or non-targeting.
In (Sharma et al., 2021), the performances of a num-
ber of language models for detecting toxic spans
in a sentence were compared. The best-performing
model (RoBERTa-base) had the highest F1-score
on the test set with a value of 68.41%. There-
fore, we chose RoBERTa-base as our pretrained
model. For fine-tuning, we converted the data to
the IOB (Inside-Outside-Beginning) format, which
is widely used in token classification tasks (Evang
et al., 2013).

We created a separate test set consisting of 20%
of the whole data, but ensured that it was representa-
tive of all target communities and data sources. The
test set was generated by setting the UQS threshold
to 50, as this threshold had previously resulted in
the highest agreement when the crowd annotations
were compared with the expert annotations. For
the training, on the other hand, we generated three
different training sets with UQS thresholds of 50,
60, and 70, to test the effects on the predictions.
All other hyperparameters and arguments remained
the same in all three cases. Furthermore, we se-
lected 10% of the training data as the validation
set. The training set, test set, and validation set
included each 2227, 696, and 557 samples (sen-
tences), respectively. Arguments and hyperparam-
eters used for the training are as follows: batch
size=16; epochs=3; learning rate=2e-5; weight de-
cay=0.01. To prepare the data for fine-tuning our
models, they were tokenized using AutoTokenizer
from Hugging Face2.

2https://huggingface.co
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During fine-tuning, evaluation was done at the
end of each epoch. We batched our data with a data
collator while using padding to make them all the
same size. Each pad was padded to the length of
its longest sample. We padded not only the inputs,
but also the labels. We evaluated our model and
its predictions on the test set with accuracy, preci-
sion, recall, and f1-score. After the predictions had
been made, we needed to do some postprocessing.
We picked the predicted index (with the maximum
logit) for each token, converted it to its string label
and ignored wherever we put a -100 label.

We repeated the training procedure with the three
training sets, each generated with a different UQS
threshold as described earlier. Table 7 shows the
results on the test data, both overall and per class.

Overall, our model showed a good performance
predicting the target spans. The scores for the dom-
inant class "non-targeting" (0) were higher than the
scores for the "targeting" class. The Weighted F1
scores ranged from 74 to 79% , which is signif-
icantly higher than the results for the toxic span
detection task in (Sharma et al., 2021) although
the tasks, data and annotations are different across
these tasks. The best results were again obtained
when the UQS threshold was set to 50.

UQSClassRecallPrecisionF1-scoreSupport
50 All 81% 78% 79%

0 96% 97% 96% 14404
1 73% 73% 73% 2051
2 75% 64% 69% 906

60 All 75% 81% 77%
0 97% 95% 96% 14404
1 68% 76% 72% 2051
2 58% 72% 64% 906

70 All 67% 82% 74%
0 99% 93% 96% 14404
1 61% 76% 68% 2051
2 42% 76% 54% 906

Table 7: Test results overall and per class when the UQS
threshold on the training set is 50, 60 or 70; class 0 =
non-targeting; class 1= targeting-beginning; class 2=
targeting-inside

7 Conclusion

We presented an extension to the HateXplain
data set with annotations for target spans using
crowd-annotation. The extended data set will en-
able the community to train and test models that
recognize not only toxic language, but also the
referents that are targeted. This is essential for fu-
ture systems that need to comment on "wrong" be-
haviour in possibly interactive settings, discussing

who has been targeted by what aspect and what
toxic comments are used against the targeted per-
son or community.

We provided the guidelines and instructions with
clear examples of what we meant by target in a
toxic sentence. We collected expert-annotated data
for two of the batches with reasonable agreement
among annotators. We obtained crowd annotations
for target tokens in 3,480 sentences that targeted
one target community. We also analyzed frequent
patterns observed in the annotations and provided
a statistical overview of the collected annotations.

We fine-tuned three RoBERTa-base language
models with our data and investigated how chang-
ing the UQS threshold would affect the results. Our
best model resulted in an F1-score of 79% on the
test set, which was higher than other works in the
field of toxic span classification. All the required
information regarding the data and models is avail-
able on our Github repository3. In future work, we
will extend the data to multiple languages as well
as to richer and longer contexts, such as in con-
versational settings, where toxic expressions and
targets can be mentioned sparsely. We want to ex-
plore other language models and compare their re-
sults by changing the hyperparameters and training
arguments. Also, we are keen to compare the pre-
dictions of these models to the crowd-annotations
and perform some error analysis.
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Abstract
Annotating abusive language is expensive, lo-
gistically complex and creates a risk of psycho-
logical harm. However, most machine learning
research has prioritized maximizing effective-
ness (i.e., F1 or accuracy score) rather than data
efficiency (i.e., minimizing the amount of data
that is annotated). In this paper, we use sim-
ulated experiments over two datasets at vary-
ing percentages of abuse to demonstrate that
transformers-based active learning is a promis-
ing approach to substantially raise efficiency
whilst still maintaining high effectiveness, es-
pecially when abusive content is a smaller per-
centage of the dataset. This approach requires
a fraction of labeled data to reach performance
equivalent to training over the full dataset.

1 Introduction

Online abuse, such as hate and harassment, can
inflict psychological harm on victims (Gelber and
McNamara, 2016), disrupt communities (Mohan
et al., 2017) and even lead to physical attacks
(Williams et al., 2019). Machine learning solu-
tions can be used to automatically detect abusive
content at scale, helping to tackle this growing prob-
lem (Gillespie, 2020). An effective model is one
which makes few misclassifications, minimizing
the risk of harm from false positives and negatives:
false negatives mean that users are not fully pro-
tected from abuse while false positives constrain
free expression. Most models to automatically de-
tect abuse are trained to maximize effectiveness
via “passive” supervised learning over large la-
beled datasets. However, although collecting large
amounts of social media data is relatively cheap
and easy, annotating data is expensive, logistically
complicated and creates a risk of inflicting psy-
chological harm on annotators through vicarious
trauma (Roberts, 2019; Steiger et al., 2021). Thus,
an efficient model, which achieves a given level of
performance with few labeled examples, is highly
desirable for abusive content detection.
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Figure 1: Transformers-based active learning beats fully-
supervised baseline with 1.5% of the 20,000 examples.

Our central objective is to demonstrate how to
maximize efficiency and effectiveness when train-
ing abuse detection systems, and in this paper, we
focus on active learning (AL). AL is an iterative
human-in-the-loop approach that selects entries for
annotation only if they are ‘informative’ (Lewis
and Gale, 1994; Settles, 2009). While AL has
shown promise for abusive language dataset cre-
ation (Charitidis et al., 2020; Mollas et al., 2020;
Rahman et al., 2021; Bashar and Nayak, 2021;
Abidin et al., 2021), there are several open ques-
tions about the most appropriate configuration and
use. In particular, only one paper uses transformers-
based AL for abusive language detection (Ein-Dor
et al., 2020) to our knowledge, although the ben-
efits of AL for other classification tasks is clear
(Schröder et al., 2022; Ein-Dor et al., 2020; Yuan
et al., 2020). Pre-trained transformer models have
been widely adopted for abuse detection, but while
they can be fine-tuned on relatively few examples
for specific tasks (Devlin et al., 2018; Qiu et al.,
2020), they are still commonly used with large
datasets (e.g. Mozafari et al., 2019; Mutanga et al.,
2020; Isaksen and Gambäck, 2020; Koufakou et al.,
2020). Our first subquestion asks, RQ1.1: What
effect do model pre-training and architecture have
on efficiency and effectiveness? To answer RQ1.1,
we evaluate transformers- and traditional-based AL

52



in a simulated setup using two already-labeled abu-
sive language datasets.

One challenge in abusive language detection is
class imbalance as, although extremely harmful,
abuse comprises a small portion of online content
(Vidgen et al., 2019). Prior AL work primarily uses
datasets at their given class imbalances and thus
has not disentangled how class imbalance versus
linguistic features affect the design choices needed
for efficient AL. This is a problem given that most
abusive language datasets do not reflect the imbal-
ance actually observed in the wild. Our second
subquestion addresses this issue, RQ1.2: What ef-
fect does class imbalance have on efficiency and
effectiveness? To answer RQ1.2, we artificially-
rebalance the datasets at different percentages of
abuse.

In addressing these questions, we find that more
data is not always better and can actually be worse,
showing that effectiveness and efficiency are not
always in tension with one another. With exten-
sive pre-training and greater model complexity, a
transformers-based AL approach achieves high per-
formance with only a few hundred examples. Cru-
cially, we show that the value of transformers-based
AL (relative to random sampling) is larger for more
imbalanced data (i.e., data that more closely reflects
the real-world). For 5% abuse, the performance of
a transformers-based AL strategy over 3% of a
20k dataset can even surpass the F1 of a model
passively trained over the full dataset by 5 percent-
age points (Fig. 1). In §4 we describe caveats of
our findings and implications for future research in
abusive language detection.1

2 Methods

2.1 Active Learning Set-Up

AL typically consists of four components: 1) a
classification model, 2) pools of unlabeled data U
and labeled data L, 3) a query strategy for identi-
fying data to be labeled, and 4) an ‘oracle’ (e.g.,
human annotators) to label the data. First, seed
examples are taken from U and sent to the oracle(s)
for labeling. These examples initialize the classi-
fication model. Second, batches of examples are
iteratively sampled from the remaining unlabeled
pool, using a query strategy to estimate their ‘infor-
mativeness’ to the initialized classification model.2

1Code at ActiveTransformers-for-AbusiveLanguage.
2Note that batch-mode active learning is a common ap-

plication in both research and industry, given its more practi-

Table 1: Summary of source datasets (in gray) and their
artificially-rebalanced versions.

Train† Test∗

Dataset Imbalance abuse non-abuse abuse non-abuse

wiki 12% 10,834 81,852 2,756 20,422
wiki50 50% 10,000 10,000 2,500 2,500
wiki10 10% 2,000 18,000 500 4,500
wiki5 5% 1,000 19,000 250 4,750

tweets 32% 28,955 61,041 3,160 6,840
tweets50 50% 10,000 10,000 2,500 2,500
tweets10 10% 2,000 18,000 500 4,500
tweets5 5% 1,000 19,000 250 4,750

Notes: † Train is used as the unlabeled pool (n = 20,000)
∗ Test is used for held-out evaluation (n = 5,000)

Each queried batch is labeled and added to L. Fi-
nally, the classifier is re-trained over L.3

2.2 Dataset Selection and Processing

AL is path-dependent—i.e., later decisions are de-
pendent upon earlier ones; so, experimenting in
real-world settings is prohibitively costly and risky
to annotator well-being. To reproduce the pro-
cess without labeling new data, we use existing
labeled datasets but withhold the labels until the
model requests their annotation. We examined a
list of publicly available, annotated datasets for
abusive language detection4 and found two that
were sufficiently large and contained enough abu-
sive instances to facilitate our experimental ap-
proach. The wiki dataset (Wulczyn et al., 2017)
contains comments from Wikipedia editors, labeled
for whether they contain personal attacks. A test
set is pre-defined; we take our test instances from
this set. The tweets dataset (Founta et al., 2018)
contains tweets which have been assigned to one
of four classes. We binarize by combining the abu-
sive and hate speech classes (=1) and the normal
and spam classes (=0) to allow for cross-dataset
comparison (Wiegand et al., 2019; Ein-Dor et al.,
2020). A test set is not pre-defined; so, we set aside
10% of the data for testing that is never used for
training.

To disentangle the merits of AL across class im-
balances, we construct three new datasets for both
wiki and tweets that have different class distribu-
tions: 50% abuse, 10% abuse and 5% abuse. This
creates 6 datasets in total (see Tab. 1). To control

cal application to annotation workflows and model retraining
times (Settles, 2009, p. 35).

3We train from scratch to avoid overfitting to previous
iterations (Ein-Dor et al., 2020; Hu et al., 2018).

4https://hatespeechdata.com
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dataset size and ensure we have sufficient positive
instances for all imbalances, we assume that each
unlabeled pool has 20,000 examples.5 We experi-
ment with multiple AL strategies to select 2,000 ex-
amples for annotation as early experiments showed
further iterations did not affect performance.6

2.3 Experimental Setup
We use 2 model architectures, 2 query strategies
and 6 artificially-rebalanced datasets, giving 24 ex-
periments each of which we repeat with 3 random
seeds. Each experiment uses the same sized unla-
beled pool, training budget and test set (see Tab. 1).
In figures, we present the mean run (line) and stan-
dard deviation (shaded). For transformers-based
AL, we use distil-roBERTa (dBERT), which per-
forms competitively to larger transformer models
(Sanh et al., 2019), also in an AL setting (Schröder
et al., 2022). For traditional AL without pre-
training, we use a linear support vector machine
(SVM) as a simple, fast and lightweight baseline.7

For active data acquisition, we try three AL strate-
gies; LeastConfidence, which selects items close to
the decision boundary (Lewis and Gale, 1994), is
presented in the paper while the other strategies are
in the Appendix.8 For comparison, we randomly
sample items from the unlabeled pool at each it-
eration. Alongside model and query strategy, AL
requires an initial seed size, seed acquisition strat-
egy and batch size. We experimentally determined
the best values for these parameters: an initial seed
of 20 examples selected via a keyword-heuristic
(Ein-Dor et al., 2020) and batches of 50 examples.9

2.4 Evaluation
As a baseline, we use the passive macro-F1 score
over the full dataset of 20,000 entries (F120k).
For each AL strategy, we measure efficiency on
the held-out test set as the number of examples
needed to surpass 90% of F120k, which we call
N90.10 For effectiveness, we use the maximum F1
score achieved by each AL strategy, which we call
F1AL.

5The wiki dataset has 10,834 abusive entries; so, at 50%
abuse, the upper limit on a rebalanced pool is 21,668.

6AL experiments are implemented in the Python
small-text library (Schröder et al., 2021)

7Appendix A presents details of model training.
8We also test GreedyCoreSet (Sener and Savarese, 2017)

and EmbeddingKMeans (Yuan et al., 2020), but LeastConfi-
dence outperformed them.

9We present pilot experiments in Appendix B and C.
10To fairly compare models, we calculate N90 relative to

best F120k (achieved by dBERT in all cases).

Table 2: Efficiency and effectiveness of each classifier
(transformers vs SVM) with LeastConfidence sampling.

Dataset Classifier F120k
† F1AL N90

wiki50 dBERT 0.920 0.920 170
SVM 0.875 0.836 1570

wiki10 dBERT 0.859 0.866 170
SVM 0.809 0.810 320

wiki5 dBERT 0.807 0.855 220
SVM 0.785 0.780 170

tweets50 dBERT 0.939 0.938 170
SVM 0.931 0.926 220

tweets10 dBERT 0.904 0.902 220
SVM 0.893 0.901 170

tweets5 dBERT 0.844 0.856 300
SVM 0.825 0.830 170

Notes:†global metric from passive training over full, re-balanced dataset

3 Results

Efficiency & Effectiveness For each dataset, we
find active strategies that need just 170 examples
(0.8% of the full dataset) to reach 90% of pas-
sive supervised learning performance (see Tab. 2).
When training over the full dataset, dBERT al-
ways outperforms SVM, models have worse per-
formance on more imbalanced datasets, and wiki
is harder to predict than tweets (Tab. 2). In all
cases, LeastConfidence outperforms the random
baseline, and the gain is larger for lower percent-
ages of abuse: for wiki10 and wiki5, N90 is lower
by 150 and 100 examples, respectively. AL can
even outperform passive supervised learning over
the full dataset, showing there is no efficiency–
effectiveness trade-off. For the majority of datasets,
dBERT with LeastConfidence over 2,000 exam-
ples matches or surpasses the F1 score of a model
trained passively over the whole dataset (F1AL ≥
F120k in Tab. 2). For wiki5, it is 5 percentage
points (pp) higher (Fig. 1).

The Effect of Pre-Training We find AL has a
bigger impact for SVM than dBERT, shown by
the larger gap to the random baselines (Fig. 2).
With its extensive pre-training, dBERT achieves
high performance with few examples, even if ran-
domly selected. Nonetheless, an AL component
still enhances dBERT performance above the ran-
dom baseline especially with imbalanced data (as
found by Schröder et al., 2022; Ein-Dor et al.,
2020), requiring 150 and 100 fewer examples for
N90, and raising F1 score by 2pp and 4pp, for
wiki5 and wiki10 respectively.

Train Distribution To assess why AL is more
impactful with imbalanced data, we evaluate the
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Figure 3: Label imbalance during training (dBERT).

distribution of the labeled pool at each iteration
(Fig. 3). The random baseline tends to the original
distribution as expected but the LeastConfidence
strategy actively selects abusive examples from the
pool and tends toward a balanced distribution.

Out-of-domain Testing The high performance
of models trained on few examples raises a risk
that they are overfitting and may not generalize.
We take the models trained on each of the three
class imbalances for wiki and test them on their
equivalent tweets dataset, and vice versa. As with
in-domain results, models trained on wiki and ap-
plied to tweets reach F120k within few iterations.
The gap between LeastConfidence and the random
baseline is larger for out-of-domain evaluation ver-
sus in-domain (Fig. 4). A similar pattern occurs
for other imbalances (see Appendix D). This sug-
gests that our results for these two datasets are not
overfitting.

4 Discussion

In response to our central research objective, we
find strategies which are both effective and efficient,
requiring far fewer examples to reach performance
equivalent to passive training over the full dataset.
These results suggest that passive approaches may
be needlessly expensive and place annotators at
unnecessary risk of harm. For RQ1.1, we find that
coupling pre-trained transformers with AL is a suc-
cessful approach which leverages the benefits of
careful training data selection with the previously
demonstrated strong capabilities of pre-trained lan-
guage models for few-shot learning (Brown et al.,
2020; Gao et al., 2021; Schick and Schütze, 2021).
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Figure 4: Cross-dataset generalization (dBERT).

However, the compute required to fine-tune a new
transformer model in each iteration means AL may
have a large environmental footprint (Bender et al.,
2021). In some instances, SVMs with AL produce
competitive results and have smaller environmental
costs. For RQ1.2, we find transformers-based AL
is particularly valuable under more extreme class
imbalance because it iteratively balances the distri-
bution. Our findings are subject to some limitations,
which present avenues for future work.

How does data sampling, class labels and lin-
guistic diversity affect performance? We eval-
uate against two datasets with pre-existing labels,
which we simplify into a binary task. This bina-
rization was required to allow comparison across
datasets. The wiki dataset samples banned com-
ments and tweets samples with keywords and sen-
timent analysis. While these datasets were the only
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publicly-available datasets large enough for this
work, Wiegand et al. (2019) shows that they lack
diversity, contain numerous biases, and cover abuse
which is mostly explicit. This may make it easier
for models to learn the task and generalize in fewer
examples. Future work should evaluate the success
and generalizability of AL for fine-grained labels
and implicit abuse.

How does the number of model parameters af-
fect performance? For computational feasibility
and environmental concerns, we use distil-BERT
but future work could assess if larger transformers
models set higher baselines from passive training
over the full dataset.

Are certain AL strategies well-suited to abu-
sive language detection? We evaluate three
commonly-used AL strategies, finding that Least-
Confidence performs best, but none are tailored
explicitly to abusive language. Constrastive Active
Learning (Margatina et al., 2021) may be partic-
ularly useful: by finding linguistically similar en-
tries on either side of the decision boundary, it may
prevent overfitting to certain slurs, profanities or
identities.

Do the experimental findings generalize to real-
world settings? Our motivation for maximizing
efficiency is to reduce financial costs and risk of
harm to annotators, which we operationalize in
terms of the number of labeled examples they view.
In practice, costs are variable because entries which
are more ‘uncertain’ to the model may also be more
time-consuming, challenging or harmful for hu-
mans to label (Haertel et al., 2015). In a real-world
setting, the work of the human annotators must
be scaled up and down in response to labeling de-
mands, which may incur additional costs. Crowd-
sourced annotators can provide labels on demand
when a new batch of entries is launched. With an
expert annotation team, there may be a cost of pay-
ing annotators during re-training. Furthermore, it
is important to note that the scope and scale of real-
ized harm depends on both the total number of an-
notators as well as their identity, positionality and
working conditions. While our approach simulates
the labeling process with one groundtruth label,
we make no assumptions on how this groundtruth
is obtained—either via a single annotator or with
some aggregation function over multiple annotator
votes—so, our method is applicable to any number
or constitution of annotators. We only make the

light assumption that less exposure to harm is a
good thing—whether that is many people being ex-
posed a little less or few people being exposed a lot
less. Future work is needed beyond our simulated
set-up to calculate a more realistic cost-benefit ratio
of AL, both in terms of financial and psychological
costs.

We are exploring these questions in future work
but simultaneously encourage the community to
consider the need for efficiency in abusive language
detection because of the costs, complexities and
risk of harm to annotator well-being from ineffi-
cient data labeling.
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A Details of Dataset Processing and
Model Training

We use two English-language datasets which were
curated for the task of automated abuse detection
(Wulczyn et al., 2017; Founta et al., 2018). The
wiki dataset can be downloaded from https:
//github.com/ewulczyn/wiki-detox
and is licensed under Apache License, Version
2.0. The tweets dataset can be downloaded
with tweet ids from https://github.com/
ENCASEH2020/hatespeech-twitter.
These datasets cover two different domains:
Wikipedia and Twitter. Each dataset is cleaned by
removing extra white space, dropping duplicates
and converting usernames, URLs and emoji to
special tokens.

We fine-tune distil-roBERTa using the
transformers integration with the
small-text python package (Wolf et al.,
2019; Schröder et al., 2021). distil-roBERTa has
six layers, 768 hidden units, and 82M parameters.
We encode input texts using the distil-roBERTa
tokenizer, with added special tokens for usernames,
URLs and emoji. All models were trained
for 3 epochs with early stopping based on the
cross-validation loss, a learning rate of 2e − 5
and a weighted Adam optimizer. All other
hyperparameters are set to their small-text
defaults. In each active learning iteration, we
use 10% of each labeled batch for validation. As
a baseline to transformers-based AL, we use a
support vector machine with no pre-training which
we implement with sklearn. To encode a vector
representation of input texts, we use a TF-IDF
transformation fitted to the training dataset.

All experiments were run on the JADE-2 cluster
using one NVIDIA Tesla V100 GPU per experi-
ment. For transformer-models, it took on average
1.5 hours to run each experiment. For SVM, it took
less than a minute to run each experiment and these
can be easily be run on a CPU. We repeat each ex-
periment three times using three seeds to initialize
a pseudo-random number generator.

B Sampling with Keywords

We use a heuristic to weakly label examples from
the unlabeled pool to be selected for the initial seed.
Keywords are a commonly-used approach (e.g. see
Ein-Dor et al., 2020) and searching for text matches
is computationally efficient over a large pool of un-
labeled examples. However, the keyword heuristic

Table 3: The effect of varied keyword density thresholds
on F1, false positive rate (FPR) and false negative rate
(FNR).

K F1 FPR FNR
wiki

1.0% 76.0% 2.7% 52.8%
5.0% 69.0% 0.5% 71.8%

10.0% 91.0% 0.1% 87.4%
25.0% 49.0% 0.0% 98.4%

Tweets
1.0% 85.0% 4.5% 29.6%
5.0% 80.0% 2.9% 42.7%

10.0% 83.0% 0.9% 76.4%
25.0% 75.0% 0.2% 98.5%

only approximates the true label and can introduce
biases due to non-abusive use of offense and pro-
fanities. In our data, we rely on a keyword density
measure (K) which equals the number of keyword
matches over the total tokens in a text instance. We
then experiment with varied thresholds of K ∈
[1%, 5%, 10%, 25%] for a weak label of abusive
text. A higher threshold reduces false positives but
also decreases true positives. We find a threshold
of 5% best balances these directional effects. Mak-
ing predictions using a keyword heuristic with a
5% cut-off achieves an F1-score relative to the true
labels of 69% for wiki and 80% for tweets. Using
this threshold, examples are expected to be abu-
sive if the percentage of keywords in total tokens
exceeds 5%. We then sample equal numbers of
expected abusive and non-abusive examples from
the pool, reveal their true labels and initialize the
classifier by training over this seed.

C Additional Experimental Analysis

Table 4: The best AL parameters and performance for
each classifier (transformers vs SVM).

Best AL Combinations∗ Metrics
Dataset Classifier Seed Cold Batch Query F120k

† F1AL N90

wiki50 dBERT 20 Random 50 LC 0.920 0.922 170
SVM 20 Random 50 LC 0.875 0.838 1520

wiki10 dBERT 20 Heuristic 50 LC 0.859 0.866 170
SVM 20 Heuristic 50 LC 0.809 0.810 320

wiki5 dBERT 20 Heuristic 50 LC 0.807 0.855 220
SVM 20 Heuristic 50 LC 0.785 0.780 170

tweets50 dBERT 20 Random 50 LC 0.939 0.938 170
SVM 20 Random 50 LC 0.931 0.926 220

tweets10 dBERT 20 Heuristic 50 LC 0.904 0.902 220
SVM 20 Random 50 LC 0.893 0.901 170

tweets5 dBERT 200 Heuristic 50 LC 0.844 0.856 300
SVM 20 Heuristic 50 LC 0.825 0.830 170

Notes: † global metric from passive training over the full dataset
∗ calculated by averaging the rank performance on F1AL, N90

Tab. 4 shows the best parameters for each dataset
and each classifier. In Fig. 6, we present the learn-
ing curve and comparisons of each experimental
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variable for both datasets and classifiers. In each
panel of Fig. 6, we vary one parameter whilst hold-
ing all others fixed. This allows us to evaluate the
impact of one variable, ceteris paribus. Namely,
the reference values are those reported in the main
paper: seed size of 20 selected by heuristics-based
sampling and a batch size of 50 queried by Least-
Confidence strategy.

Seed and Batch Size We test two choices for
seed size (20, 200), and three choices for batch
size (50, 100, 500). We find AL is more efficient
with smaller seeds and batch sizes. The F1 score
achieved with a seed of 20 and four AL iterations
of 50 (|L| = 220) exceeds that reached with a seed
of 200 and 0 iterations (|L| = 200) by 55pp for
wiki50, 4pp for wiki10, and 10pp for wiki5. Batch
sizes of 100 and 500 are less efficient than 50, with
700–1,100 and 150–200 more examples needed for
N90, respectively.

Seed Acquisition Strategy (Cold) We evaluate
two choices to select the examples for the seed. (1)
Random: Seed examples are randomly selected.
Depending on the class distribution of the unla-
beled pool (which, in real world settings, is un-
known) only non-abusive content might be iden-
tified. For datasets expected to be approximately
balanced, a randomly-selected seed has a high prob-
ability of including both class labels. (2) Heuris-
tics: Seed examples are selected using keywords
(n = 652), taken from the abusive language lit-
erature (Davidson et al., 2017; ElSherief et al.,
2018a,b; Gabriel, 2018). For wiki50, random-
and heuristics-based initialization achieve equiv-
alent N90. However, with a seed of 20, a third
of randomly-initialized experiments fail on wiki10
and all experiments fail for wiki5. This shows that
when the data is imbalanced, a random seed is sub-
optimal because both class labels are not observed.

Query Strategy In addition to LeastConfidence
(LC), we evaluate two further strategies coupled
with dBERT: 1) GreedyCoreSet is a data-based
diversity strategy which selects items representa-
tive of the full set (Sener and Savarese, 2017) and
2) EmbeddingKMeans is a data-based diversity
strategy which uses a dense embedding represen-
tation (such as BERT embeddings) to cluster and
sample from the nearest neighbors of the k cen-
troids (Yuan et al., 2020). On our datasets, these
two strategies are high performing in terms of the
maximum F1 score they achieve over 2,000 exam-

ples, but take longer to learn and are less efficient
than LeastConfidence.

D Generalizability of Performance

In the main paper, we present the results of cross-
dataset generalization with 5% abuse. In Fig. 5,
we demonstrate the equivalent results for all class
imbalances and both datasets. In general, tweets
is harder to predict than wiki, so we see a larger
change in performance when training on tweets
and evaluating on wiki. For 50% and 10% abuse,
performance is similar across test sets. For 5%
abuse, there is a larger difference especially for the
random baseline. However, in all cases, the perfor-
mance of the LeastConfidence strategy generalizes
well to out-of-domain testing, at least for these two
datasets which are similar in their proportion of
explicit abuse (Wiegand et al., 2019).
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Figure 5: Cross-dataset generalization (dBERT) for 50%
and 10% abuse.
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Figure 6: Learning curves per dataset-class imbalance pair showing the effect of isolated experimental variables on
traditional (SVM) and transformers-based (dBERT) active learning.
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Abstract
Highly imbalanced textual datasets continue to
pose a challenge for supervised learning mod-
els. However, viewing such imbalanced text
data as an anomaly detection (AD) problem has
advantages for certain tasks such as detecting
hate speech, or inappropriate and/or offensive
language in large social media feeds. There the
unwanted content tends to be both rare and non-
uniform with respect to its thematic character,
and better fits the definition of an anomaly than
a class. Several recent approaches to textual
AD use transformer models, achieving good re-
sults but with trade-offs in pre-training and in-
flexibility with respect to new domains. In this
paper we compare two linear models within the
NMF family, which also have a recent history
in textual AD. We introduce a new approach
based on an alternative regularization of the
NMF objective. Our results surpass other linear
AD models and are on par with deep models,
performing comparably well even in very small
outlier concentrations.

1 Introduction
Anomaly detection (AD), also known as Outlier De-
tection, is a well-researched area of machine learning.
Traditional machine learning approaches to AD include
proximity-based models where points that are separated
from the rest of the data by a certain distance are consid-
ered outliers. These fall into several subclasses. There
are cluster-based methods, such as k-means (MacQueen,
1967), where the point is an outlier if there is a large dis-
tance between the point and the nearest cluster, density-
based methods, such as LOF (Breunig et al., 2000) and
DBSCAN (Ester et al., 1996), where an object is an
outlier if its density is lower than that of its neighbors
and distance-based methods, such as k-NN (Cover and
Hart, 1967), where the outlier neighborhood has few
other points.

Most recently, Transformer models (Manolache et al.,
2021) and word embeddings with multi-head self-
attention (Ruff et al., 2019) have been applied in tex-
tual AD models, surpassing previously top-performing
reconstruction-based approaches using Non-negative
Matrix Factorization (NMF) as in (Kannan et al., 2017).

But detecting hate speech and offensive language is a
challenging task because these may take various forms,
change dynamically and be found in only a small mi-
nority of relatively short texts. Recent studies (Yin and
Zubiaga, 2021) have pointed to concerns about gener-
alizing results where even the best performing models
show large variances in quality from one dataset to an-
other in this domain.

We propose a new NMF-based approach as an alter-
native to recent transformer models. We improve upon
previous NMF outlier detection approaches by replacing
the usual squared norm of the error term in the objective
function by a correntropy-based metric, which we argue
is better tailored for textual outliers. This approach, we
argue, is not only well-suited to the task of textual AD in
general due to its lightweight architecture and flexibility
but is also the better choice versus recent supervised
models for hate-speech detection.

This paper is organized as follows: Previous ap-
proaches are discussed in Section 2, Data and Methods
are discussed in Section 3, our results are in Section 4
and the Conclusion and plans for future work in section
5. Code to reproduce our results can be found here:
(github repo provided upon acceptance)

2 Previous Work

While Anomaly Detection in text does not have a partic-
ularly deep history in the literature, there is some notable
research. For example, Guthrie (2008) and Guthrie et al.
(2007) consider texts that are unusual because of author,
genre, style or emotional tone.

Peng et al. (2014), analyzed idiom recognition as a
type of outlier detection. Idioms have certain key prop-
erties that make detection more likely using methods for
finding outliers. Examples in English include “kick the
bucket” or “have a cow” where the non-compositionality
yields highly unusual lexical properties that can be rec-
ognized as anomalies.

Other studies (Manevitz and Yousef (2002), Kannan
et al. (2017), Barrett et al. (2019), Ruff et al. (2019),
Manolache et al. (2021)), treat textual anomalies as top-
ical intrusions, where the texts from one topic constitute
the “inliers” and a smaller set of intrusion texts consti-
tute the “outliers”. We use this data definition for our
anomaly detection task.

Among topic-intrusion type models, the cur-
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rently best-performing is the transformer approach
in Manolache et al. (2021), a discriminator-generator
model that outperformed the previously top performing
OCSVM approach in Ruff et al. (2019). A non-negative
matrix factorization model was used in Kannan et al.
(2017). All three approaches have outperformed tradi-
tional AD models like Isolation Forests (Désir et al.,
2013) on text.

3 Proposed Methods
We propose a lightweight alternative Non-negative Ma-
trix Factorization (NMF) model that improves upon the
results of Kannan and also provides comparable results
to deep models without pre-training, or attention layers.
We use simple frequency-based document representa-
tions and do not rely on trained embeddings. We show
results on benchmark datasets and also on a dataset of
hate speech in order to show the power and adaptability
of our approach to an important NLP problem. Overall,
our model is tested on four datasets in multiple combi-
nations with different outlier-inlier concentrations.

Matrix factorization models like TONMF find out-
liers through a reconstruction process that isolates out-
lier documents as residual noise. In this approach, A is
the term-document matrix where terms correspond to
rows and documents correspond to columns, W is the
term-topic matrix and H is the topic-document matrix.
The residual matrix Z is intended to capture outliers
depending on the configuration of its norm. The idea is
that if a document is not representable as a linear com-
bination of topics, the corresponding column in Z will
have more entries. The quality of the result depends on
manipulating norms on both the residual matrix and the
low-rank approximation of the input matrix. Kannan
et al. (2017) for example use the following optimization:

argmin
W≥0,H≥0;Z

1

2
∥A−WH−Z∥2F +α∥Z∥1,2 + β∥H∥1

(1)
Here, the standard Frobenius norm is applied to the
main error term. The ℓ1,2 penalty norm is applied to
the outlier matrix Z in order to minimize the sum of ℓ2
column norms, which can be seen as the outlier scores of
each document. The last term is added for regularization,
to produce a more interpretable low rank matrix WH
with sparse coefficients. The α and β parameters control
the weight of the residual and regularization terms over
the recovery of a low-rank approximation to A.

3.1 Matrix Factorization with Additional
Constraints

We used the basic model architecture in Kannan et al.
(2017) to gauge the effect of changing the main objec-
tive function. This design includes a residual matrix
representing the outlying points not reproducible by the
main factorization process.

We set up two competing NMF-based models. Our
baseline model is a hierarchical least-squares (HALS)

approach (Cichocki et al., 2008), which is the base
model architecture of Kannan et al. (2017). HALS
solves the non-negative least squares sub-problem by
updating each column of W separately, and generally
can converge to a stationary point. Each column of W
is successively updated, using gradient descent to solve
each column-wise sub-problem. This has been shown
to converge faster than a matrix-wise iterative updat-
ing procedure (Cichocki et al., 2008). We refer to this
approach as H-NMF, henceforth in this paper.

3.2 Alternative Updating
Our experimental model uses a different updating ap-
proach entirely, replacing the squared error function
with an alternative. We use an NMF approach leverag-
ing the Correntropy-induced metric (Liu et al., 2006)
in which the similarity between two variables (or sub-
matrices in the NMF case) is determined through apply-
ing the Gaussian kernel to the error term:

Vσ(x, y) =
1

n

n∑

i=1

kσ(xi − yi) (2)

where kσ is the kernel function. CIM-based NMF sub-
stitutes the squared error on each entry with the kernel
function. We take this a step farther following Du et al.
(2012), wherein the CIM-based NMF optimizes on the
row level, substituting the squared residuals on each row
rather than each entry. We combine this optimization
with the constrained residual matrix in the objective
function as follows:

1

2

n∑

i=1

[
wi∥(A− Z)i∗ −Wi∗H

T ∥2+ϕ(wi)
]
+α∥Z∥1,2

(3)
where the weight factor is defined as:

wi = exp

(
−∥(A− Z)i∗ −Wi∗HT ∥2

2σ2

)
(4)

The half-quadratic optimization method used here and
in Du et al. (2012) has been used in the past to detect
and correct errors in facial recognition problems (He
et al., 2014). This method sets up a robust strategy for
identifying text segments that are topically anomalous
not just because of bursty word distributions but because
of the topicality of the entire segment. We refer to this
approach as R-NMF, henceforth in this paper.

Both our baseline and experimental models leave the
residual matrix constraints fixed and focus on the main
objective function, in an effort to improve the quality of
outliers that are passed as residuals.

4 Experimental Results
Below we describe the datasets and preparation. All
models were run on four public datasets representing
distinct genres (listserv, news, wiki and hate speech).
We used three outlier-inlier concentrations for each.
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4.1 Data and Experimental Design

The 20Newsgroups dataset is a publicly available col-
lection of approximately 20,000 newsgroup documents
organized into 20 topical subgroups1. Some newsgroups
are similar (e.g., IBM/Mac hardware), while others are
highly unrelated (e.g., for sale/Christian religion).

Reuters-21578 is a publicly available dataset of sto-
ries appearing on Reuters’ newswire in 19872. It con-
tains 21,578 documents indexed and assigned categories
by members of the Reuters Ltd. staff.

WikiPeople is the subset of the English language
Wikipedia dump3 consisting of the 945,662 articles in
the category “living people”.

Our dataset of Hate Speech is from de Gibert et al.
(2018) and contains 9,916 samples in total of forum
posts from Stormfront, a white-supremacy based fo-
rum where the “hate” class represents 11 percent of the
corpus.

For each dataset, we blend the inlier classes listed in
Table 1 with a sample from the outlier class to achieve
three concentrations: .01, .025 and .05. The size of these
concentrations is based on rare event analysis where
such events have a chance of occurrence of < 0.05. In
this case it would correspond to selecting an anomalous
sample from our dataset. When such a sample is too
small, we omit the .01 concentration. Our strategy for
selecting inlier and outlier samples was to select top-
ics that had reasonably close topical content. That is,
avoiding highly diverse samples which might make the
classification task easier than it should be to create a
robust test of the compared approaches.

When evaluating, we take the number of top results
corresponding to our outlier concentration and record
the number of actual outlier samples in that concentra-
tion.

For both NMF models, we parse the input text into
word count vectors using sklearn’s CountVectorizer with
all default parameters.We call the factorization routine
on the sparse word-document matrix to obtain low-rank
matrices W and H and outlier matrix Z. Following the
methodology in Kannan et al. (2017), we then use the
ℓ2 norm of each column in the Z matrix as the outlier
score for every document. For both models, we use 3
CPU cores with 8Gb RAM.

We also train the DATE model (Manolache et al.,
2021) on our data as a benchmark, as it represents the
current SOTA on textual AD. We use the the code pro-
vided by the authors4 to run experiments. We use a
learning rate of 1e−5 and sequences of maximum length
128. Training is stopped at convergence, which occurs
after 5000 steps on average. We use the same evaluation

1https://archive.ics.uci.edu/ml/
datasets/Twenty+Newsgroups

2https://archive.ics.uci.edu/
ml/datasets/reuters-21578+text+
categorization+collection

3https://dumps.wikimedia.org/
4https://github.com/bit-ml/date

framework as proposed by the authors to report results.
For the DATE experiments, we use 2 Tesla V100 GPU
nodes each with 32 GB RAM and 6 CPU cores.

4.2 Model Results

We show results from H-NMF, R-NMF and the DATE
model of Manolache et al. (2021). Model results are
shown in Table 1. We list the AUC results for each
dataset for each sample and concentration, along with
the inlier and outlier classes we used to create each
sample. For background on reporting AD model quality
as AUC see Aggarwal (2016). The size of the inlier class
is listed in parenthesis below the inlier class name. The
outliers are sampled at random from the outlier class so
as to achieve the specified outlier/inlier concentration.
Winners are shown in bold.

The results are the best from a sweep of eight values
of the hyper-parameter k within the range [1,128] and
5 values of alpha within the range [1,16], for both the
H-NMF baseline and R-NMF. The beta parameter, com-
monly used for the degree of sparseness is only used for
H-NMF, and there we use a sweep in the range [1,16]5.

4.3 Results Analysis

The results show that the rCIM model (R-NMF) outper-
forms baseline (H-NMF) overall and in particular on
Reuters and WikiPeople but is outperformed by DATE
on 20Newsgroups and Reuters in the larger concentra-
tions using the “trade” class as outliers. For the Hate
Speech corpus, rCIM does better in the lowest con-
centration, whereas HALS has a slight edge in larger
concentrations. Both NMF-based models outperform
DATE on this dataset in all concentrations. DATE gen-
erally seems to favor the larger concentrations slightly
but the NMF-based approaches do not show that same
trend.

All models achieved the best AUC on the Reuters
data, with the more challenging datasets being WikiPeo-
ple and 20Newsgroups.The greatest difference between
the two NMF-based approaches is found on the Reuters
data where rCIM has the stronger results. Note that the
results are better for all three models when the outlier
class is “trade” than when it is “interest”, possibly be-
cause the “interest” topic is more closely related to and
thus harder to distinguish from the inlier topics “earn”
and “acq”.

In the Hate Speech data, both NMF-based models out-
perform the transformer-based model. In addition our
model required considerably fewer compute resources,
running on 3 CPU cores, compared to 2 GPUs and 6
cores for the transformer. Other recent supervised mod-
els trained on Hate Speech alone (not developed for
AD) (Wullach et al. (2021)), show good performance
for corpora including the de Gibert et al. (2018), but

5Du et al. (2012) find that using an L1 norm would cause
the rCIM objective function to be dominated by the datapoints
with near-zero fitting error and actually reduce the quality of
row-based outliers.
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Dataset Inliers Outliers Concentration H-NMF R-NMF DATE
20Newsgroups pc/mac.hardware ms-windows.misc 0.025 0.600 0.592 0.650

(2000) 0.05 0.543 0.559 0.767
20Newsgroups pc/mac.hardware comp.windows.x 0.025 0.567 0.595 0.691

(2000) 0.05 0.557 0.555 0.712
Reuters-21578 earn+acq interest 0.01 0.741 0.769 0.691

(5795) 0.025 0.725 0.766 0.712
0.05 0.716 0.777 0.725

Reuters-21578 earn+acq trade 0.01 0.871 0.889 0.886
(5795) 0.025 0.826 0.859 0.905

0.05 0.848 0.877 0.894
WikiPeople life career 0.025 0.675 0.694 0.548

(5000) 0.05 0.690 0.707 0.617
Hate Speech noHate hate 0.01 0.688 0.702 0.508

(9507) 0.025 0.697 0.693 0.499
0.05 0.679 0.675 0.505

Table 1: AUROC Results. Bolded values indicate the best performance for each dataset blend.

train on large numbers of hate speech samples that may
not be available in all real-life circumstances. Our rCIM
model on the other hand shows the best performance on
very small concentrations. Since posts containing hate
speech or offensive language tend to be in a small mi-
nority in the real world, our model is ideally suited for
practical application and does not have to compensate
for data imbalance issues.

5 Conclusion and Future Work
Although recent approaches to textual Anomaly De-
tection using deep models are very robust, our model
performs comparably and even outperforms the state
of the art on the majority of AD datasets including a
hate speech dataset. We improve upon recent NMF-
based AD by combining a row-centric approach with
a separate residual matrix. Our approach requires no
pretraining or fine tuning, making it highly adaptable
to different data sets with different concentrations of
anomalous texts in a low compute resource setting. The
model is well-suited both to the task of identifying hate
speech and topical-intrusion-type textual anomalies in
general.

We plan to continue further experiments on new AD
data sets, including those containing hate speech and
offensive language.

6 Ethical Considerations
Anomaly detection is a type of classification model
which may have imperfect Precision and Recall. As
such it may classify hateful or toxic language incorrectly
and should be subject to human review in contexts of
high risk. Risks if deployed in the context of a real
listserv or subscription media product could include
users being banned due to false positive outputs as well
as unwanted or offensive posts being allowed due to
false negatives.
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A Appendix: Examples
Examples of Hate Speech from the de Gibert et al.
(2018) corpus are shown in Table 2.

TEXT CLASS
As of March 13th , 2014 the book-
let had been downloaded over 18,300
times and counting .

no_hate

In order to help increase it would be
great if all Stormfronters who had
YouTube accounts , could display the
following text in the description boxes
of their uploaded YouTube videos .

no_hate

Simply copy and paste the following
text into your YouTube videos descrip-
tion boxes

no_hate

Click below for a FREE download
of a colorfully illustrated 132 page
e-book on the Zionist-engineered IN-
TENTIONAL destruction of Western
civilization .

hate

She may or may not be a Jew she seems
to think the Blacks wo n’t kill her along-
side every other White they can get
their dirty hands on , what a muppet
!

hate

Thank you for posting your story . no_hate
I think you should write a book as well no_hate
And the sad thing is the white students
at those schools will act like that too .

hate

Table 2: Examples of inliers (no_hate) and outliers
(hate) from the hate speech dataset.

B Appendix: Hyper-parameters
The hyper-parameter values that yielded the best results
for each dataset blend. These were obtained from a
sweep of eight values of k within the range [1,128], 5
values of alpha within the range [1,16], and 5 values of
beta within the range [1,16]. The beta parameter is only
used for H-NMF.
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Dataset Inliers/Outliers Concentration Best Model k alpha beta
20Newsgroups pc/mac.hardware 0.025 H-NMF 100 1 16

ms-windows.misc 0.05 R-NMF 64 1
20Newsgroups pc/mac.hardware 0.025 R-NMF 64 2

comp.windows.x 0.05 H-NMF 32 1 1
Reuters-21578 earn+acq 0.01 R-NMF 16 16

interest 0.025 R-NMF 16 16
0.05 R-NMF 16 16

Reuters-21578 earn+acq 0.01 R-NMF 16 16
trade 0.025 R-NMF 8 16

0.05 R-NMF 8 8
WikiPeople life 0.025 R-NMF 8 16

career 0.05 R-NMF 8 8
Hate Speech noHate 0.01 R-NMF 8 8

hate 0.025 H-NMF 8 8 1
0.05 H-NMF 16 8 1

Table 3: Best hyper-parameters for each dataset blend.
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Abstract

Political competitions are complex settings
where candidates use campaigns to promote
their chances to be elected. One choice focuses
on conducting a positive campaign that high-
lights the candidate’s achievements, leadership
skills, and future programs. The alternative
is to focus on a negative campaign that em-
phasizes the negative aspects of the competing
person and is aimed at offending opponents or
the opponent’s supporters. In this proposal, we
concentrate on negative campaigns in Israeli
elections. This work introduces an empirical
case study on automatic detection of negative
campaigns, using machine learning and natural
language processing approaches, applied to the
Hebrew-language data from Israeli municipal
elections. Our contribution is multi-fold: (1)
We provide TONIC—daTaset fOr Negative po-
lItical Campaign in Hebrew—which consists
of annotated posts from Facebook related to
Israeli municipal elections; (2) We introduce
results of a case study, that explored several
research questions. RQ1: Which classifier and
representation perform best for this task? We
employed several traditional classifiers which
are known for their excellent performance in
IR tasks and two pre-trained models based
on BERT architecture; several standard repre-
sentations were employed with traditional ML
models. RQ2: Does a negative campaign al-
ways contain offensive language? Can a model,
trained to detect offensive language, also detect
negative campaigns? We are trying to answer
this question by reporting results for the trans-
fer learning from a dataset annotated with of-
fensive language to our dataset. RQ3: Does a
negative campaign necessarily express negative
sentiment? Can sentiment analysis help to de-
tect negative campaigns? We experiment with
sentiment labels to enrich data representation
and report our findings.

Our dataset and pre-trained models will be
freely available for researchers.

1 Introduction

Political competitions aim at promoting the can-
didates’ chances to be elected. The main deci-
sion in such competitions regards the nature of the
campaign – that is, whether a candidate should
apply a positive campaign that highlights the can-
didate’s achievements, leadership skills, and fu-
ture programs, or focus on a negative campaign
that emphasizes the negative sides of the competi-
tors (Bernhardt and Ghosh, 2020; Invernizzi, 2019;
Martin, 2004; Skaperdas and Grofman, 1995).

Our work introduces a new dataset of Facebook
posts, published by candidates during municipal
elections in Israel. We annotated this dataset with
binary labels, where we distinguish between nega-
tive campaigns and other campaign-related content.
In addition to the dataset, we report the results of ex-
tensive experiments, aimed at answering multiple
research questions: Which supervised model and
representation are more effective at automatically
detecting negative campaigns? Can we effectively
detect negative campaigns with a model trained to
identify offensive language? Can sentiment analy-
sis boost negative campaign detection?

Our contribution is multi-fold: (1) We introduce
a new annotated dataset in Hebrew for negative
campaign detection; (2) We report results of multi-
ple classifiers and their combination with various
representations on our dataset; (3) We explore pos-
sible relations between sentiment analysis and neg-
ative campaign and (4) between offensive language
and negative campaign.

2 Related Work

The scholarly literature has investigated various as-
pects related to negative campaigns (Asunka et al.,
2019; Chaturvedi, 2005; Martin, 2004; Skaperdas
and Grofman, 1995). It points out that this phe-
nomenon exists in many areas such as competi-
tion over jobs in the workplace, yet in the politi-
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cal arena there are several special characteristics.
A major characteristic is a fact that participants
in electoral competition often hold positions of
power as well as public and private resources to
finance their efforts (Bernhardt and Ghosh, 2020;
Invernizzi, 2019). In many cases, they also set the
rules of the competition as opposed to other areas
where the contest organizer sets the rules of the
game. Indeed, in recent years, we witness more
and more political candidates that do not play by
the rules, both formally and informally. A specific
feature of this trend is the intensive use of nega-
tive campaigns which target the weaknesses and
failures of the opponents promising to do the op-
posite (Invernizzi, 2019; Martin, 2004; Skaperdas
and Grofman, 1995).

The implementation of language technologies in
the political sciences is recently in high demand.
While computational political scientists are look-
ing for NLP tools to assist automatic analysis of
campaign-related content and predict outcomes,
computational linguistics explores real-world use
cases in political domains. The recent Workshop
on Natural Language Processing for Political sci-
ences (PoliticalNLP) (Afli et al., 2022) is an ex-
ample of the rising popularity of this interdisci-
plinary research. However, despite some works
dedicated to the analysis of elections-related materi-
als (Baran et al., 2022; Abdine et al., 2022; Sanders
and van den Bosch, 2022), in this workshop or any-
where else, we were unable to find any work on
automated negative campaign analysis and detec-
tion.

As a majority of text classification tasks last
years are efficiently performed by pre-trained lan-
guage models and transformers, we follow this ap-
proach in our study. We apply BERT, its multilin-
gual (mBERT) and Hebrew (AlephBERT) versions.
mBERT serves us both as an encoder (feature ex-
tractor) and end-to-end classifier.1 In addition to
the introduction of a new dataset, we explore possi-
ble relations between sentiment analysis and neg-
ative campaigns and between offensive language
and negative campaigns.

1We did not apply AlephBERT as feature extractor because
its implementation does not comply with the sentence trans-
formers package and does not allow extraction of sentence
vectors.

3 Case Study

3.1 TONIC dataset
The data was collected from Facebook accounts
of local politicians from several big Israeli cities
running for mayor’s offices. There were total of 12
cities and 27 mayor candidates whose number for
elections that took place in 2018. Data statistics ap-
pear in Table 1. The data is freely available for
download from GitHub at https://github.
com/NataliaVanetik1/TONIC.

Table 3 displays two instances of comments from
the TONIC dataset that have been translated into
English.

The collected posts were first manually filtered
as related or unrelated to political campaigns, and
only campaign-related messages were kept. Those
texts were annotated as either negative or not by
two independent annotators; in case of a disagree-
ment between them, the third annotator decided
on a final label. The annotators were instructed
to label a post as “negative campaign" only if it
contained a negative (but not necessarily offensive)
content about the opponent of the post’s owner or
her supporter. Kappa agreement between the an-
notators was 0.862, which is considered to be an
excellent agreement. The statistics for campaign-
related posts for all cities are given in Table 2.

3.2 Method
Our approach to text representation and classifica-
tion consists of the following steps:

1. Representing texts with one of the following:

• tf*idf vectors, where every post is treated
as a separate document;

• character n-grams with n = 1, 2, 3;
• pre-trained BERT vectors obtained from

a multilingual BERT model (Sanh et al.,
2019).

2. Enhancing the above representations with sen-
timent weights produced by the pre-trained
HeBERT model (Chriqui and Yahav, 2021).
This model produces weights as a probability
distribution for positive, negative, and neutral
sentiments.

3. Training and application of supervised ML
models (see Section 3.4) on all of the above
data representations.

The approach is depicted in Figure 1.
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Table 1: Collected data by city

city candidates post num avg words avg characters
in post in post

Ashdod 4 644 64.2 367.9
Netanya 4 571 49.2 292.0
Jerusalem 3 516 65.5 386.8
Ashkelon 3 683 61.4 358.4
Petah Tikva 4 669 61.7 359.0
Haifa 1 104 51.7 304.4
Rishon LeZion 1 239 87.2 523.7
Dimona 1 95 57.2 338.2
Hod Hasharon 2 366 71.0 416.1
Tel Aviv 1 233 70.8 410.2
Beer Sheva 1 34 139.8 866.4
Herzliya 2 272 92.4 549.4
Total 27 4426 65.6 385

Table 2: TONIC statistics

post num pos neg majority avg words avg chars
2632 568 2064 0.784 85.2 500.6

Table 3: Two sample comments from the TONIC dataset

Translated comment Label
Good week to all residents of Ashdod! Let’s talk about Ashdod-Yam Park. Who does the park
belong to? Does the park belong to the residents of the city at all or only to the ultra-Orthodox
residents (and non-residents)? Ashdod-Yam Park has been an attraction for the ultra-orthodox
public from all over the country for years. I really don’t have a problem with it, or most residents
of Ashdod, but as soon as the park and its facilities are closed on Shabbat, the message to the
non-Orthodox residents of Ashdod is simple: you are not welcome in your city. Unless you
are...that’s right - ultra-Orthodox. This week the municipality of Ashdod decided that as part of
the closing of the park’s facilities on Shabbat, the only cafe in the park will also be closed on
Shabbat. Another conquest of the ultra-Orthodox businessmen with the kind help of Yehiel Lesri.
We must return the city to all residents. The city was not intended only for the ultra-Orthodox.
With your help I will be the mayor and then Ashdod will serve you all!

yes

What has already become a procedure, the week is closed with the dear residents of the city!
Today we visited the 11th and 12th districts and were happy to meet the residents, to hear what
they like in the city, what they dislike and what problems they suffer from. On 30.10.18 we will
be able to start providing better service to the resident and take care of the needs of every district
and every community in the city. Many thanks to the dear activists who accompany me all along
the way.

no

posts tokenization

n-gram vectors

BERT sentence vectors

tf ∗ idf vectors prediction modelsentiment analysis

Figure 1: Political posts classification pipeline.

3.3 Data representation

We employed three different representation models
for input texts, as follows.

Tf-idf, short for term frequency-inverse docu-
ment frequency, is a numerical statistic that is in-
tended to reflect how important a word is to a doc-
ument in a collection or corpus. The tf-idf value
increases proportionally to the number of times a

word appears in the document and is offset by the
number of documents in the corpus that contain
the word. In our case, we treated every post as
a separate document and the whole dataset as a
corpus.

N-grams are the sequences of n consecutive
words seen in the text, where n is a parameter. In
our evaluation, we used the values n = 1, 2, 3.
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BERT sentence embeddings of length 512 were
obtained using the pre-trained multilingual BERT
model trained in 104 languages, including Hebrew.

3.4 Models
We applied three traditional ML algorithms—
Random Forest (RF) (Pal, 2005), Logistic Regres-
sion (LR) (Wright, 1995), and Extreme Gradient
Boosting (XGB) (Chen et al., 2015). All three
were applied to texts represented by each of three
representations, described in Section 3.3.

Also, we employed the BERT transformer (De-
vlin et al., 2018) trained for sentence classification.
We applied two different pre-trained models for our
task. The first one is a multilingual model called
bert-base-multilingual-cased (denoted as mBERT)
introduced in (Devlin et al., 2018). The second is
the AlephBERT (Seker et al., 2021), a large pre-
trained language model for Modern Hebrew, which
is trained on a larger vocabulary and a larger dataset
than any Hebrew pre-trained language model be-
fore. Both of these models were fine-tuned on the
train portion of our data.

3.5 Experiments
Our experiments aim at evaluation of and compari-
son of various models and text representations for
the purpose of detecting negative campaigns in po-
litical posts. Additionally, we explore two research
questions.

In the first one, we want to understand whether
general offensive language data in the same lan-
guage (Hebrew) can be used for transfer learning
with the proposed methodology. For answering
that, we perform cross-domain experiments with
a dataset with Hebrew messages annotated with
offensive language.

In the second question, we explore whether the
sentiment analysis can boost the negative campaign
detection accuracy. For answering that, we com-
pare between performance scores of our models
with and without sentiment labels in the data repre-
sentation.

3.6 Data Setup
For the experiments on TONIC, RF, LR, and XGB
were trained on 80% of the data and evaluated on
the remaining 20%. Fine-tuned BERT was trained
a 75% of the data with the validation set containing
5% of the data, and it was tested on the remaining
20%. Fine-tuning was run for 10 epochs with batch
size 16.

For the cross-domain experiments, we used the
Hebrew offensive language dataset (Litvak et al.,
2021) called OLaH. It is composed of Facebook
comments written in Hebrew and annotated by hu-
mans. The dataset contains 2,025 annotated com-
ments, out of which 821 are labeled positive (i.e.,
they do contain offensive content).

3.7 Software Setup

For the purpose of reproducibility, we present be-
low the setup of our experiments. All non-neural
models are implemented in sklearn (Pedregosa
et al., 2011) python package. Our neural model is
implemented with Keras (Chollet et al., 2015) with
the TensorFlow backend (Abadi et al., 2015). Ex-
periments were performed on google colab (Bisong,
2019) with standard settings and GPU runtime type.
Runtime for every experiment setting (mono- or
cross-domain) was less than 10 minutes.

3.8 Evaluation Results

Table 4: Mono-domain evaluation results on the TONIC
dataset

Model P R F1 Acc
AlephBERT 0.7318 0.6616 0.6949 0.7040
mBERT 0.7288 0.6792 0.7031 0.7590
RFtfidf 0.8004 0.5490 0.6513 0.8008
RFtfidf+SA 0.8507 0.6550 0.7401 0.8425
RFng1 0.7774 0.5597 0.6508 0.8027
RFng1+SA 0.8517 0.6877 0.7610 0.8539
RFng2 0.8157 0.5414 0.6508 0.7989
RFng2+SA 0.8372 0.6168 0.7103 0.8273
RFng3 0.771 0.5239 0.6239 0.7913
RFng3+SA 0.8482 0.6506 0.7364 0.8406
RFbert 0.8485 0.5383 0.6587 0.7989
RFbert+SA 0.8508 0.7355 0.7890 0.8691
LRtfidf 0.7731 0.5358 0.6329 0.7951
LRtfidf+SA 0.8530 0.7399 0.7924 0.8710
LRng1 0.7341 0.6571 0.6935 0.8159
LRng1+SA 0.8474 0.7928 0.8192 0.8843
LRng2 0.6551 0.6491 0.6521 0.7685
LRng2+SA 0.7455 0.7501 0.7478 0.8273
LRng3 0.6551 0.6491 0.6521 0.7685
LRng3+SA 0.7455 0.7501 0.7478 0.8273
LRbert 0.7864 0.6075 0.6855 0.8178
LRbert+SA 0.8096 0.7851 0.7972 0.8672
XGBtfidf 0.8195 0.5948 0.6893 0.8178
XGBtfidf+SA 0.8151 0.7724 0.7932 0.8672
XGBng1 0.8007 0.5892 0.6789 0.8140
XGBng1+SA 0.8303 0.7879 0.8085 0.8767
XGBng2 0.7168 0.5978 0.6519 0.8027
XGBng2+SA 0.8121 0.7787 0.7950 0.8672
XGBng3 0.7241 0.5991 0.6557 0.8046
XGBng3+SA 0.8072 0.7699 0.7881 0.8634
XGBbert 0.6733 0.5798 0.6231 0.7894
XGBbert+SA 0.8208 0.7887 0.8044 0.8729

Evaluation results for the TONIC dataset as both
train and test sets are presented in Table 4. We can
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make the following conclusions from these results.

First, there is a shred of strong evidence that sen-
timent labels boost classification performance. Sec-
ond, the best recall, f-measure, and accuracy were
produced by LR with unigrams enriched with senti-
ment labels, and the best precision was obtained by
the same LR but with tf-idf and sentiment labels.

Table 5: Cross-domain evaluation results:
OLaH→TONIC

Model P R F1 Acc
AlephBERT 0.4988 0.3916 0.4387 0.7818
mBERT 0.5135 0.6025 0.5545 0.7799
RFtfidf 0.4536 0.4959 0.4738 0.7723
RFtfidf+SA 0.5356 0.5054 0.5201 0.7723
RFng1 0.4530 0.4779 0.4651 0.7192
RFng1+SA 0.5599 0.5079 0.5326 0.7761
RFng2 0.4779 0.4886 0.4832 0.7211
RFng2+SA 0.5222 0.5072 0.5146 0.7552
RFng3 0.4727 0.4867 0.4796 0.7230
RFng3+SA 0.5031 0.5009 0.5020 0.7552
RFbert 0.3910 0.4952 0.4370 0.7761
RFbert+SA 0.4628 0.4971 0.4793 0.7742
LRtfidf 0.3918 0.5000 0.4393 0.7837
LRtfidf+SA 0.3914 0.4976 0.4382 0.7799
LRng1 0.4723 0.4850 0.4786 0.7154
LRng1+SA 0.5222 0.5072 0.5146 0.7552
LRng2 0.5417 0.5396 0.5406 0.6964
LRng2+SA 0.5484 0.5382 0.5433 0.7192
LRng3 0.5417 0.5396 0.5406 0.6964
LRng3+SA 0.5484 0.5382 0.5433 0.7192
LRbert 0.4623 0.4942 0.4777 0.7647
LRbert+SA 0.5592 0.5039 0.5301 0.7799
XGBtfidf 0.5352 0.5027 0.5184 0.7780
XGBtfidf+SA 0.7265 0.5076 0.5976 0.7856
XGBng1 0.4617 0.4914 0.4761 0.7552
XGBng1+SA 0.7946 0.5163 0.6259 0.7894
XGBng2 0.5315 0.5174 0.5244 0.7362
XGBng2+SA 0.6214 0.5262 0.5699 0.7799
XGBng3 0.5609 0.5388 0.5496 0.7400
XGBng3+SA 0.5789 0.5162 0.5458 0.7742
XGBbert 0.4680 0.4892 0.4784 0.7419
XGBbert+SA 0.5460 0.5113 0.5281 0.7666

Cross-domain experiments in Table 5 show that
using an offensive language dataset as a training set
decreases classification accuracy for all the mod-
els, indicating that the task of detecting negative
campaigns is different from the task of offensive
language detection. Despite enhancing data with
SA obviously improve results, only a few models
trained on offensive language data achieved accu-
racy that is slightly higher than or equal to the
majority rule. XGB with unigrams and sentiment
labels achieved the best precision, f-measure, and
accuracy, while the best recall was obtained by
mBERT.

3.9 Error Analysis

We used the top-performing model (LRng1+SA)
to analyze the misclassification errors in the mono-
domain classification instance (Logistic Regression
with unigrams and sentiment labels as a text rep-
resentation). This model’s confusion matrix is as
follows: TP = 72, TN = 394, FP = 19, and
FN = 42, with precision of 0.79 and recall of 0.63
respectively. These results show that the model
does a good job of identifying and eliminating
negative samples (non-negative campaigns), but
it misses positive samples (negative campaign). As
a result, TN is the most important accuracy com-
pound, while FN represents the biggest amount of
errors.

In a 30 misclassified case sample that we man-
ually examined, 22 cases are from the FN group
and only 8 cases are from the FP category. The
majority of errors (23), including 19 samples incor-
rectly identified as negative campaigns when we
actually found them to be neutral and 4 samples
incorrectly labeled as neutral, were the result of
incorrect labeling by our annotators. Due to a vari-
ety of factors, the model incorrectly classified four
neutral posts as negative campaigns, including one
sample that was actually negative but was correctly
categorized as neutral because it wasn’t addressed
to a specific person, and two samples that contained
words that were likely to have influenced the clas-
sification. One sample was incorrectly categorized
for an unidentified reason; the cause is likely due to
the negative campaign writing style, which is char-
acterized by frequent mentions of individuals. The
model missed three unfavorable marketing materi-
als, most likely as a result of the neutral vocabulary
(no offensive content in these samples).

4 Future Work and Conclusions

In this paper, we introduce a new dataset that
can help researchers to study negative campaigns.
The dataset contains only Hebrew-written content
posted by Israeli politicians on Facebook. We re-
port the results of extensive experiments which
include multiple classifiers and representations and
answer two research questions: whether transfer
learning from offensive language to negative cam-
paign can be efficiently applied and whether sen-
timent analysis can boost negative campaign de-
tection. We can conclude that traditional models
with unigrams and sentiment labels as text repre-
sentations performed best in both scenarios. This
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is probably due to a small training set which is
not sufficient for efficient fine-tuning of pre-trained
transformers with a large number of parameters, but
big enough to train a relatively simple classification
function with fewer parameters. Also, unigrams
seem to be most efficient in representing Hebrew
texts — due to the rich morphology of Hebrew and
ambiguous tokenization, simple BOW (and tf-idf)
cannot provide enough semantic information. It
also might be the case of political rhetoric which is
similar across candidates and campaigns of differ-
ent political parties. Based on our results, we can
conclude that sentiment analysis obviously boosts
negative campaign detection. However, there is
no strong relation between offensive language and
negative campaigns. Therefore, transfer learning
with models trained to detect offensive content is
inefficient for the detection of a negative campaign.

In the future, we plan to apply our analysis to
elections to the Israeli government. We also would
like to see whether cross-lingual and cross-country
learning is efficient for negative campaign detec-
tion. We’d like to explore the common characteris-
tics and differences between political campaigns in
different countries. We hypothesize that an engage-
ment of a candidate in a negative campaign can
be dependent on the candidate’s gender, perceived
strength, initial support, etc. We intend to study
these possible relations in the future.
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Abstract

Standard approaches to hate speech detection
rely on sufficient available hate speech annota-
tions. Extending previous work that repurposes
natural language inference (NLI) models for
zero-shot text classification, we propose a sim-
ple approach that combines multiple hypothe-
ses to improve English NLI-based zero-shot
hate speech detection. We first conduct an er-
ror analysis for vanilla NLI-based zero-shot
hate speech detection and then develop four
strategies based on this analysis. The strate-
gies use multiple hypotheses to predict various
aspects of an input text and combine these pre-
dictions into a final verdict. We find that the
zero-shot baseline used for the initial error anal-
ysis already outperforms commercial systems
and fine-tuned BERT-based hate speech detec-
tion models on HateCheck. The combination
of the proposed strategies further increases the
zero-shot accuracy of 79.4% on HateCheck by
7.9 percentage points (pp), and the accuracy of
69.6% on ETHOS by 10.0pp.1

1 Introduction

With the increasing popularity of social media and
online forums, phenomena such as hate speech, of-
fensive and abusive language, and personal attacks
have gained a powerful medium through which
they can propagate fast. Due to the sheer number
of posts and comments on social media, manual
content moderation has become unfeasible, thus the
automatic detection of harmful content becomes
essential. In natural language processing, there
now exist established tasks with the goal of de-
tecting offensive language (Pradhan et al., 2020),
abusive language (Nakov et al., 2021), hate speech
(Fortuna and Nunes, 2018) and other related types
of harmful content (Poletto et al., 2021). In this
work, we focus on the detection of hate speech,

1The code and instructions to reproduce the experi-
ments are available at https://github.com/jagol/
nli-for-hate-speech-detection.

which is typically defined as attacking, abusive
or discriminatory language that targets people on
the basis of identity defining group characteris-
tics such as gender, sexual orientation, disability,
race, religion, national origin etc. (Fortuna and
Nunes, 2018; Poletto et al., 2021; Yin and Zubi-
aga, 2021). Most current hate speech detection
approaches rely on either training models from
scratch or fine-tuning pre-trained language mod-
els (Jahan and Oussalah, 2021). Both types of
approaches need large amounts of labeled data
which are only available for a few high-resource
languages (Poletto et al., 2021) and costly to cre-
ate. Therefore, exploring data-efficient methods for
hate speech detection is an attractive alternative.

In this paper, we build on Yin et al. (2019) who
proposed to re-frame text classification tasks as
natural language inference, enabling high accuracy
zero-shot classification. We exploit the fact that we
can create arbitrary hypotheses to predict aspects of
an input text that might be relevant for hate speech
detection. To identify effective hypotheses, we
first find a well-performing hypothesis formulation
that claims that the input text contains hate speech.
An error analysis based on HateCheck (Röttger
et al., 2021) shows that given a well-performing
formulation the model still struggles with multiple
phenomena, including (1) abusive or profane lan-
guage that does not target people based on identity-
defining group characteristics, (2) counterspeech,
(3) reclaimed slurs, and (4) implicit hate speech.
To mitigate these misclassifications, we develop
four strategies. Each strategy consists of multiple
hypotheses and rules that combine these hypothe-
ses in order to address one of the four identified
error types.

We show that the combination of all proposed
strategies improves the accuracy of vanilla NLI-
based zero-shot prediction by 7.9pp on HateCheck
(Röttger et al., 2021) and 10.0pp on ETHOS (Mol-
las et al., 2022). An error analysis shows that
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the overall gains in accuracy largely stem from in-
creased performance on previously identified weak-
nesses, demonstrating that the strategies work as
intended.

Overall, our primary contributions are the fol-
lowing:

C1 An error analysis of vanilla NLI-based zero-
shot hate speech detection.

C2 Developing strategies that combine multiple
hypotheses to improve zero-shot hate speech
detection.

C3 An evaluation and error analysis of the pro-
posed strategies.

2 Background and Related Work

Early approaches to hate speech detection have
focused on English social media posts, especially
Twitter, and treated the task as binary or ternary text
classification (Waseem and Hovy, 2016; Davidson
et al., 2017; Founta et al., 2018). In more recent
work, additional labels have been introduced that
indicate whether the post is group-directed or not,
who the targeted group is, if the post calls for vi-
olence, is aggressive, contains stereotypes, if the
hate is expressed implicitly, or if sarcasm or irony
is used (Mandl et al., 2019, 2020; Sap et al., 2020;
ElSherief et al., 2021; Röttger et al., 2021; Mollas
et al., 2022). Sometimes hate speech is not directly
annotated but instead labels, such as racism, sex-
ism, homophobia that already combine hostility
with a specific target are annotated and predicted
(Waseem and Hovy, 2016; Waseem, 2016; Saha
et al., 2018; Lavergne et al., 2020).

While early approaches relied on manual fea-
ture engineering (Waseem and Hovy, 2016),
most current approaches are based on pre-trained
transformer-based language models that are then
fine-tuned on hate speech datasets (Florio et al.,
2020; Uzan and HaCohen-Kerner, 2021; Banerjee
et al., 2021; Lavergne et al., 2020; Das et al., 2021;
Nghiem and Morstatter, 2021).

Some work has focused on reducing the need
for labeled data by multi-task learning on differ-
ent sets of hate speech labels (Kapil and Ekbal,
2020; Safi Samghabadi et al., 2020) or adding senti-
ment analysis as an auxiliary task (Plaza-Del-Arco
et al., 2021). Others have worked on reducing
the need for non-English annotations by adapting
hate speech detection models from high- to low-
resource languages in a cross-lingual zero-shot set-

name # examples classes

HateCheck 3,728 hateful (68.8%),
non-hate (31.2%)

ETHOS (binary) 997 hate speech (64.1%),
not-hate speech (25.9%)

Table 1: The number of examples and the class balance
of the datasets.

ting (Stappen et al., 2020; Pamungkas et al., 2021).
However the approach has been criticized for being
unreliable when encountering language-specific
taboo interjections (Nozza, 2021).

2.1 Zero-Shot Text Classification

The advent of large language models has en-
abled zero-shot and few-shot text classification ap-
proaches such as prompting (Liu et al., 2021), and
task descriptions (Raffel et al., 2020), which con-
vert the target task to the pre-training objective and
are usually only used in combination with large
language models. Chiu and Alexander (2021) use
the prompts “Is this text racist?” and “Is this text
sexist?” to detect hate speech with GPT-3. Schick
et al. (2021) show that toxicity in large generative
language models can be avoided by using similar
prompts to self-diagnose toxicity during the decod-
ing.

In contrast, NLI-based prediction in which a tar-
get task is converted to an NLI-task and fed into
an NLI model converts the target task to the fine-
tuning task. Here, a model is given a premise and
a hypothesis and tasked to predict if the premise
entails the hypothesis, contradicts it, or is neutral
towards it. Yin et al. (2019) proposed to use an
NLI model for zero-shot topic classification, by
inputting the text to classify as the premise and
constructing for each topic a hypothesis of the form
“This text is about <topic>”. They map the labels
neutral and contradiction to not-entailment. We
can then interpret a prediction of entailment as pre-
dicting that the input text belongs to the topic in
the given hypothesis. Conversely, not-entailment
implies that the text is not about the topic. Wang
et al. (2021) show for a range of tasks, including
offensive language identification, that this task re-
formulation also benefits few-shot learning scenar-
ios. Recently, AlKhamissi et al. (2022) obtained
large performance improvements in few-shot learn-
ing for hate speech detection by (1) decomposing
the task into four subtasks and (2) additionally train-
ing the few-shot model on a knowledge base.
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3 Data

HateCheck Röttger et al. (2021) introduce this
English, synthetic, evaluation-only dataset, anno-
tated for a binary decision between hate speech
and not-hate speech. It covers 29 functionalities
that are either a type of hate speech or challenging
types of non-hate speech that could be mistaken
for hate speech by a classifier. The examples for
each of these functionalities have been constructed
on the basis of conversations with NGO workers.
Each of these templates contains one blank space
to be filled with a protected group. The authors
fill these templates with seven protected groups,
namely: women, gay people, transgender people,
black people, Muslims, immigrants, and disabled
people. Overall the dataset contains 3,728 exam-
ples.

ETHOS The ETHOS dataset (Mollas et al.,
2022) is split into two parts: one part is annotated
for the presence of hate speech. The other part con-
tains fine-grained annotations that indicate which
characteristics have been targeted (gender, sexual
orientation, race, ethnicity, religion, national origin,
disability), whether the utterance calls for violence,
and whether it is directed at an individual or a gen-
eral statement about a group. The dataset is based
on English comments from Youtube and Reddit.
For this work, we will only make use of the binary
hate speech annotations. These annotations are
continuous values between 0 (indicating no hate
speech at all) and 1 indicating clear hate speech.
We rounded all annotations to either 0 or 1 using a
threshold of 0.5.

Table 1 displays the class balances of the two
datasets.

4 Evaluating Standard Zero-Shot
Prediction

The evaluation of standard zero-shot NLI-based
hate speech detection has two goals: To (1) obtain
an error analysis that serves as the starting point for
developing zero-shot strategies in Section 5, and
(2) establish a baseline for those strategies.

Experiment setup To test if an input text con-
tains hate speech, we need a hypothesis express-
ing that claim. However, there are many ways
how the claim, that a given text contains hate

2Google Jigsaw has since released a new version of the
model powering the Perspective API (Lees et al., 2022). We
assume that the new model would score higher on HateCheck.

system acc. (%)
BART-MNLI 0-shot results

That example is hate speech. / That is hateful. 66.6
That contains hate speech. 79.4
average 75.1

Systems evaluated by Röttger et al. (2021)
SiftNinja 33.2
BERT fine-tuned on Davidson et al. (2017) 60.2
BERT fine-tuned on Founta et al. (2018) 63.2
Google Jigsaw Perspective 2 76.6

Table 2: Evaluation of hypotheses for zero-shot hate
speech detection on HateCheck. The top rows contain
the two lowest scoring hypotheses, the highest scoring
hypothesis and the average score for all tested hypothe-
ses. The bottom rows contain the HateCheck baselines
computed by Röttger et al. (2021). The full results for
all tested hypotheses are listed in Appendix A.

speech, can be expressed. Choosing a sub-optimal
way to express this claim will result in lower ac-
curacy. Wang et al. (2021) already tested four
different hypotheses for hate speech or offensive
language. We conduct an extensive evaluation
by constructing and testing all grammatically cor-
rect sentences built with the following building
blocks: It/That/This + example/text + contains/is
+ hate speech/hateful/hateful content. We con-
duct all experiments with a BART-large model
(Lewis et al., 2020) that was fine-tuned on the
Multi-Genre Natural Language Inference dataset
(MNLI) (Williams et al., 2018) and has been made
available via the Huggingface transformers library
(Wolf et al., 2020) as bart-large-mnli. This
model predicts either contradiction, neutral, or en-
tailment. We follow the recommendation of the
model creators to ignore the logits for neutral and
perform a softmax over the logits of contradiction
and entailment. If the probability for entailment
is equal or higher than 0.5 we consider this a pre-
diction of entailment and thus hate speech.3 We
evaluate on HateCheck since the functionalities in
this dataset allow for an automatic in-depth error
analysis and compare our results to the baselines
provided by Röttger et al. (2021).

Results Table 2 shows an abbreviated version of
the results. The full results are given in Appendix
A. The hypothesis “That contains hate speech.” ob-
tains the highest accuracy and beats the Google-
Jigsaw API by 2.8pp. This is remarkable, since
we can assume that the commercial systems were
all trained to detect hateful content or hate speech,
while this model has not been trained on a single

3This procedure is equal to taking the argmax over contra-
diction and entailment.
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Figure 1: FBT Standard zero-shot entailment predictions would wrongly predict the input text as containing hate
speech. Using additional hypotheses it is possible to check if a protected group is targeted and if necessary to
override the original prediction.

Figure 2: FCS If a text contains quotations the quoted text is replaced with a variable X using a regular expression.
Then, then two hypotheses are tested: The first hypothesis serves as a test checking if the text inside the quotes is
hate speech. If that is predicted to be the case, the second hypothesis is used to predict if the quoted text is supported
or denounced by the post.

example of hate speech detection or a similar task.
The two lowest scoring hypotheses lead to an accu-
racy of 66.6% meaning that an unlucky choice of
hypothesis can cost more than 12pp accuracy.

Error Analysis Column “No Strat.” in Table 4
shows the accuracy per HateCheck functionality
for the hypothesis “That contains hate speech.”.
Most notably, the model wrongly predicted all de-
nouncements of hate (F20 and F21) as hate speech.
In four functionalities (F22, F11, F23, F20) the
model predicted hate speech even though no one
or no relevant group was targeted. Finally, we see
that the model often fails at analyzing sentences
with negations (F15) and that it fails at recognizing
when slurs are reclaimed and used in a positive way
(F9). In what follows, we will present and evaluate
strategies to avoid these errors.

5 Methods

In this section, we present four methods, which we
call strategies, that aim to improve zero-shot hate
speech detection. A strategy has the following com-
ponents and structure: The aim is to assign a label
y = {0, 1} to input text t, where 1 corresponds to
the class hate speech and 0 corresponds to the class

not-hate speech. The input text t can be used in one
or multiple a premises p0 to pm, that are used in
conjunction with the main hypothesis h0 and one
or multiple supporting hypotheses [h1, ..., hn] to
obtain NLI model predictions m(pi, hj) ∈ {0, 1}
where 0 corresponds to contradiction and 1 corre-
sponds to entailment. The variables i and j are
defined as: i ∈ [0, ...,m] and j ∈ [0, ..., n]. The
rules for how to combine model predictions to ob-
tain the final label y are given by the individual
strategies. As the main hypothesis we use “That
contains hate speech.”, since it lead to the highest
accuracy on HateCheck in Section 4. The support-
ing hypotheses used to implement the strategies are
listed in Table 3.

5.1 Filtering By Target (FBT)

The error analysis showed that we can improve
zero-shot classification accuracy significantly by
avoiding predictions of hate speech where no rele-
vant target group occurs. We thus propose to avoid
false positives by constructing a set of supporting
hypotheses [h1, ..., hn] to predict if text t actually
targets or mentions a protected group or charac-
teristic. If no protected group or characteristic is
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FBT groups

This text is about women.
This text is about trans people.
This text is about gay people.
This text is about black people.
This text is about disabled people.
This text is about Muslims.
This text is about immigrants.

FBT characteristics

This text is about gender.
This text is about sexual orientation.
This text is about race.
This text is about ethnicity.
This text is about disability.
This text is about religion.
This text is about national origin.

FCS This text supports [X].
FRS This text is about myself.

CDC

This text is about insects.
This text is about apes.
This text is about primates.
This text is about rats.
This text is about a plague.
This text has a negative sentiment.

Table 3: The supporting hypotheses used to implement
the proposed strategies. For filtering by target we used
the group-hypotheses for the HateCheck dataset and the
characteristics-hypotheses for the ETHOS dataset, to
account for differing hate speech definitions.

predicted to occur in t, a potential prediction of
hate speech is overridden to not-hate speech. Fig-
ure 1 illustrates the method.

5.2 Filtering Counterspeech (FCS)

Our zero-shot model wrongly classifies all exam-
ples of counterspeech that quote or reference hate
speech as actual hate speech. References to hate
speech without quotation marks are hard to identify.
Thus, for this work, we limit ourselves to counter-
speech that quotes hate speech explicitly. We pro-
pose a three-stage strategy to this phenomenon: (1)
quotation identification, (2) hate speech classifica-
tion of the quoted content, (3) detecting the stance
of the post towards the quoted content. Formally,
the input text t is divided into premise p0 which
contains the quoted text and premise p1 which con-
tains the text around the quotes. The quoted text
is represented as “[X]” in p1. Using the main hy-
pothesis h0 we predict if p0 contains hate speech
or not. We use the supporting hypothesis “This
text supports [X] .” (h1) to predict the stance of p1
towards p0. If p0 contains hate speech and p1 has a
supportive stance towards p0, t is classified as hate
speech, otherwise it is classified as not-hate speech.
The strategy is depicted in Figure 2.

5.3 Filtering Reclaimed Slurs (FRS)

As shown in Table 4, slurs that are reclaimed
by members of a targeted group are often miss-
classified as hate speech. Based on the observation
that a reclaimed slur is often ascribed to oneself,
we propose to use a supporting hypothesis that
indicates if text is self-directed.4 If the model pre-
dicts self-directedness a potential prediction of hate
speech is overridden to not-hate speech.

5.4 Catching Dehumanizing Comparisons
(CDC)

One way of expressing hate towards a group and de-
humanizing said group is to draw unflattering com-
parisons with animals. Such comparisons tend to
be missed by hate speech detection systems, since
the use of hateful or aggressive words is not needed
to convey the hateful message. In HateCheck, this
phenomenon is subsumed under “Implicit deroga-
tion”. Standard zero-shot prediction obtains a mod-
erately good accuracy of 89.3%. We test if false
negatives can be caught with a three-step combi-
nation of supporting hypotheses: (1) use the sup-
porting hypotheses of FBT to predict if a protected
group is mentioned in text t, (2) predict if t has a
negative sentiment, and (3) predict if t has is about
animals typically used when making dehumanizing
comparisons (such as insects, rats, or monkeys).
If all conditions are met, override a prediction of
not-hate speech to hate speech.

6 Experiments

We use the same model and adopt the entailment
threshold of 0.5 from Section 4 for the main and
all supporting hypotheses. Further, we take the hy-
pothesis leading to the highest accuracy in Section
4 as the main hypothesis.

Since the main hypothesis in our experiments
is chosen for maximum accuracy on HateCheck
(based on the experiment in Section 4) and the
strategies developed are based on an error analysis
on HateCheck, the overall system might be over-
fitting on this specific dataset. An evaluation on
this dataset might thus lead to results that overes-
timate a potential positive effect of the proposed
strategies. We therefore also evaluate on ETHOS
as an “unseen” dataset.

4Of course there are counterexamples to this rule, where
reclaimed slurs are directed to others and not oneself. How-
ever, as long this approximation, as crude as it may be, helps
to reduce false positives, it is a useful approximation.
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Functionality No Strat. FBT FCS FRS CDC All
F1: Expression of strong negative emotions (explicit) 100.0 +0.0 +0.0 +0.0 +0.0 +0.0
F2: Description using very negative attributes (explicit) 98.6 +0.0 +0.0 +0.0 +0.0 +0.0
F3: Dehumanisation (explicit) 100.0 +0.0 +0.0 +0.0 +0.0 +0.0
F4: Implicit derogation 89.3 -5.0 +0.0 -10.0 +0.0 -12.9
F5: Direct threat 100.0 +0.0 +0.0 -3.0 +0.0 -3.0
F6: Threat as normative statement 99.3 +0.0 +0.0 +0.0 +0.0 +0.0
F7: Hate expressed using slur 85.4 -14.6 +0.0 +0.0 +2.8 -12.5
F8: Non-hateful homonyms of slurs 76.7 +6.7 +0.0 +0.0 +0.0 +6.7
F9: Reclaimed slurs 33.3 +0.0 +0.0 +32.1 +0.0 +32.1
F10: Hate expressed using profanity 97.9 -0.7 +0.0 +0.0 +0.0 -0.7
F11: Non-hateful use of profanity 43.0 +49.0 +0.0 +23.0 +0.0 +50.0
F12: Hate expressed through reference in subsequent clauses 100.0 +0.0 +0.0 -2.9 +0.0 -2.9
F13: Hate expressed through reference in subsequent sentences 97.7 +0.0 +0.0 +0.0 +0.0 +0.0
F14: Hate expressed using negated positive statement 100.0 -2.9 +0.0 +0.0 +0.0 -2.9
F15: Non-hate expressed using negated hateful statement 33.1 +5.3 +0.0 +0.0 +0.0 +5.3
F16: Hate phrased as a question 99.3 +0.0 +0.0 -5.0 +0.0 -5.0
F17: Hate phrased as an opinion 100.0 +0.0 +0.0 -2.3 +0.0 -2.3
F18: Neutral statements using protected group identifiers 96.0 +0.0 +0.0 +0.0 +0.0 +0.0
F19: Positive statements using protected group identifiers 97.4 +0.0 +0.0 +0.0 +0.0 +0.0
F20: Denouncements of hate that quote it 0.0 +8.7 +100.0 +0.0 +0.0 +100.0
F21: Denouncements of hate that make direct reference to it 0.0 +7.8 +0.0 +1.4 +0.0 +8.5
F22: Abuse targeted at objects 63.1 +36.9 +0.0 +9.2 +0.0 +36.9
F23: Abuse targeted at individuals (not as member of a prot. group) 7.7 +70.8 +0.0 +0.0 +0.0 +70.8
F24: Abuse targeted at nonprotected groups (e.g. professions) 11.3 +83.9 +0.0 +3.2 +0.0 +83.9
F25: Swaps of adjacent characters 97.7 +0.0 +0.0 +0.0 +0.0 +0.0
F26: Missing characters 88.6 -1.4 +0.0 +0.0 +0.7 -0.7
F27: Missing word boundaries 87.9 -4.3 +0.0 +0.0 +1.4 -3.5
F28: Added spaces between chars 97.7 -11.0 +0.0 -0.6 +0.0 -11.6
F29: Leet speak spellings 93.1 -12.7 +0.0 +0.0 +0.6 -12.1
Overall 79.4 +3.3 +4.6 +0.7 +0.2 +7.9

Table 4: Analysis of how individual functionalities are affected by the proposed strategies. The functionality
descriptions are taken from Röttger et al. (2021). No Strat. refers to using only the hypothesis “That contains
hate speech.”. Accuracies below 70% are marked in red. All refers to combining all four proposed strategies. The
columns FBT, FCS, FRS, CDC and All contain the difference in percentage point (pp) accuracy compared to No
Strat..

ETHOS does not refer to protected groups in
its definition and annotation of hate speech, but
instead to protected characteristics. Thus, in the
hypotheses for FBT we replace protected groups
with the protected characteristics listed in Table 3.

6.1 Results

HateCheck The bottom row Overall in Table 4
shows the results for the proposed strategies and
their combination on the HateCheck dataset. Each
strategy leads to an improvement in accuracy. But
while FBT and FCS lead to large increases, FRS
and CDC only lead to minor increases. Combin-
ing all proposed strategies leads to an increase in
accuracy of 7.9pp.

ETHOS The results of evaluating the same strate-
gies on ETHOS (Mollas et al., 2022) are given in
Table 5. As additional baselines compared to zero-
shot prediction using just one hypothesis, we in-
clude the performance of three models trained on
ETHOS by Mollas et al. (2022).

The combination of all strategies leads to a in-
crease of 10.0pp, which is an even greater increase

strategies accuracy (%) ∆
(ETHOS) SVM 66.4 -
(ETHOS) BERT 80.0 -
(ETHOS) DistilBERT 80.4 -
“That contains hate speech.” 69.6 +0.0
FBT (TG) 75.5 +5.9
FBT (TC) 78.7 +9.1
FCS 69.6 +0.0
FRS 71.3 +1.7
CDC (TC) 69.5 -0.1
FBT (TC) + FCS 78.7 +9.1
FBT (TC) + FRS 79.7 +10.1
FCS + FRS 71.3 +1.7
FBT (TC) + FCS + FRS 79.7 +10.1
CDC (TC) + FBT (TC) + FCS + FRS 79.6 +10.0

Table 5: Accuracy scores on ETHOS. The three top
rows show baselines computed by Mollas et al. (2022).
TG refers to using target groups to implement FBT and
TC refers to using target characteristics for FBT.

than on HateCheck. However, the gains are more
unevenly distributed across the proposed strategies.
Filtering by target characteristics alone leads to an
increase of 9.1pp. Filtering reclaimed slurs still
has a positive effects of 1.7pp. However, filter-
ing counterspeech, the best performing strategy on
HateCheck, does not have any effect at all. And
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catching dehumanizing comparisons even reduces
performance by 0.1pp.

The comparison to the baselines provided by
Mollas et al. (2022) shows that zero-shot prediction
using the hypothesis “That contains hate speech.”
already outperforms a trained SVM by more than
3pp but still underperforms the fine-tuned BERT by
more than 10pp. However, applying the proposed
strategies almost closes the gap to the fine-tuned
models.

6.2 Analysis of Affected Functionalities

We analyse if the observed performance gains actu-
ally stem from improvements on the functionalities
targeted by the proposed strategies. Table 4 shows
for each functionality how it was affected by each
strategy.

Filtering by Target The results for filtering by
target show dramatic accuracy increases for Hate-
Check functionalities containing abuse and profan-
ity that is not targeted at a protected group. These
are exactly the functionalities this strategy aimed
at. The performance for spelling variations and
implicit derogation decreases slightly. This can be
explained by the model failing to correctly recog-
nize spelling variations of target groups and by the
fact that the target group might only be implied in
implicit derogation leading to false negatives.

Filtering Counterspeech The counterspeech fil-
ter increases the accuracy of the respective func-
tionality from 0% to 100%. Thus, detecting quoted
hate speech as well as detecting the stance towards
the quote worked exactly as intented on HateCheck.

Filtering Reclaimed Slurs The functionality
with the largest gains when filtering reclaimed
slurs is “reclaimed slurs”, showing that the strategy
works as intended. However, the performance in-
crease of this method is not as high as for example
filtering by target. The functionality “non-hateful
use of profanity” also benefits from this strategy.
We assume that such uses of profanity often are
also not directed at other people and thus some-
times predicted to be directed at oneself. This is a
beneficial side-effect of the strategy.

Catching Dehumanizing Comparisons This
strategy only leads to minor a minor overall im-
provement of 0.2pp. We observe no effect on the
targeted functionality, but a small positive effect
on F7, “Hate expressed using slur”, which could

Figure 3: Counterspeech filter adjusted for detecting
hate speech where quotes are present but the hate speech
is outside of the quote - i.e. in the outer text.

indicate that the model associates slurs with neg-
atively coded animals. Additionally, the strategy
has minor positive effects on functionalities that
contain spelling variations.

7 Discussion

Supporting Hypotheses The performance of
NLI-strategies largely depends on the accuracy of
the supporting hypotheses. Testing the accuracy of
each supporting hypothesis is not always possible,
since annotated data for the predicted aspect of the
input text might not be available. Indeed, one of
the strengths of our approach is that it can use as-
pects for which no annotated data exists. Another
uncertainty lies in the formulation of supporting
hypotheses. A suboptimal formulation of support-
ing hypotheses negatively affects the overall results.
By using annotated targets in HateCheck and in-
ferring stance labels as well as self-directedness
from HateCheck functionalities, we compute and
compare the accuracy of multiple supporting hy-
pothesis formulations. The results (in Appendix B)
show that testing for the presence of a target group
mostly leads to accuracies above 90%, independent
of the specific formulation. Detecting the outer
stance towards the inner text obtained a perfect ac-
curacy of 100% and testing for self-directedness
leads to low accuracies, which are probably partly
due to faulty label inferences from functionalities.
Overall, the results indicate that the supporting hy-
potheses provide reliable information.

Generality There are two ways in which the pro-
posed strategies might not generalize. First, the
strategies might be specific to the model used for
the experiments. In order to answer this question,
repeating the experiments with other NLI models
will be necessary. Second, the strategies might be
specific to HateCheck and not generalize to other
datasets, since they specifically target HateCheck
functionalities. The evaluation on ETHOS shows
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strategy F20 overall
No strategy 0.0 79.4
FCS +100 +4.6
FCSp1 +0.0 +0.0
FCSp1FBT +6.9 +0.3

Table 6: Evaluation of FCS variants. The two bottom
rows display the variants adjusted for detecting Hate
Speech in p1. The functionality F20 contains Denounce-
ments of hate that quote it. The scores are given in
accuracy (%) and change in accuracy compared to No
strategy.

that this is generally not case, since the results
for the best strategy combination on ETHOS even
exceed the results for the best combination on Hat-
eCheck.

While our experiments did not show problems
in generalization, we can imagine the following
weakness for the FCS strategy: Given an input text
t that contains a quote and hate speech, where the
hate speech does not occur inside of the quotes,
the current FCS strategy would fail, since it only
detects hate speech in p0, that is inside the quotes.
Such an example is given in Figure 3.

The obvious solution to avoid this problem is
to not only apply the main hypothesis h0 on the
premise p0 but also on premise p1, which contains
the text outside the quotes. In a follow-up experi-
ment we implement this modified strategy (FCSp1)
and evaluated it on HateCheck. Note, that since
such a case is not covered by HateCheck or ETHOS
there is no increase in accuracy to be expected - we
can only test if accounting for this case leads to
a decrease in accuracy through unwanted side ef-
fects.

The results, displayed in Table 6 show that
this modification removes all the gains obtained
through FBT. We assume that this is due to the fact
that the counterspeech often also conveys strong
negative emotions that are mistaken by the model
for hate speech.

We further test if this problem can be alleviated
by applying the FBT strategy if hate speech is de-
tected in p1 (i.e. outside of the quotes) as depicted
in Figure 3. The results in Table 6 (row FCSp1FBT )
show that additionally applying FBT only recovers
a fraction of the positive effect of FCS. We assume
that this is due to counterspeech including or be-
ing associated with target groups. Thus, further
research that investigates how the problem can be
alleviated is needed.

Efficiency In the proposed setup each new hy-
pothesis necessitates an additional forward pass,
which means that the computational cost linearly
increases with adding new hypotheses. This leads
to a difficult trade-off between accuracy and ef-
ficiency. A possible solution was recently pro-
posed by Müller et al. (2022), who embed premises
and hypotheses independently, thereby keeping the
computational cost during inference time with re-
spect to the number of hypotheses constant.

Prerequisites of FBT FBT presumes that the tar-
get groups or characteristics are known beforehand.
This prerequisite is unproblematic when using FBT
to detect hate speech against well known targets of
hate speech or discrimination. However, it makes
this method unsuitable for tasks such as vulnerable
group identification (Mossie and Wang, 2020).

Flexibility Single hypotheses or entire strategies
can be easily added to or removed from a sys-
tem. This modularity makes the approach easily
adjustable to different scenarios or use cases. For
example, if precision is the main concern, the catch-
ing dehumanizing comparisons can be dropped and
if recall is the main concern, filters can be removed.
Instead of adding or removing strategies, it is also
possible to manipulate the precision-recall trade-off
by adjusting confidence thresholds for particular
hypotheses.

8 Conclusion

In this work, we combine hypotheses to create more
accurate NLI-based zero-shot hate speech detec-
tion systems. Specifically, we develop four sim-
ple strategies, filtering by target, filtering counter
speech, filtering reclaimed-slurs, and catching de-
humanizing comparisons, that target specific model
weaknesses. We evaluate the strategies on Hate-
Check, which served as the basis for developing
these strategies, and on ETHOS, which acts as an
“unseen” dataset. The NLI-based zero-shot base-
line already outperforms fine-tuned models on Hat-
eCheck and beats an SVM baseline on ETHOS.
Using all four proposed strategies leads to a further
performance increase of 7.9% on HateCheck and
10.0% on ETHOS. However, the contribution of the
strategies to the performance increases varies, with
catching dehumanizing comparisons even having a
small negative effect on the accuracy on ETHOS.

The proposed approach is simple and modular
making it easy to implement and adjust to different
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scenarios.
In future work, we plan to evaluate such strate-

gies in a multi-lingual setup and in a few-shot sce-
nario. Further, this works leads to the question how
effective supporting hypotheses could be searched
and generated automatically.
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Ethical Considerations

The goal of this article is to contribute to the de-
velopment of sophisticated hate speech detection
methods, and thus to contribute to an online en-
vironment that is less hateful. However, we can
imagine multiple ways how such methods, and our
proposed approach in particular, can lead to harm:
(1) Deploying the exact system that we propose
would lead to not detecting hate speech against
protected groups that are not explicitly included in
the two datasets we worked with and thus not cov-
ered by the FBT-method. Thus, before deploying
such a method, careful consideration of which pro-
tected groups or group characteristics are covered
is needed. (2) Overconfident claims about the accu-
racy of hate speech detection methods could lead to
the false impression that content moderation can be
left to automatic methods with no human interven-
tion. (3) Hate speech detection in general is prone
to misuse and repurposing in order to prohibit other
kinds of speech. Detecting if a text revolves around
a protected group could be misused to detect and
prohibit important discussion around topics con-
nected to a protected group.

However, we believe that a decomposition of
hate speech into more specific aspects is important
for more accurate, interpretable and modular hate
speech detection methods (Khurana et al., 2022).
Thus, detecting such components of hate speech is
also strongly beneficial for effective content mod-
eration and a less hateful online environment.

5https://www.digitalreligions.uzh.ch/
en.html
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A Zero-Shot Results: Comparing
Hypotheses

Table 7, the extended version of Table 2, contains
all results for comparing hypotheses for zero-shot
hate speech detection on HateCheck. “average:<
expression>” refers to the average accuracy
of all hypotheses containing expression. The
highest accuracy is in bold.

hypothesis accuracy (%)
Containing hate speech. 74.7
Contains hate speech. 78.6
Hate speech. 72.9
Hateful. 71.8
It contains hate speech. 78.7
It is hateful. 75.0
It contains hate speech. 78.7
It is hate speech. 70.8
It is hateful. 75.0
That contains hate speech. 79.4
That contains hateful content. 78.0
That example contains hateful content. 77.8
That example is hate speech. 66.6
That example is hateful. 76.8
That is hateful. 66.6
That text contains hate speech. 78.8
That text contains hateful content. 78.6
That text is hate speech. 69.2
That text is hateful. 77.2
This contains hate speech. 79.1
This contains hateful content. 78.2
This example contains hate speech. 77.3
This example contains hateful content. 77.8
This example is hate speech. 67.2
This example is hateful. 77.4
This is hateful. 70.6
This text contains hate speech. 78.8
This text contains hateful content. 78.3
This text is hate speech. 69.5
This text is hateful. 78.7
average: It 74.8
average: This 75.7
average: That 74.9
average: hateful 75.8
average: hateful content 78.1
average: hate speech 74.5
average: example 74.4
average: text 76.1
average: is 73.9
average: contain 78.2
SiftNinja 33.2
BERT fine-tuned on Davidson et al. (2017) 60.2
BERT fine-tuned on Founta et al. (2018) 63.2
Google-Jigsaw 76.6

Table 7: Full evaluation of hypotheses, that claim hate
speech exists in the input text, on HateCheck.

B Evaluating Supporting Hypotheses

B.1 Target Groups and Target Characteristics

Each example in HateCheck which mentions a pro-
tected group or revolves around a protected group

is annotated with said group. If no group is targeted
the example is annotated with an empty string.
By using these annotations as labels, we can cre-
ate a binary classification task for each protected
group: for detecting a mention of a specific pro-
tected group x, we convert label x to 1 and all other
labels (i.e. all other protected groups) to 0.

We use the same model and as in the previous
zero-shot experiments for evaluation and test the
performance for detecting mentions for all pro-
tected groups in HateCheck. We additionally test
the detection of the supercategory queer people
covering the two protected groups gay people and
transgender people in HateCheck. When testing if
a text revolves around gender, we treat both women
and transgender people as positive classes and all
other protected groups as negative classes. While
this mapping obviously can result in incorrect la-
bels (a text can be about gender even if another
group is targeted), we assume that it holds true for
examples in the HateCheck dataset.

Table 8 shows the results for detecting if black
people are mentioned, Table 9 for mentions of Mus-
lims, Table 10 for mentions of immigrants, Table
11 for mentions of disabled people, Table 12 for
mentions of gay people, Table 13 for mentions of
transgender people, Table 14 for mentions of queer
people, and Table 16 for detecting if a text is about
gender.

The results show that in many cases the detection
of a mentioned group is surprisingly accurate. The
difference in accuracy between the best performing
hypothesis and the worst performing hypothesis
does not exceed 12%. This is a similar range to
the differences found between hypotheses when
testing if a text contains hate speech (see Table 2
and Table 7). However, when looking at F1 scores
the differences are much larger, with more general
terms, such as faith or ethnicity preforming worse
than the specific terms Muslims and black people.

Detecting if a text revolves around gender per-
forms worst, compared to detecting other protected
groups or characteristics. This is mostly due to low
precision scores. We assume that this is a conse-
quence of sexual orientation (gay people) being
closely associated in the embedding space with
gender and thus leading to false positives.

B.2 Self-Directedness

Evaluating the accuracy of detecting self-
directedness is difficult, because there exist no
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hypothesis accuracy (%) ↓ F1 (%) recall (%) precision (%)
That example is about black people. 97.9 92.0 93.8 90.2
This example is about black people. 97.6 90.9 94.0 88.0
That text is about black people. 96.4 87.1 93.2 81.8
That is about black people. 95.8 85.0 92.5 78.7
This text is about black people. 95.2 83.6 94.4 75.0
This is about black people. 95.0 83.0 93.6 74.5
That example is about people of colour. 94.3 80.7 92.7 71.4
That example is about race. 94.0 79.8 91.3 70.9
This example is about people of colour. 93.8 79.3 92.3 69.5
That is about race. 94.6 77.5 72.6 83.1
This example is about race. 90.9 72.3 91.7 59.6
That text is about people of colour. 89.8 70.6 94.2 56.4
That example is about ethnicity. 90.5 69.8 85.3 59.1
This is about race. 88.9 67.6 89.4 54.4
That text is about race. 87.8 66.3 92.3 51.7
That is about people of colour. 87.4 65.9 93.8 50.8
This text is about race. 86.5 64.5 94.6 48.9
This text is about people of colour. 84.9 62.1 96.1 45.9
This example is about ethnicity. 85.6 62.1 91.1 47.1
This is about ethnicity. 85.4 58.1 78.4 46.2
That text is about ethnicity. 81.5 56.1 91.3 40.5
This text is about ethnicity. 80.2 55.0 93.6 38.9
This is about people of colour. 74.8 49.4 95.2 33.3
That is about ethnicity. 87.0 28.4 19.9 49.7

Table 8: Results for supporting hypotheses aimed at detecting mentions of black people. The hypotheses are sorted
by macro F1-score in descending order. Note, that some of the hypotheses listed use broader terms (“people of
colour”, “race”, “ethnicity”) that should also detect the mentions of other target groups. However, in the context of
HateCheck, we can only test the detection of mentioning black people.

labels in HateCheck that could be used as a ground
truth.

One possibility, that follows the motivation for
introducing the FRS-method, is to treat all exam-
ples of functionality F9 (“reclaimed_slur”) as self-
directed and examples of all other functionalities
as not self-directed. We conducted this experiment.
The results are given in Table 17. However, one
should keep in mind that this disregards that re-
claimed slurs can be used in a not-self directed
manner and that other functionalities, such as func-
tionality F11 non-hateful use of profanity, might
contain examples of self-directed speech.

B.3 Counterspeech

We perform a simple evaluation of the supporting
hypothesis that predicts the stance of an outer text
towards its quoted inner text (see Section 5.2 for
an explanation) using only functionality F20 (De-
nouncements of hate that quote it) as an evaluation
set. We treat stance detection here as a binary task
with the labels is_for or is_against.

How these labels are mapped onto NLI labels de-
pends on the specific hypothesis. If the hypothesis
claims that the outer text supports the quoted text,
then is_for is mapped to entailment and is_against
is mapped to contradiction. Conversely, if the hy-

pothesis claims that the outer text denounces the
quoted text, then is_for is mapped to contradiction
and is_against is mapped to entailment.

We test various formulations including the verbs
“supports [X]” and “is for [X]”. The results are
given in Table 18. Since all examples in this cate-
gory are considered hate speech, that is denounced
by the outer text, the true label is always is_against.
We only report accuracy, since there can be no false
positives and true negatives, which makes precision
and recall lose its usefulness.
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hypothesis accuracy (%) ↓ F1 (%) recall (%) precision (%)
That example is about Muslims. 98.3 93.1 90.7 95.6
This example is about Muslims. 98.1 92.7 90.7 94.8
This text is about Muslims. 98.1 92.6 90.3 95.0
That text is about Muslims. 98.0 92.3 90.3 94.4
That example is about Muslim people. 98.0 92.0 90.7 93.4
This example is about Muslim people. 97.9 92.0 90.9 93.0
This is about Muslims. 97.8 91.6 90.7 92.4
This text is about Muslim people. 97.8 91.5 90.7 92.2
That text is about Muslim people. 97.7 91.1 90.1 92.2
This example is about religion. 97.7 90.3 83.3 98.5
This text is about religion. 97.5 89.7 83.9 96.4
This is about Muslim people. 97.3 89.6 89.9 89.3
That text is about religion. 97.5 89.5 82.9 97.3
That is about Muslims. 97.2 89.1 88.6 89.6
That example is about religion. 97.3 88.5 80.2 98.7
That is about Muslim people. 96.8 87.8 89.7 85.9
This is about religion. 96.4 84.5 74.8 97.1
This example is about faith. 95.0 78.2 69.2 89.8
This text is about faith. 95.0 78.1 69.0 90.0
That text is about faith. 94.4 74.2 62.4 91.5
That example is about faith. 93.4 68.9 56.6 88.1
This is about faith. 92.0 63.3 52.9 78.8
That is about religion. 89.6 34.5 21.1 95.3
That is about faith. 88.3 21.9 12.6 82.4

Table 9: Results for supporting hypotheses aimed at detecting mentions of Muslim people. Note, that some of the
hypotheses listed use broader terms (“faith”, “religion”) that should detect other target groups too. However, in the
context of HateCheck their applicability is restricted to Muslim people, since no other religion occurs in HateCheck.

hypothesis accuracy (%) ↓ F1 (%) recall (%) precision (%)
That example is about immigrants. 97.8 91.2 92.4 89.9
This example is about immigrants. 97.7 90.8 92.4 89.2
That is about immigrants. 97.2 88.8 89.2 88.4
That text is about immigrants. 97.0 88.6 92.2 85.2
This text is about immigrants. 96.3 86.4 93.7 80.1
This is about immigrants. 96.4 86.2 91.6 81.4
This text is about national origin. 77.7 42.2 65.4 31.1
That text is about national origin. 78.0 41.3 62.4 30.9
This is about national origin. 83.4 37.0 39.3 35.0
That example is about national origin. 81.4 30.0 32.2 28.1
This example is about national origin. 79.8 30.0 34.8 26.3
That is about national origin. 86.5 24.6 17.7 40.2

Table 10: Results for supporting hypotheses aimed at detecting mentions of immigrants.

hypothesis accuracy (%) ↓ F1 (%) recall (%) precision (%)
That example is about disabled people. 98.4 93.7 90.3 97.3
This example is about disabled people. 98.4 93.5 90.1 97.1
This text is about disabled people. 98.0 92.3 91.3 93.2
That example is about disability. 97.9 91.9 92.4 91.4
That text is about disabled people. 97.9 91.3 87.0 96.1
This example is about disability. 97.7 91.3 93.0 89.6
That is about disabled people. 97.7 90.9 87.2 94.8
This is about disabled people. 97.4 89.9 90.3 89.5
That text is about disability. 96.6 87.6 91.5 84.1
That is about disability. 96.6 86.0 80.4 92.4
This is about disability. 94.8 82.0 91.7 74.1
This text is about disability. 94.5 81.6 94.4 71.9

Table 11: Results for supporting hypotheses aimed at detecting mentions of disabled people.
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hypothesis accuracy (%) ↓ F1 (%) recall (%) precision (%)
That example is about gay people. 99.1 96.7 94.2 99.4
This example is about gay people. 99.0 96.6 94.0 99.2
This text is about gay people. 98.8 95.9 92.9 99.0
This is about gay people. 98.8 95.8 92.6 99.2
That text is about gay people. 98.5 94.6 90.0 99.6
That is about gay people. 98.4 94.4 90.4 98.8

Table 12: Results for supporting hypotheses aimed at detecting mentions of gay people.

hypothesis accuracy (%) ↓ F1 (%) recall (%) precision (%)
That example is about transgender people. 99.0 95.8 92.7 99.1
That text is about transgender people. 99.0 95.6 92.2 99.3
This text is about transgender people. 98.9 95.6 92.9 98.4
This example is about transgender people. 98.9 95.4 92.2 98.8
That is about transgender people. 98.8 94.9 92.0 97.9
This is about transgender people. 98.7 94.6 92.2 97.0

Table 13: Results for supporting hypotheses aimed at detecting mentions of transgender people.

hypothesis accuracy (%) ↓ F1 (%) recall (%) precision (%)
This is about queer people. 94.3 88.6 81.3 97.5
That example is about queer people. 93.7 87.1 77.9 98.8
This example is about queer people. 93.2 85.9 76.2 98.5
This text is about queer people. 93.1 85.7 76.4 97.5
That is about queer people. 92.4 84.0 73.5 98.2
That text is about queer people. 91.7 82.3 70.8 98.4

Table 14: Results for supporting hypotheses aimed at detecting mentions of queer people, which in HateCheck
corresponds to the categories gay people and transgender people.

hypothesis accuracy (%) ↓ F1 (%) recall (%) precision (%)
This example is about women. 97.2 90.2 94.1 86.6
That example is about women. 97.2 90.1 94.1 86.5
That is about women. 96.2 86.6 88.6 84.6
This text is about women. 95.9 86.1 93.9 79.5
That text is about women. 95.7 85.3 91.6 79.8
This is about women. 94.8 83.0 92.7 75.0

Table 15: Results for supporting hypotheses aimed at detecting mentions of women.

hypothesis accuracy (%) ↓ F1 (%) recall (%) precision (%)
That example is about gender. 90.0 81.8 85.8 78.2
This example is about gender. 89.0 80.5 87.0 74.9
That text is about gender. 88.4 79.6 86.8 73.5
This text is about gender. 87.9 79.3 88.9 71.5
This is about gender. 87.1 75.1 74.7 75.5
That is about gender. 81.6 52.9 39.5 79.8

Table 16: Results for supporting hypotheses aimed at detecting texts concerning gender, which in HateCheck
corresponds to the categories transgender people, and women.

hypothesis accuracy (%) ↓ F1 (%) recall (%) precision (%)
That text is about myself. 97.4 38.5 37.0 40.0
This text is about myself. 96.4 33.7 42.0 28.1
That is about myself. 97.3 33.3 30.9 36.2
This is about myself. 97.0 31.3 30.9 31.6
That example is about myself. 96.2 31.2 39.5 25.8
This example is about myself. 95.9 31.1 42.0 24.6
This text is about us. 85.1 16.8 69.1 9.6
That text is about us. 89.4 16.2 46.9 9.8
That is about us. 88.3 14.8 46.9 8.8
This example is about us. 77.4 12.8 76.5 7.0
That example is about us. 75.8 12.1 76.5 6.6
This is about us. 73.9 10.3 69.1 5.6

Table 17: Results for supporting hypotheses aimed detecting if a text is self-directed.
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hypothesis accuracy (%)
This text supports [X]. 100.0
This supports [X]. 100.0
That supports [X]. 100.0
This example supports [X]. 91.9
That example supports [X]. 91.9
That text supports [X]. 85.5
This text is for [X]. 69.4
This is for [X]. 50.9
That is for [X]. 46.8
That text is for [X]. 38.7
This example is for [X]. 18.5
That example is for [X]. 0.0

Table 18: Results for supporting hypotheses aimed at detecting the stance of an outer text p1 towards its inner,
quoted text p0. Precision, recall and F1-score are omitted, since with only positive test examples no false positives
and true negatives are possible.
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