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Abstract
Taxonomy is a graph of terms organized hi-
erarchically using is-a (hypernymy) relations.
We suggest novel candidate-free task formu-
lation for the taxonomy enrichment task. To
solve the task, we leverage lexical knowledge
from the pre-trained models to predict new
words missing in the taxonomic resource. We
propose a method that combines graph-, and
text-based contextualized representations from
transformer networks to predict new entries to
the taxonomy. We have evaluated the method
suggested for this task against text-only base-
lines based on BERT and fastText representa-
tions. The results demonstrate that incorpora-
tion of graph embedding is beneficial in the
task of hyponym prediction using contextual-
ized models. We hope the new challenging task
will foster further research in automatic text
graph construction methods.

1 Introduction

In this paper, we focus on taxonomic structures
which are quite relevant in many Natural Language
Processing (NLP) tasks such as lexical entailment
(Herrera et al., 2005) and entity linking (Moro and
Navigli, 2015; Sevgili et al., 2022) to represent the
relations between products or employees.

Taxonomies are tree-like structures where words
are considered as nodes (synsets) and the edges are
the relations between them. Such kinds of relation-
ship is called a hypo-hypernym relationship. For
instance, let us consider two words: “apple” and
“fruit”. The former word is hyponym (“child”) to
the latter and the latter is hypernym (“parent”) to
the former.

Many approaches have been proposed to
automatically update existing taxonomies
(Schlichtkrull and Martínez Alonso, 2016; Arefyev
et al., 2020; Nikishina et al., 2020b). However,
we argue about one crucial limitation of the
existing setups questioning their usefulness in
real-world application. In the traditional Taxonomy
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Figure 1: Two types of taxonomy enrichment task: at-
taching provided candidates (red, prior art) and generat-
ing nodes in place without candidates (green, our work).

Enrichment task setting the system is provided
with the candidate (orphan) to add and the task
is to find the correct place for it in the existing
taxonomy. Compiling lists with the new words
to add is extremely important but inherently
challenging: it might be not clear to which of the
multiple sources we would give our preference:
neologisms, teenage slang from the Internet or
professional jargon.

On the contrary, large pre-trained language mod-
els such as BERT (Devlin et al., 2019), ELMo (Pe-
ters et al., 2018), GPT (Brown et al., 2020) already
contain information about the majority of terms in
a language. For instance, many probing studies
(Rogers et al., 2020; Jawahar et al., 2019; Ettinger,
2020) show that a vast amount of linguistic informa-
tion is encoded inside large transformer networks,
e.g. syntax or lexical semantics.

In our study, we assume that the huge amount of
knowledge from pre-trained models can be lever-
aged to predict new words missing in taxonomic
resources. We suggest a novel candidate-free task
formulation for taxonomy enrichment, arguing that
compiling word lists may be redundant. Informa-
tion about new words is already present in the large
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pre-trained networks. There would be not need in
compiling lists of “parents” to predict hyponyms
either, as language models should be able to predict
words only if necessary.

Furthermore, we propose a Cross-modal Contex-
tualized Hidden State Projection Method (CHSP)
for candidate-free taxonomy enrichment. The ap-
proach includes several stages: (i) learning embed-
dings of WordNet taxonomy, (ii) projecting them
into the hidden states space of BERT, and (iii) de-
coding them back to text candidates.

Thus, the contribution of our work is three-fold:

• First, we formulate a novel task of candidate-
free taxonomy enrichment and present a
new dataset based on WordNet 3.0 taxon-
omy (Miller, 1995);

• Second, we implement baselines for this task
based on BERT and fastText (Bojanowski
et al., 2017) models, demonstrating the dif-
ficulty of the task;

• Third, we propose a method for incorporating
graph information into pre-trained language
models, based on hidden contextualized state
projection yielding superior performance in
comparison the baselines.

2 Related Work

There has been two major competitions that have
introduced the task of taxonomy enrichment: Se-
mEval 2016 (Jurgens and Pilehvar, 2016) and
RUSSE-2020 (Nikishina et al., 2020a). However,
their formulations both required a predefined list
of candidates. A detailed overview of taxonomy-
related papers is presented in Jurgens and Pilehvar
(2016); Nikishina et al. (2022).

At the same time there exists a lot of research
on how suitable is BERT for capturing and trans-
ferring information about hypo-hypernym relation-
ship Ravichander et al. (2020); Hanna and Mareček
(2021); Schick and Schütze (2019). For instance,
Ravichander et al. (2020) examine hypernymy
knowledge encoded in BERT representations. In
their experiments BERT demonstrated the ability
to correctly retrieve hypernyms, however, they ar-
gue that it does not necessarily follow that BERT
is capable of systematic generalisation.

Another paper about BERT’s knowledge of hy-
pernymy (Hanna and Mareček, 2021) applies sev-
eral patterns to predict possible hypernym candi-
dates: “[MASK], such as x” and “My favorite

[MASK] is x”. Such prompts often elicit correct
hypernyms from BERT. However, BERT still fails
in 43% of cases, therefore, the authors claim that
BERT has limited understanding of hypernymy.
There exist many more Hearst patterns (Hearst,
1992) that aim to identify hypo-hypernym relation-
ship in unlabeled texts (Snow et al., 2006; Pantel
and Pennacchiotti, 2006). We compare baselines
with some of them in Section 6.

Anwar et al. (2020) examine the influence of
context-aware word representation models for lexi-
cal units and frame role expansion task. This task
is related to our setting in a sense of generation of
meaningful substitutes with preservation of content.
We adopt their context-aware methods for our task.
In our case the meaningful substitute will be gen-
erated for a masked hyponym with preservation of
meaning represented in projected embeddings (see
Section 4).

3 Taxonomy Enrichment Task

We formulate taxonomy enrichment in a new way
avoiding the need of pre-supplied candidates (cf.
Fig. 1) making it more challenging yet realistic.
Given a taxonomy T = {h, r, t} ⊆ E×R×E, the
task is to predict new nodes n ∈ N,N ̸⊆ E, which
are not yet included in the taxonomy T , starting
from the current node hi ∈ E.

3.1 Dataset

We provide subgraphs sampled from the existing
taxonomy as input to predict hyponyms at a certain
place (see Fig. 1 as the example). In this research,
we perform experiments on WordNet 3.0 (Miller,
1995) nouns (82,115 synsets, 117,798 lemmas).
We suggest using synsets 2 hops away from the
target node, as further located synsets may not be
semantically related.

From this taxonomy we randomly select 1,000
nodes out of 15,646 nodes which children are
leaves, i.e., the children do not have hyponyms
of their own. We also take into consideration the
distance length from the root to the leaf which
should be more than 5 hops. This allows us to
exclude the case of predicting very abstract or
broad concepts. For each “parental” hypernym
all its hyponyms (leaves) were replaced by a single
“masked” node, e.g., handwear.n.01 had hyponyms
glove.n.02 and muff.n.01 that were replaced by a
single ORPHAN_100000243. This place in the tax-
onomy was then considered for extension and the
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candidates predicted for the masked node could be
compared against true hyponyms. All in all, we
masked 4,376 leaves out of 65,422 noun leaves to
1000 “[MASK]” tokens.

We limit our experiments to leaves only, replac-
ing all children with one mask in order to be able
to compare with a wide range of possible answers,
as one synset might have several hyponyms. We
leave node injection to future work on the topic.

3.2 Evaluation metrics

The generated candidates will be compared against
the true candidates from the existing taxonomy.
We utilize Precision@k (P@k), Recall (R@k), and
Mean Reciprocal Rank (MRR): Precision@k =

relevant items @k
recommended items @k , where k is the number of can-

didates at each step; MRR = 1
|Q|

∑|Q|
i

1
ranki

,
where Q is the sample of queries, ranki is the first
position of the relevant candidate in the ranked list
for the query i. Intuitively, MRR looks how close
to the top of the list the correct answer is. Both
metrics are commonly employed in the Hypernym
Discovery and Taxonomy Enrichment shared tasks,
which require systems to produce ranked lists of po-
tential hypernyms (Camacho-Collados et al., 2018;
Dale, 2020). Furthermore, numbers for both met-
rics are multiplied by 100 for clearer presentation.

4 Cross-modal Contextualized Hidden
State Projection Method

The main idea of the paper is to predict new words
using knowledge preserved in BERT and enhance
the word generation process with graph informa-
tion. Fig. 2 demonstrates the overall architecture
of the CHSP approach that we use to solve the task.
First, we train a graph representation model to com-
pute graph embeddings. Furthermore, we learn a
projection layer to transform target graph embed-
dings to the BERT vector space. Then we apply
the projected embeddings as input to the masked
language modelling part of BERT model. The pre-
diction head generates new lemmas that are treated
as candidate hyponyms for parent nodes. This pro-
cess results in gradual joining of graph and textual
modalities.

4.1 Graph Embedding Computation

In this section, we study various graph embed-
ding representations to integrate into BERT. In Fig.
2, it is the Graph-BERT model that is depicted,
however, it could be any model for represent-

ing graph structure. We evaluated several induc-
tive and non-inductive embeddings such as Graph-
BERT (Zhang et al., 2020), node2vec (Grover and
Leskovec, 2016), GCN (Kipf and Welling, 2016),
GAT (Velickovic et al., 2018), TADW (Yang et al.,
2015), and Poincaré (Nickel and Kiela, 2017) em-
beddings. We also tested directed and undirected
structures of Graph-BERT, node2vec and Poincaré.
We performed both intrinsic and extrinsic evalua-
tion of the computed embeddings.

As for the intrinsic evaluation, which was con-
ducted on the unmasked WordNet, we generated
the top-10 nearest neighbours and computed Preci-
sion@k and Recall@k scores (k=1, 2, 5, 10) met-
rics that assess the amount of hyponyms presented
in the top-k list. We assume that the more “chil-
dren” are presented in the list, the more suitable
embeddings are for the tree-like structures and hy-
ponym prediction. From Table 1 we can see that the
best inductive embedding model is Graph-BERT
on the directed graph and non-inductive node2vec
on the undirected graph. We observe that node2vec
and Poincaré show much higher scores than other
methods. We speculate that this can be explained
by the fact that these two algorithms are the only
ones that do not incorporate textual features into
the learned embeddings. Intuitively, similarity in
textual features is not equal to similarity in graph.
Additionally, degradation of node similarity in mod-
els that aggregate information from graph struc-
ture and node features is a known issue (Jin et al.,
2021) and is linked to the over-smoothing problem.
We believe that this could be one of the reasons
why the approaches, which demonstrate promising
results on traditional taxonomy enrichment task
(Nikishina et al., 2022), like GAT, GCN, TADW
do not perform well on predicting nearest neigh-
bours. Moreover, we hypothesize that it also might
be explained by the fact that such models better
represent co-hyponymy or hypernymy, rather than
hyponymy. Graph-BERT is known for avoiding
over-smoothing problem, thus, performs much bet-
ter than GAT, GCN and TADW.

For the extrinsic evaluation (evaluation of the
downstream task) we have used two models: the
best non-inductive and the best inductive embed-
dings. It is either a Graph-BERT (Zhang et al.,
2020) that accepts a sequence of node represen-
tations and their positional embeddings describ-
ing their local and global positioning in the graph,
or a node2Vec (Grover and Leskovec, 2016) that
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Figure 2: Cross-modal Contextualized Hidden State Projection Method (CHSP): graph-based BERT architecture
that makes use of both node and text embeddings. Graph-BERT illustration source: (Zhang et al., 2020), BERT
illustration source (Devlin et al., 2019). The input data is described in §3.1. §4.1 describes the choice of graph
embedding algorithm. §4.2 explains the projection of embeddings from graph space to BERT space. § explains how
BERT was used to predict candidates from the projected embeddings. §4.4 explains of the multi-token candidate
generation algorithm. Finally §4.5 lists post-processing filters applied on the list of generated candidates.

Table 1: Graph embeddings comparison on the tree representation task.

Embeddings P@1 P@2 P@5 P@10 R@1 R@2 R@5 R@10

Inductive

Graph-BERT directed (node reconstruction) 0.127 0.099 0.064 0.041 0.127 0.113 0.150 0.182
GraphBERT directed (graph recovery) 0.190 0.163 0.115 0.073 0.190 0.182 0.260 0.314
Graph-BERT undirected (node reconstruction) 0.166 0.142 0.107 0.070 0.160 0.166 0.273 0.349
Graph-BERT undirected (graph recovery) 0.164 0.140 0.100 0.062 0.164 0.153 0.227 0.268
GCN 0.021 0.024 0.028 0.030 0.021 0.033 0.073 0.137
GAT 0.018 0.016 0.014 0.011 0.008 0.021 0.068 0.099

Non-inductive

Node2vec directed root2leaf 0.227 0.217 0.212 0.181 0.227 0.241 0.368 0.509
Node2vec directed leaf2root 0.451 0.359 0.244 0.173 0.451 0.470 0.563 0.674
Node2vec undirected 0.988 0.807 0.515 0.321 0.988 0.987 0.988 0.990
Poincare directed 0.769 0.671 0.464 0.297 0.769 0.818 0.882 0.910
Poincare undirected 0.716 0.618 0.434 0.283 0.716 0.727 0.804 0.862
TADW 0.006 0.005 0.005 0.004 0.006 0.006 0.008 0.010

learns low-dimensional representations for nodes in
a graph through the use of random walks. However,
as we will further see, good coverage of hyponyms
in the nearest neighbour list does not guarantee
high performance on hyponym prediction.

4.2 Space Transformation

In order to project graph embeddings into BERT
embedding space, we use a simple multilayer per-
ceptron (MLP). The architecture and training pro-
cess are described in Appendix A.2.

BERT embeddings are contextualized. There-

fore, for learning projection from graph space into
BERT, the target words cannot be simply embedded
as is because their representation will differ in var-
ious contexts. In order to generate contextualized
embeddings we use a SemCor dataset (Langone
et al., 2004). It consists of 352 texts from Brown
Corpus (Kucera and Francis, 1967), which is an
electronic collection of text samples in English lan-
guage. SemCor contains manually annotated sen-
tences where words are matched with according
synsets. We adopt SemCor 3.0, which was automat-
ically created from SemCor 1.6 by mapping senses
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from WordNet 1.6 to WordNet 3.0. We extract
embeddings of annotated words and use as con-
textualized target synset embeddings for learning
projection.

4.3 BERT Masked Language Modelling
Prediction

We use bert_base_uncased pre-trained configura-
tion of BERT to embed a structure “[MASK] is
a {parent}” where “{parent}” is a lemma of a hy-
pernym whose hyponyms are to be predicted. In
the following parts we will refer to this structure
as input context. The choice of the structure was
not random. To begin with, we have evaluated
three different context constructions suggested in
(Hanna and Mareček, 2021): 1. “[MASK] is a/an
{parent}”; 2. “My favourite {parent} is a [MASK]”;
3. “{parent} such as a [MASK]” . The scores for the
amount of true hyponyms in a list of predicted can-
didates are presented in the first three lines of Table
2 and Table 3, accordingly. The Precision@10
scores indicate that the best results were produced
by the first prompt, which proved to be the most
stable among the three, and it was used in all CHSP
configurations. These experiments are also repur-
posed as three baselines.

Furthermore, we create three settings with dif-
ferent approaches to incorporation of graph embed-
ding into the language model prediction:

• pure-BERT prediction: embedding of
“[MASK]” token is left as is;

• replaced prediction: embedding of “[MASK]”
token is replaced by projected graph embed-
ding;

• mixed (or contextualized) prediction: embed-
ding of “[MASK]” token is averaged with pro-
jected graph embedding.

The replacement can happen at three different
stages: after first layer of BERT encoder, after sixth
(middle) or after twelfth (last). In the first two cases
space transformation learns to project graph em-
beddings into intermediate hidden states and after
replacement the hidden states are passed through
remaining encoder layers. The replacement strate-
gies are illustrated in Fig. 3. Thus, by performing
this process, we combine textual and graph modali-
ties in order to improve candidate prediction at the
certain place of the taxonomy.

4.4 Multi-token Prediction
For the experiments with single- and multi-
token prediction we adopt a condBERT (De-
mentieva et al., 2021) multi-token generation
mechanism. In addition to “[MASK] is a
{parent}”, “[MASK][MASK] is a {parent}” or
“[MASK][MASK][MASK] is a {parent}” sen-
tences are used. The tokens are generated progres-
sively using beam search while each multi-token
sequence is scored by the harmonic mean of the
probabilities of its tokens. The beam search process
is illustrated in Fig. 4. The algorithm generates 1-,
2- and 3-token predictions, which are merged into a
final candidates list sorted according to their scores.
The detailed description of the multi-token candi-
date generation algorithm is given in the Appendix
A.3.

4.5 Post-processing
In order to eliminate noise from the predictions
generated by the BERT language model, we apply
several filters on the generated set of new words.
First, we remove all predictions containing non-
alphabetical symbols as well as stop-words from
Stopwords Corpus (Porter, 1980) in NLTK library1.
The multi-token generation case requires further
post-processing: merging word-pieces and discard-
ing candidates where all tokens start with “##”.

Furthermore, we check merged candidates for
containing permutations of same sets of words and
eliminate the repeating ones with lower scores. For
example, if there are two multi-token candidates
“apple pie” and “pie apple”, the one less-probable
one is going to be discarded. Finally, the whole list
of merged candidates is checked for duplicates and
sorted by their scores.

5 Baselines

In our experiments we are using three baselines:
1. fastText (nearest neighbours); 2. BERT (parent
embeddings on inference); 3. three patterns from
(Hanna and Mareček, 2021; Schick and Schütze,
2019) .

5.1 fastText (nearest neighbours)
The first baseline uses 300-dimensional fastText
(Bojanowski et al., 2017) English embeddings pre-
trained on Common Crawl and Wikipedia. Hy-
pernym embeddings are computed as an average
of all lemmas embeddings. Furthermore, nearest

1https://www.nltk.org/
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Figure 3: Illustration of replacement approaches. The projected graph embedding is inserted after (a) 1st BERT
encoder layer, (b) 6th BERT encoder layer, (c) 12th BERT encoder layer. The “replace/mean” denote the replacement
strategy: the projected embedding either replaces according hidden representation of “[MASK]” token, or averaged
with it.
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Figure 4: Beam search for multi-token generation. In this figure 3-token case is illustrated. In our research we also
use 2-token case which is generated in a similar manner.

neighbours of the resulting vectors are retrieved
and scored as hyponym predictions. Our approach
can be seen as a reverse of the method from (Nik-
ishina et al., 2020a). In a single-token evaluation
case multi-token hyponyms are dropped from the
list of gold hyponyms (see Section 3.2).

5.2 BERT (parent embeddings on inference)

The second baseline uses BERT to encode each
hypernym lemma and decode it back in a single-
or multi-token setting. Predictions for each parent
lemma are aggregated and evaluated. This method
is loosely motivated by the idea of lexical substi-
tution (Anwar et al., 2020), which goal is to find
meaning-preserving alternatives to a particular tar-
get word in its context. However, with this baseline
we wanted to evaluate BERT’s ability to predict
hyponyms in a contextless setting.

5.3 Pattern Comparison

The last baseline is based on the approach described
in these two publications: (Hanna and Mareček,
2021; Schick and Schütze, 2019). They propose
a variety of constructions for prompting BERT
in order to identify its linguistic capabilities and
test its ability to capture semantic properties of
words. Both works use the similar set of construc-
tions, however, only (Hanna and Mareček, 2021)
compare them against each other in order to iden-
tify the most efficient ones. According to their
evaluations we have selected three best patterns:
“[MASK] is a/an {parent}”, “My favourite {parent}
is a [MASK]”, “{parent} such as a [MASK]”. The
constructions were encoded with BERT and then
decoded in single- and multi-token settings with
“[MASK]” predictions treated as new candidate hy-
ponyms.
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Table 2: Prediction scores for single-token hyponyms generation for different source graph embeddings and
replacement strategies (x100).

Method Context Replaced MRR@5 MRR@10 MRR@20 P@1 P@5 P@10

Pattern comparison (Hanna and Mareček, 2021)
“[MASK] is a {parent}” Yes No 2.461 2.704 3.091 1.546 1.289 1.057
“My favourite {parent} is a [MASK]” Yes No 0.554 0.863 1.001 0.000 0.464 0.490
“A {parent} such as a [MASK]” Yes No 0.168 0.193 0.235 0.000 0.155 0.103

BERT (parent embedding on inference) No No 1.003 1.083 1.203 0.940 0.251 0.188
fastText (nearest neighbours) No No 2.400 3.500 4.000 0.130 1.839 2.100

CHSP (Graph-BERT) Yes Mix 7.229 8.037 8.624 3.608 3.247 2.474

Table 3: Prediction scores for multi-token hyponyms generation for different source graph embeddings and
replacement strategies (x100).

Method Context Replaced MRR@5 MRR@10 MRR@20 P@1 P@5 P@10

Pattern comparison (Hanna and Mareček, 2021)
“[MASK] is a {parent}” Yes No 0.930 1.027 1.177 0.600 0.460 0.370
“My favourite {parent} is a [MASK]” Yes No 0.425 0.693 0.844 0.000 0.361 0.438
“A {parent} such as a [MASK]” Yes No 0.051 0.137 0.137 0.000 0.052 0.077

BERT (parent embedding on inference) No No 0.320 0.345 0.390 0.300 0.080 0.060
fastText (nearest neighbours) No - 1.860 2.673 3.069 0.100 1.420 1.620

CHSP (Graph-BERT) Yes Yes 2.150 2.281 2.378 1.600 0.740 0.530

6 Experiments

Our experiments can be categorised by following
features: source graph embeddings, usage of con-
text structure, replacement layer and replacement
strategy. This section is divided into two parts. The
first subsection compares various combinations of
CHSP configurations. The second subsection ana-
lyzes performance of the best CHSP configurations
against the baselines.

6.1 Graph Embeddings Comparison

Tables 5 and 6 compare single-token and multi-
token hyponym predictions for methods with differ-
ent source embeddings, replacement strategies and
replacement layers. We observe that in single-token
case for both node2vec and Graph-BERT the best
replacement point is after the last (12th) BERT en-
coder layer with first and sixth being close seconds.
We hypothesise that the reason is that, when inject-
ing the projected graph embedding at earlier stages,
remaining encoder layers dilute information incor-
porated in the embedding, thus deflecting from
the right answers. In the case of single-token gen-
eration, Graph-BERT with the replacement point
is after the last layer is a clear winning strategy
among all the combinations. On the contrary, for
multi-token generation significantly better scores
were obtained by replacement after 6th layer. We

suggest that this replacement strategy helped to
diversify generated subwords and produce more
meaningful results.

In general, “mixing” replacement strategy pro-
duces better results for the last-layer replacement
strategy, because it allows incorporation of a con-
text information encoded in a final hidden state of
“[MASK]” token. However, there are some cases
when the context actually diverts the method from
the real answer (see Section 7). The complete re-
placement showed better scores in 1st and 6th layer
replacement, because this strategy already incorpo-
rates a lot of context in the “[MASK]” embedding
while passing it through remaining layers of the
encoder, and “mixing” replacement reduces the in-
fluence of projected embedding too much. To sum
up, both replacement strategies are important and
none can be deemed winning as there is a clear
pattern of where to apply each of them.

We can observe that node2vec did not perform
as well as was expected judging from the graph em-
bedding comparison. In many cases of single-token
generation, words synonymous to the hypernym
were predicted, instead of hyponyms. The reason
for the low scores on node2vec embeddings might
be explained by the fact that the Graph-BERT em-
beddings are easier to transform to the BERT vector
space. Another hypothesis is that the performance
on hyponym prediction does not guarantee high
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scores on predicting hyponyms for the taxonomy
enrichment.

6.2 Overall Comparison

Tables 2 and 3 contain the overall scores for dif-
ferent hyponym prediction methods. We can see
that our approach significantly outperforms other
methods on single token setup, however, it fails
on predicting multi-token candidates. We observe
that the patterns from (Hanna and Mareček, 2021;
Schick and Schütze, 2019) show results are mostly
far from the top ones. This happened because the
context encapsulated in the patterns in general con-
tains little information. We also see that our method
outperforms the BERT (parent embedding on infer-
ence) baseline (which is a simple prediction of en-
coded parent synset) and a simple approach on fast-
Text nearest neighbours candidates. Even though
the results for multi-token predictions are better for
the fastText baseline, we still consider our method
to be the most effective, as fastText is also not ca-
pable to predict multi-token candidates and yields
to our method in the single token setup.

For all setups, the multi-token generation did not
result in improvement of the scores. This can be
explained by the flawed nature of our multi-token
sampler and suggests major stream of future work.

7 Error Analysis

We can categorise common errors into several
groups: failing to differentiate the real meaning
of the hypernym, prediction of synonymical/same
domain words instead of hyponyms, weakness of
multi-token generator.

The first type of errors is related to incorrect
recognition of a rare meaning of a synset and mis-
taking of it for a more common one. For example,
for hypernym “depression.n.10” (pushing down)
the correct prediction would be “click”. However,
almost all results are medical related predictions,
e.g., headache, coma, schizophrenia.

An example of the second type of errors might
be predictions of multi-token pipeline with Graph-
BERT embeddings for “jazz_musician.n.01” hyper-
nym. While the correct answer is “syncopator”, top
produced predictions are “singer”, “dj”, which ob-
viously come from the same music-related domain.

For multi-token Node2vec we observed a lot of
cases where one strong word was produced and
further multi-token hypothesis would retain this
first word and simply permute other different words.

Table 4: Example on Graph-BERT embeddings for the
node “beverage.n.01” (single-token generation).

beverage.n.01
Gold hyponyms: alcoholic drink, oenomel, fruit crush, cooler,
alcoholic beverage, hot chocolate, fizz, ade, milk, inebriant,
cocoa, drinking chocolate, drinking water, tea, java, mixer, re-
fresher, tea-like drink, alcohol, coffee, fruit drink, ginger beer,
wish-wash, potion, soft drink, near beer, smoothie, chocolate,
cyder, intoxicant, fruit juice, cider, mate, hydromel

pure BERT replaced mixed

1 beer milk coffee
2 coffee drink milk
3 alcohol coffee drink
4 water butter tea
5 cola pot chocolate
6 tea whisky butter
7 wine tea beer
8 milk turkey whisky
9 chocolate chocolate brandy

10 rum brandy water

Example output for test hypernym “suburb.n.01”:
suburb, suburb suburbs, suburbs, suburb suburban,
suburb suburbs suburban, etc.

Because of the weak multi-token decoding mech-
anism, many predictions failed. For example, none
of the setups managed to produce adequate hy-
ponyms for “berry.n.01”, because all correct an-
swers are multi-token in BERT vocabulary.

All in all, the results are diverse an controver-
sial. For instance, Table 9 demonstrates that graph
information from node2vec is confusing for the
model. According to Tables 4 and 7, Graph-BERT
improves the ranking of the results. However, none
of the models handles multi-token prediction: the
only case where the model manages to predict the
correct answer is presented in Table 8.

For instance, the model can generate candidates
that are correct but they are not yet included to the
taxonomy. In this case, the evaluation system will
still mark them as incorrect. Therefore, as future
work we plan not only improve current methods
but also perform human evaluation of the results.

Another reason for the absolute low scores is the
way the test set was generated. While in (Cho et al.,
2020) the data is selected from the well-known
domains like “pets”, “food”, “sport”, our test set is
generated randomly and thus comprises rare terms,
which may be harder to process. At the same time,
simple examples like “beverage” or “meal” gain
better scores. As future work we want to tackle the
problem of rare terms.
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8 Conclusion

In this work, we presented a novel candidate-free
task formulation for taxonomy enrichment. The
contribution is three-fold: task proposal, accord-
ing dataset and test of multi-modal approach. We
performed a computational study of various meth-
ods using knowledge from BERT. We compared
different graph-based embeddings on the task and
projected them to the BERT vector space. Then
we identified the best position for the projected
graph embedding to be injected to the BERT model.
The results demonstrate that incorporation of graph
embedding is beneficial in the task of hyponym
prediction using BERT. Nevertheless, the BERT ar-
chitecture does not allow us to easily operate with
multi-token words and the pipeline accumulates
errors in each component. This may be room for
improvement for generative models like GPT or T5
and their prompt-tuning.

All in all, the proposed task is proven to be very
challenging paving the way for future research.

Acknowledgments

The first author was partially supported by the
DFG through the project “ACQuA 2: Answering
Comparative Questions with Arguments” (grants
BI 1544/7-2 and HA 5851/2-2) as part of the
priority program “RATIO:Robust Argumentation
Machines” (SPP 1999). The work of Alexander
Panchenko and Alsu Vakhitova was conducted in
the framework of joint MTS-Skoltech laboratory.
The work of Elena Tutubalina was supported by a
grant from the President of the Russian Federation
for young scientists-candidates of science (MK-
3193.2021.1.6).

References
Saba Anwar, Artem Shelmanov, Alexander Panchenko,

and Chris Biemann. 2020. Generating lexical rep-
resentations of frames using lexical substitution. In
Proceedings of the Probability and Meaning Confer-
ence (PaM 2020), pages 95–103, Gothenburg. Asso-
ciation for Computational Linguistics.

Nikolay Arefyev, Maksim Fedoseev, Andrew Kabanov,
and Vadim Zizov. 2020. Word2vec not dead: Predict-
ing hypernyms of co-hyponyms is better than reading
definitions. In Computational Linguistics and Intel-
lectual Technologies, pages 13–32.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomás Mikolov. 2017. Enriching word vectors with

subword information. Trans. Assoc. Comput. Lin-
guistics, 5:135–146.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jose Camacho-Collados, Claudio Delli Bovi, Luis
Espinosa-Anke, Sergio Oramas, Tommaso Pasini,
Enrico Santus, Vered Shwartz, Roberto Navigli, and
Horacio Saggion. 2018. SemEval-2018 task 9: Hy-
pernym discovery. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
712–724, New Orleans, Louisiana. Association for
Computational Linguistics.

Yejin Cho, Juan Diego Rodriguez, Yifan Gao, and Ka-
trin Erk. 2020. Leveraging WordNet paths for neural
hypernym prediction. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 3007–3018, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

David Dale. 2020. A simple solution for the taxonomy
enrichment task: Discovering hypernyms using near-
est neighbor search. In Computational Linguistics
and Intellectual Technologies, pages 177–186.

Daryna Dementieva, Daniil Moskovskiy, Varvara Lo-
gacheva, David Dale, Olga Kozlova, Nikita Semenov,
and Alexander Panchenko. 2021. Methods for detox-
ification of texts for the russian language. CoRR,
abs/2105.09052.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Allyson Ettinger. 2020. What BERT is not: Lessons
from a new suite of psycholinguistic diagnostics for
language models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,

https://aclanthology.org/2020.pam-1.13
https://aclanthology.org/2020.pam-1.13
https://doi.org/10.28995/2075-7182-2020-19-13-32
https://doi.org/10.28995/2075-7182-2020-19-13-32
https://doi.org/10.28995/2075-7182-2020-19-13-32
https://transacl.org/ojs/index.php/tacl/article/view/999
https://transacl.org/ojs/index.php/tacl/article/view/999
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/S18-1115
https://doi.org/10.18653/v1/S18-1115
https://doi.org/10.18653/v1/2020.coling-main.268
https://doi.org/10.18653/v1/2020.coling-main.268
https://doi.org/10.28995/2075-7182-2020-19-177-186
https://doi.org/10.28995/2075-7182-2020-19-177-186
https://doi.org/10.28995/2075-7182-2020-19-177-186
http://arxiv.org/abs/2105.09052
http://arxiv.org/abs/2105.09052
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754


20

San Francisco, CA, USA, August 13-17, 2016, pages
855–864. ACM.

Michael Hanna and David Mareček. 2021. Analyzing
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A Appendix

A.1 Hyperparameters for training graph
embedding models

In this subsection we are listing the hyperparame-
ters for training of graph embedding models. Un-
listed parameters were set to default values.

Graph-BERT was initialized with fastText raw
textual features (each node – average of according
synset’s lemmas). It was trained for 200 epochs
on the node attribute reconstruction task, and the
process continued for 200 more epochs on on the
graph structure recovery task. The learning rate
was set to 1e-3 and subgraph size to 5, and the
resulting vectors were 300-dimensional.

Node2vec was trained to generate embeddings of
same dimensionality, with 30 nodes in each random
walk and 200 walks per node.

A.2 Space transformation MLP details
The MLP consists of three hidden layers
(source_embs × 1024, 1024 × 512, 512 ×
target_embs) with exponential linear unit (ELU)
activation. During training we used AdamW
(Loshchilov and Hutter, 2017) optimizerFor the
objective function we used a sum of cosine embed-
ding loss between a model output and a target and
a negated cosine similarity between a model output
and a random negative example (any entity from
the dataset that is not a target).

L = L+ − L−

L+ = 1− cos (y, ŷ)

L− = max (0, cos (yneg, ŷ)) ,

(1)

where y – target embedding, ŷ – predicted embed-
ding, yneg – negative example. The projection layer
was trained for 500 epochs with batch size 64 and
1e-4 learning rate.

A.3 Multi-token generation algorithm details
The pseudocode for multi-token prediction is given
in Algorithm 1. It is split into two functions:
multi_tok_generate() and predict_candidates(). We
are going to provide line-by-line explanation for
each of them.

The multi_tok_generate() function takes as in-
put the name of a parent synset, projected graph
embedding, layer of replacement for the incorpo-
ration of the embedding and the replacement strat-
egy. Line 2 generates tokens for the context con-
struction “[MASK] is a {parent}”, and line 3 en-

codes them with incorporation of projected em-
bedding according to the scheme. Furthermore,
the tokens and the hidden states are passed to the
predict_candidates() function. It also takes the po-
sition of “[MASK]” token, which in this context
prompt is 0. Finally, predict_candidates() returns
a sorted list of tuples (candidate, score), where
each candidate – predicted hyponym, and score
harmonic mean of scores for each token in the
multi-token sequence.

The predict_candidates() function starts with
saving the embedding of the “[MASK]” token
that incorporates graph information (line 2). Fur-
thermore, in the line 3 of the Algorithm 1 the
single-token candidates are predicted. Function
extract_mask_preds() (line 3) separates the pre-
dictions of hyponyms from the generated sen-
tences. For example, sentence “[MASK] is a claim”
was predicted into “dibs is a claim”. Then ex-
tract_mask_preds() extracts the predicted hyponym
“dibs” and returns it as a candidate paired with its
score. Next, multi-token candidates of lengths 2
and 3 are generated (line 6). It is done with a beam
search (line 7), which is illustrated schematically
in Fig. 4. The beam_search() takes as input the
tokenized sentence, position of a mask, saved em-
bedding of a mask and a maximum length of the
multi-token sequence. The beam search starts with
insertion of one or two (according to the maxi-
mum length) additional mask tokens in the token
sequence. Furthermore, the masks are predicted
iteratively while maintaining best sequences as in
a classical beam search algorithm.

The beam search generation ends when the max-
imum sequence length of the multi-token predic-
tion is reached. The top hypotheses sentences as
well as their scores are returned. Next, in the
line 8 candidate hyponyms are extracted with ex-
tract_mask_preds() and together with scores are
saved. Finally, multi- and single- token predictions
are merged together and sorted by scores (line 10).
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Algorithm 1 Algorithm of multi-token generation with BERT.
Inputs: name of parent synset parent, graph embedding of according masked child node projected into
BERT space proj_emb, layer of replacement l_num, replacement strategy repl_strategy
Outputs: sorted list final_res that consists of tuples (candidate, score).
1: function MULTI_TOK_GENERATE(parent, proj_emb, l_num, repl_strategy)
2: tokens← tokenize(“[MASK] is a {parent}”)
3: hidden_states← BERT. encode(tokens, proj_emb, repl_strategy, l_num)
4: final_res← predict_candidates(hidden_states, tokens,mask_pos = 0)
5: return final_res
6: end function
7:
1: function PREDICT_CANDIDATES(hidden_states, tokens,mask_pos)
2: mask_hidden_state← hidden_states[mask_pos]
3: single_tokens, single_scores← pred_single_mask(BERT, hidden_states,mask_pos)
4: f_preds, f_scores← extract_mask_preds(single_tokens, single_scores)
5: multi_preds,multi_scores← [], []
6: for seq_len ∈ [2, 3] do
7: new_tokens, new_scores←

← beam_search(tokens,mask_pos,mask_hidden_state, seq_len)
8: m_p,m_s← extract_mask_preds(new_tokens, new_scores)
9: multi_preds.append(m_p)

10: multi_scores.append(m_s)
11: end for
12: final_res← merge_sort_results(f_preds, f_scores,multi_preds,multi_scores)
13: return final_res
14: end function

Table 5: CHSP prediction scores for single-token hyponyms generation for different source graph embeddings,
replacement strategies and substitution layer (x100).

Graph embeddings Context Replaced Layer MRR@5 MRR@10 MRR@20 P@1 P@5 P@10

Node2vec Yes

Yes 1st 0.975 1.831 2.252 0.000 0.670 1.186
Mix 1st 2.328 2.685 2.903 1.546 1.186 1.005
Yes 6th 3.316 3.799 4.070 1.031 1.804 1.340
Mix 6th 2.414 3.079 3.391 1.289 1.289 1.469
Yes 12th 2.436 3.185 3.486 1.289 1.082 1.160
Mix 12th 3.329 4.073 4.597 1.031 1.649 1.675

Graph-BERT Yes

Yes 1st 4.502 4.995 5.371 3.093 1.598 1.340
Mix 1st 1.448 1.813 2.033 0.773 0.876 0.979
Yes 6th 5.503 6.216 6.453 3.093 2.371 2.010
Mix 6th 2.981 3.500 3.836 1.546 1.649 1.495
Yes 12th 5.215 5.674 6.027 3.093 2.113 1.598
Mix 12th 7.229 8.037 8.624 3.608 3.247 2.474

Table 6: CHSP prediction scores for multi-token hyponyms generation for different source graph embeddings,
replacement strategies and substitution layer (x100).

Graph embeddings Context Replaced Layer MRR@5 MRR@10 MRR@20 P@1 P@5 P@10

Node2vec Yes

Yes 1st 0.945 1.231 1.395 0.515 0.515 0.515
Mix 1st 0.287 0.374 0.492 0.000 0.206 0.180
Yes 6th 0.587 0.674 0.732 0.200 0.300 0.210
Mix 6th 1.924 2.073 2.193 1.200 0.740 0.550
Yes 12th 0.520 0.534 0.586 0.500 0.120 0.070
Mix 12th 0.453 0.534 0.610 0.400 0.120 0.110

Graph-BERT Yes

Yes 1st 1.908 2.054 2.149 1.400 0.680 0.500
Mix 1st 1.350 1.522 1.625 0.800 0.600 0.500
Yes 6th 2.150 2.281 2.378 1.600 0.740 0.530
Mix 6th 1.468 1.694 1.806 0.700 0.700 0.560
Yes 12th 1.278 1.312 1.368 1.200 0.340 0.190
Mix 12th 1.767 1.899 2.071 1.400 0.540 0.390
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Table 7: Example on Graph-BERT embeddings for the
node “meal.n.01” (multi-token generation)

meal.n.01
Gold hyponyms: nosh-up, tea, snack, breakfast, supper,

brunch, tiffin, lunch, refection, mess, ploughman’s lunch, deje-
uner, feast, spread, afternoon tea, picnic, dinner, square meal,
luncheon, teatime, banquet, bite, buffet, potluck, collation

pure BERT replaced mixed

1 life breakfast breakfast
2 food breakfast lunch breakfast lunch
3 dinner lunch lunch
4 lunch breakfast dinner breakfast dinner
5 breakfast breakfast lunch dinner breakfast lunch dinner
6 everything lunch dinner lunch dinner
7 love breakfast dining dinner
8 tomorrow breakfast meals breakfast meal
9 today breakfast meal breakfast lunch meal

10 nothing breakfast lunch dining breakfast meals

Table 8: Example on node2vec embeddings for the node
“stock.n.01” (multi-token generation).

stock.n.01
Gold hyponyms: capital stock, treasury stock, quarter
stock, preference shares, growth stock, preferred stock, no-
par-value stock, voting stock, common shares, authorized
shares, hot stock, ordinary shares, authorized stock, float,
reacquired stock, common stock, no-par stock, common
stock equivalent, treasury shares, preferred shares, hot is-
sue, control stock, watered stock

pure BERT replaced mixed

1 stock capital capital
2 one capital cash capital cash
3 c capital investment capital investment
4 b capital financing capital money
5 today capital funds capital financial
6 x capital financial capital equity
7 gold capital income capital stock
8 everything capital funding capital financing
9 life capital revenue capital funds

10 r capital crop capital leverage

Table 9: Example on node2vec embeddings for the node
“citrus.n.01” (single-token generation)

citrus.n.01
Gold hyponyms: citrange, citron, grapefruit, kumquat, lemon,
lime, mandarin, orange, pomelo

pure BERT replaced mixed

1 fruit date date
2 one year tree
3 rose horse year
4 another turkey snow
5 citrus dates horse
6 cherry tree turkey
7 orange snow dates
8 tomato calendar winner
9 mine winner grass

10 wood loser trees


