Multilevel Hypernode Graphs for Effective and Efficient Entity Linking *

David Montero and Javier Martinez and J. Javier Yebes
NielsenlQ

{david.montero, javier.martinezcebrian, javier.yebes}@nielseniq.com

Abstract

Information extraction on documents still re-
mains a challenge, especially when dealing
with unstructured documents with complex and
variable layouts. Graph Neural Networks seem
to be a promising approach to overcome these
difficulties due to their flexible and sparse na-
ture, but they have not been exploited yet. In
this work, we present a multi-level graph-based
model that performs entity building and link-
ing on unstructured documents, purely based
on GNNss, and extremely light (0.3 million pa-
rameters). We also propose a novel strategy
for an optimal propagation of the information
between the graph levels based on hypernodes.
The conducted experiments on public and pri-
vate datasets demonstrate that our model is
suitable for solving the tasks, and that the pro-
posed propagation strategy is optimal and out-
performs other approaches.

1 Introduction

Information extraction (IE) from documents has
become a hot research topic over the last few years
(Jaume et al., 2019; Wang et al., 2020; Carbonell
et al., 2021; Dang et al., 2021). It is a challeng-
ing problem that requires combining Computer Vi-
sion (CV) and Natural Language Processing (NLP)
models in order to locate and parse the information
segments, understand the document layout, and
extract semantic relations between the segments.
This problem becomes especially complex when
dealing with unstructured documents, such as pur-
chase receipts, where the layout of the documents
can highly vary, making it hard for the models to
learn how to extract semantic information. At this
point, Graph Neural Networks (GNNs) seem to
be a promising approach to overcome these diffi-
culties and to solve the semantic information and
relation extraction tasks, as they work over flexi-
ble graph-based representation capable of adapting

A patent has been applied for that covers the subject
matter described in this article.
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to complex layouts, and they provide efficient and
effective mechanisms for learning the relations be-
tween the segments (Carbonell et al., 2021; Davis
et al., 2021; Hwang et al., 2021b; Baumgartner
et al., 2021; Papagiannopoulou et al., 2021; Luo
et al., 2020; Khalife and Vazirgiannis, 2019).

Nevertheless, semantic IE still remains a chal-
lenging task. In fact, due to its complexity, it is
usually split into three subtasks:

* Entity Building (EB): refers to the task of con-
necting text segments together that are related
semantically and are spatially close in the doc-
ument, also known as word grouping.

* Entity Tagging (ET): classify each of the built
entities attending to their semantic meaning,
e.g., product description, store name, etc.

* Entity linking (EL): connect the semantic en-
tities to form higher level semantic relations,
e.g., a product description is connected to a
quantity and a price.

Thus, we can distinguish between three levels of
information containers:

» Text segment: lowest level information, usu-
ally given by an Optical Character Recogni-
tion (OCR) engine at word level.

* Entity: intermediate level generated by group-
ing the text segments during the EB task.

* Entity group: highest level container that
groups entities resultant from the EL task.

For a solution based purely on GNNss this leaves
two options. One is trying to solve all the tasks
using a single graph at segment level (Hwang et al.,
2021b). The second option is splitting the problem
into two graphs: one graph based on segment nodes
for performing EB, and another one composed of
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entity nodes for performing ET and EL tasks (Car-
bonell et al., 2021). We believe that the second one
is more effective for the following reasons:

* The model can work on extracting node-level
relations only, which reduces the complexity.

* The information learnt by the segments nodes
during the message passing can be used to
generate optimal features for the entity nodes.

Nevertheless, the multi-graph approach has more
complexity, as it requires designing the way the
output segment features and the entity features are
related, and it has not yet been studied in depth.
Thus, in this work we focus on optimizing this
propagation of information between the two stages
using a novel approach within the IE field based on
hypernodes. These are the main contributions:

* A multi-level GNN-based model that per-
forms EB and EL on unstructured documents.
The model is purely based on GNNs, using as
inputs for each segment the bounding box and
the entity category, and it is extremely light
(0.3 million parameters).

* A novel strategy for an optimal propagation of
the information from the segment nodes to the
entity nodes, where the latter are generated
as hypernodes over the base graph and con-
nected to their child segment nodes using rela-
tion edges. Then, the subgraph resulting from
the relation edges (relation graph) is used to
propagate the features with Graph Attention
Layers (GATs) (Velickovi€ et al., 2018).

* An ablation study on different feature prop-
agation strategies, evaluating among others
the one proposed in (Carbonell et al., 2021),
and comparing them with the single graph
approach (Hwang et al., 2021b).

The conducted experiments demonstrate the effec-
tiveness of the proposed method over highly un-
structured documents in terms accuracy, processing
time, and resource consumption.

2 Related Work

The growing interest in IE is patent in the number
of recent publications. Attending to the input data,
most of the methods rely on the text and bounding
boxes of an OCR engine for extracting the input
features (Jaume et al., 2019; Carbonell et al., 2021;

Hwang et al., 2021b; Prabhu et al., 2021; Zhang
et al., 2021; Hong et al., 2022; Wang et al., 2022).
Other approaches enrich these OCR predictions
with image features (Wang et al., 2020; Dang et al.,
2021; Xu et al., 2021; Tang et al., 2021). However,
the results reported in public IE benchmarks like
FUNSD (Jaume et al., 2019) or CORD (Park et al.,
2019) suggest that the image features are not so
relevant. Finally, there are also a few models that
purely rely on image features (Hwang et al., 2021a;
Kim et al., 2021). The model proposed in this work
extracts features from the OCR bounding boxes,
but does not use the text, as it gathers the necessary
information from the entity category input.

Attending to the model architecture, most of the
methods are based on Transformers (Vaswani et al.,
2017) and Convolutional Neural Networks (CNNs)
(Jaume et al., 2019; Wang et al., 2020; Dang et al.,
2021; Xu et al., 2021; Hwang et al., 2021a; Li et al.,
2021; Prabhu et al., 2021; Zhang et al., 2021; Kim
et al., 2021; Villota et al., 2021; Hong et al., 2022;
Gu et al., 2022; Wang et al., 2022). Nevertheless,
GNNs are gaining importance thanks to their flexi-
bility and capacity of adapting to complex layouts,
along with their effective mechanisms for learn-
ing relationships between the nodes. In (Carbonell
et al., 2021), the authors propose a two-stage GNN
model. First, they generate a k-nearest neighbor
(KNN) graph to solve EB using text and bounding
box features. Then, the entity features are com-
puted by aggregating the output features and pro-
cessing them with a linear layer, and they are used
to solve the ET and EL. In (Hwang et al., 2021b),
the authors propose a single-stage GNN model: EB
and ET are solved via rel-s edges where each seed
entity-type node links to its entity parts in sequence
(solving also ET as a consequence), EL links the
entities via rel-g edges, finally all mentioned edges
are decoded at once. Other GNN approaches solve
only the ET and EL tasks, as they rely on the entity
regions detected by the OCR engine (Tang et al.,
2021; Wan et al., 2021; Zhang et al., 2022), or by a
previous CNN model (Davis et al., 2021).

As it can be seen, there are few approaches based
on GNN solving both EB and EL. We aim at con-
tributing to this line of research following an ap-
proach based on a two-stage GNN model, related
to the one presented in (Carbonell et al., 2021),
but with important modifications in the feature ex-
traction, edge sampling, feature propagation, GNN
architecture, and postprocessing.
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Figure 1: High level diagram of the proposed solution for the EB and EL tasks.

3 Methodology

We aim at solving the entity building (EB) and en-
tity linking (EL) tasks for a given list of documents.
Each document is composed of a list of semantic
entities, that can be linked together to form entity
groups. Each entity can also be divided into smaller
text segments. Thus, given a list of text segments
from an OCR engine, the goal is to group the text
segments by their entity and then link together all
the entities that belong to the same entity group.
We propose to use GNNSs as the best approach:

* Graph-based representations can adapt to com-
plex layouts in unstructured documents.

* EB and EL can be modeled as link prediction
tasks between pairs of segments, where GNNs
have been demonstrated to be highly effective.

* The number of connections that need to be
evaluated can be limited based on the coor-
dinates, limiting the time and resource con-
sumption. GNNs are suitable for this type of
highly sparse data structure.

3

Figure 1 illustrates the proposed solution. From the
incoming list of segments, the system performs the
edge sampling and generates the base graph level.
In parallel, the features for the nodes are extracted.
The input features are passed through the segment
GNN layers and used to generate the segment clus-
ters (EB output). For each generated cluster, an
entity hypernode is created and connected to their
child segment nodes using relation edges. Then,
feature propagation uses the subgraph of relation
edges (relation graph). Finally, these entity features
are processed in the same way as in the previous
stage to generate the entity clusters (EL output).

3.1 Feature extraction

We consider the three sources of information avail-
able: the bounding box, the text string and the
entity category. We discard the text, as we have
empirically observed that all the necessary infor-
mation is contained in the entity category. Also,
we remove the impact of the OCR text errors.

We select the following features from the bound-
ing box: left and right center coordinates, and the



angle in radians (=7, 7). Notice that using the left
and right center we are losing the information re-
lated to the height of the bounding box. We do this
on purpose, as we observed that the model tended
to overfit using this feature. We normalize both
centers using the width of the document, the most
stable dimension, as the height can highly vary. For
extracting the information from the entity category
we use a one-hot encoder, and then a linear layer to
adapt the features and map them to an embedding
of length 8. Finally, the category embedding is con-
catenated with bounding box features to generate
the node feature embedding (with 13 float values).
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Figure 2: Feature extraction stage.

3.2 Edge sampling

The message passing involve the edges and also
they are used by the edge prediction head to gen-
erate the final predictions. Hence, it is crucial to
select an appropriate sampling function that covers
all the possible true positives.

Moreover, we are dealing with highly unstruc-
tured documents and we cannot trust the usual sam-
pling functions, such as k-nearest neighbor or beta-
skeleton (Carbonell et al., 2021; Wan et al., 2021;
Zhang et al., 2022), as they are prone to miss con-
nections between segments that are far away from
each other.

Thus, we developed a custom sampling function
to ensure that all the segments in the same line are
connected: an edge from segment A to segment
B is created if the vertical distance between their
centers (C) is less than the height (H) of segment
A by a constant (K) (see Equation 1). In our exper-
iments we set this constant to two, as we want to
generate connections also between the segments of
adjacent lines for the case of multi-line entities, and
to consider the possible rotation of the document.
This sampling function is also used to generate the
edges for the entity level graph.

edgea_p =|CY —CLl < Hax K (1)

3.3 GNN

Selecting the most appropriate type of layer is an-
other important step in the model design. Most
of the GNN layer implementations require an ad-
ditional scores vector for performing a weighted
message passing, for deciding the contribution of
each neighbor node. This implies adding more
complexity to the design of the network for com-
puting the weights.

In our case, the information needed for that com-
putation is already embedded in the node features.
Taking advantage of this, we select Graph Atten-
tion Layers (GAT) (Velickovic¢ et al., 2018) as the
best suited. In the GAT layers, the weights for the
message passing are computed directly inside the
layer using the input node features. In addition,
they have been widely used and demonstrated their
efficiency in document understanding tasks (Car-
bonell et al., 2021; Zhang et al., 2022). In order
to avoid 0-in-degree errors (disconnected nodes)
while using the GAT layers, we add a self-loop for
each node.

The proposed GNN architectures for the two
graph levels are illustrated in Figure 3 and they
both use GAT layers. All the layers are followed
by SiLU activations (Elfwing et al., 2018) except
for the last one. This activation seemed to work
better than ReLLU and other variants. We also add
residual connections in all the layers to accelerate
the convergence of the model.
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Entity level
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Figure 3: Proposed GNN architectures.

Another introduced enhancement is the use of a
global document node, inspired by (Zhang et al.,
2022). We use one global node per graph level, and
we connect it bidirectionally to the rest of the level
nodes. Its feature embedding is initially computed



by averaging all the level node embeddings. It
has a double function in the network: it provides
context information to the nodes, and it acts as
a regularization term for the GAT layer weights.
These global nodes are only considered during the
message passing.

3.4 Feature propagation

The feature propagation strategy is one of the criti-
cal parts of the model, as it defines the connection
between the two stages and how the entity features
are generated.

First, we analyze the strategy followed in (Car-
bonell et al., 2021), where the features of the nodes
belonging to the same entity are added and pro-
cessed by a linear layer. We believe that this strat-
egy is not optimal for two reasons. First, as the
number of nodes of an entity is variable, adding
their features will lead to variable magnitude em-
beddings, which might impact on the stability of
the model. This could be mitigated by using a
mean aggregation. Second, they assume that all
the segment nodes contribute equally to the entity.
We believe that this is an erroneous assumption, as
there might be key segments (maybe those which
are bigger, or which have a strategic position) that
should contribute more.

We propose a new approach where the entity
nodes are built as hypernodes on top of the segment
level graph and connected to their child segment
nodes using unidirectional relation edges (from seg-
ments to entities). Then, the features propagation
is conducted by GAT layers that operates on the
subgraph of the relation edges (relation graph). The
feature propagation model is composed of 2 GAT
layers with a SiLU activation between them. In
this case we do not use residual connections, as we
want to maximize the information shared by the
segment nodes. See below:

Entity hypenodes

Entity features

Entity graph level

Relation edges

GAT Layer

Segment graph level

Segment nodes Relation graph

Figure 4: Feature propagation strategy.

3.5 Edge prediction heads

After each GNN level, the node features are used to
solve the corresponding task (EB or EL). For each
pair of connected segments, we extract the con-
fidence that they belong to the same higher-level
container. The strategy we follow is concatenating
the output features of the pair of nodes and pro-
cessing them with an MLP (see Figure 5). After
the first layer, we apply another SiLU activation.
Finally, we apply a sigmoid function to the output
logits to obtain the confidence scores.

Node Edge prediction Node
features head features
i 16 l 16

Concat layer

iaz

Linear layer
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SiLU activation
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Figure 5: Diagram of the edge prediction heads.

3.6 Postprocessing

Once the confidence scores for a task are computed,
we apply a postprocessing function to generate the
final clusters. For edge prediction tasks, a com-
monly used function is Connected Components
(CC) (Carbonell et al., 2021). However, due to its
simplicity, it highly suffers from any link error, it
usually struggles when dealing with complex data
distributions, and it depends on a threshold param-
eter which might be biased to the dataset. For these
reasons, we propose to use a different method based
on Graph Clustering made of 2 blocks (Equation 2):
1) number of clusters estimator and 2) node group-
ing. The former, 1), is based on the eigenvalues
of the normed graph Laplacian matrix computed
from the adjacency matrix (A), by taking first dif-
ferences (D1) of the sorted eigenvalues and getting
the maximum gap + 1. The latter, 2), is based on
recursively merging pair of clusters, using the num-
ber of clusters estimated (nc) and as the linkage
criteria the average of the distances (1 minus the
adjacency matrix), being a highly efficient method.



A = FigenValues(NormGraphLap(A))
ne = argmax(Di(sort(N\))) +1 (2)
¢; = FeatAgglom(avg(1 — A),n.)

The benefits are: no need to optimize any param-
eter avoiding concept drift impact, estimating the
number of clusters dynamically for each new data
distribution, no need of handcrafted heuristics, and
efficient and accurate as the CC approach.

3.7 Training details

Only during the training stage, the entities are con-
structed using the ground truth (GT). This acceler-
ates the convergency of the model, as it reduces the
dependency of the EL task and the EB task. The
model is trained for 100 epochs using a batch of 4
graphs on each iteration. The selected optimizer is
Adam, with an initial learning rate of 0.001, with
a reduction factor of 0.1 in epochs 70 and 90. We
use binary cross entropy for computing the loss for
the two tasks, and then we sum both losses. Finally,
we finetune the model using the predicted entities
instead of the GT, so the second part of the model
adapts to the real data. The benefits of finetuning
the models are demonstrated in the experiments
section. The model is finetuned for 10 epochs, with
an initial learning rate of 0.0002, being reduced to
0.00002 at epoch 7.

4 Experiments

4.1 Datasets
4.1.1 Private dataset

We have built an internal challenging dataset com-
posed of 8729 purchase receipt images from 5 coun-
tries: Germany, Italy, France, Mexico, and Brazil.
Receipts vary widely in height, density, and image
quality. They may contain rotation and all kinds
of wrinkles. Each receipt has annotated all the text
segments related to purchased products. The avail-
able annotated information for each text segment
is the rotated bounding box, the text, the entity
category, and the product ID.

There are 9 types entity categories: unit_type,
value, discount_value, code, unit_price, taz,
quantity, discount_description, description.

The dataset also contains the receipt region anno-
tation for each receipt, so we have preprocessed the
dataset for all the models by cropping the images,
filtering the segments that are outside the receipt,

and shifting the coordinates of the remaining seg-
ments to the cropped pixel space. Finally, we split
the dataset in training, validation and test sets using
a ratio of 70/10/20.

In Figure 6 we present some examples of the
dataset after cropping the receipt region. We also
include in the images the GT information for the
entity building (bounding boxes) and the entity
linking (bounding boxes with the same colors and
linked by lines). Note that this dataset is more
challenging than other IE datasets, such as FUNSD
(Jaume et al., 2019) or CORD (Park et al., 2019),
as the number of entities can vary from several
to hundreds, layouts are highly diverse, and the
quality of the receipts and images has a bigger
amount of noise.

4.1.2 CORD

Consolidated Receipt Dataset (CORD) (Park et al.,
2019) is composed of 1000 Indonesian receipts
which contain images and box/text annotations for
OCR, and multi-level semantic labels for semantic
parsing and relation extraction tasks. In the ground
truth, each segment is associated with the category
field (our entity level) and the group_id field (our
group level). It contains more entity categories (30),
but with significantly fewer instances. It can be ob-
served that the difficulty level is lower but it is the
only public dataset we have found for benchmark-
ing. In this dataset, the receipt region annotations
are available only for a subset of receipts, so we are
not considering them. The samples are split into
800 for train, 100 for dev(validation), and 100 for
test.

4.2 Metrics
4.2.1 Group F1 Score

This metric is very restrictive and aims at eval-
uating the number of groups that are perfectly
formed, highly penalizing the groups that are split
or merged with others. We compare the predicted
groups with the ones from the ground truth. For
each predicted group in a document, we only con-
sider it as a true positive (tp) if it matches exactly
the ground truth group. Otherwise, it is considered
a false positive (fp). Ground truth groups not found
in predictions are considered as false negatives (fn).

422 ARI

The Adjusted Rand Index (ARI) (Halkidi et al.,
2002), is more focused on analyzing the quality of
the segment clusters rather than checking if they



perfectly match the ground truth ones. First, the
Rand Index (RI) computes a similarity measure
between two clusters by considering all pairs of
samples and counting pairs that are assigned in the
same or different clusters in the predicted and true
clusters. Then, the raw RI score is “adjusted for
chance” into the ARI score.

Figure 6: Examples of successful predictions from dif-
ferent countries and retailers. Each box is a predicted
entity, and the ones with the same color (and connected
by lines) belong to the same group.

4.3 Results

In this subsection, we present and discuss the exper-
imental results with the aim of demonstrating the
effectiveness of the proposed method and the con-
tribution of our novel feature propagation. These
are the considered approaches:

* Relation graph: described in Section 3.4.

* Without feature propagation: the features of
the entities are generated from scratch, in the
same way as the text segment features. The
entity bounding box is computed using the
minimum rotated rectangle and the entity cat-
egory is computed using the mode.

* Sum aggregation + linear layer: the procedure
followed in (Carbonell et al., 2021).

Besides, we include in the comparison the results
of a single-stage version of the model, following
the approach proposed in (Hwang et al., 2021b).
The GNN architecture for this model is the same
as for the entity GNN of the proposed model.

EB EL (E2E)

Model FI ARl Fl  ARI
ours 0.974 0.966 0.925 0.960

w/o featprop 0.9756 0.971 0914 0.955
sum+linear 0.971 0.965 0915 0.955
Single stage  0.979 0973 0.913 0.950

Table 1: Results of the proposed model on the purchase
receipt dataset and comparison against different feature
propagation strategies. We present the results for EB
and EL (using the entities predicted in EB).

For all the variants, the model is trained under
the same conditions, following the training details
specified in Section 3.7. The results of the experi-
ments are gathered in Table 1. It can be observed
that the proposed model is achieving impressive
results for both tasks (0.974 F1 Score for EB and
0.9252 for EL) considering the challenges of the
proposed dataset. Some examples of successful
model predictions are shown in Figure 6.

Also the proposed strategy for the entity features
generation outperforms the others in the end2end
metrics by more than 1%. The strategy without
feature propagation achieves slightly better results
in EB (less than 0.2%), but we believe this is be-
cause in this case the two tasks are more indepen-
dent from each other, and the model can focus on
optimizing better the first task (but at the cost of
sacrificing accuracy in the end2end). The same
happens with the single stage strategy.

Additionally, we want to measure the impact of
the finetuning stage described in Section 3.7, where,
instead of using the GT information to construct
the entities, we use the predictions from the EB
task, and train the model in an end2end manner
for 10 epochs. Thus, we compute the end2end
metrics for all the model variants before and after
the finetuning. The results, presented in Table 3,
show that in all the cases both the F1 Score and the
ARI metrics are improved. This improvement is
less noticeable for our approach, as even if we are
using GT information for constructing the entities,
the two tasks are still strongly connected by an
optimal feature propagation strategy.

Next, we conduct an experiment to test the pro-
posed model under a public benchmark, using the
CORD dataset. For this experiment we consider all
the annotated segments, using the category field
as the entity annotation and the group_id field as
the group annotation. Again, the model is trained
following the procedure specified in Section 3.7.



Model EB Link F1 EL Link F1 EL GroupF1 ~ARI  Params
Rel graph (ours) 0.975 0.988 0.943 0.983 0.3M
Spade(Hwang et al., 2021b) 0.969 0.896 - - -
BROS w/o order(Hong et al., 2022) 0.968 0.905 - - 340M
BROS w order(Hong et al., 2022) 0.966 0.974 - - 340M

Table 2: Results on the CORD dataset evaluated at link level and at group level.

Before FT After FT

Model FI ARI Fl  ARI

Rel graph (ours) 0917 0.957 0.925 0.960
w/o featprop 0903 0.948 0.914 0.955
sum-+linear 0.901 0948 00915 0.955

Table 3: Impact of the finetuning removing the GT
information for the entity generation.

The results are presented in Table 2. To the best
of our knowledge, there are no published works
that address exclusively the EB and EL tasks, since
they are usually combined with the entity tagging
task. Consequently, although they are not fully
comparable, we decided to include the results of
two state-of-the-art end-2-end models that perform
ET, EB, and EL, Spade (Hwang et al., 2021b) and
BROS (Hong et al., 2022). It can be observed that
the proposed model outperforms the others espe-
cially on the EL task, while massively reducing
the number of parameters if we compare it with
BROS. Notice that for BROS we present the results
with and without the text order information, as it
is dependent on it. We also include the Group F1
Score and the ARI metrics so other future works
can fairly compare against our model.

Finally, we also measure the processing time and
the resource consumption for our model. The ex-
periment was conducted on a machine with one
NVIDIA Tesla V100 GPU, 64 GB of RAM, and
1 Intel(R) Xeon(R) Gold 6142 CPU. For the time
calculation, we infer all the dataset samples using
batch 1 and compute the average time. We take into
account also the preprocessing time since the input
files are loaded, including the parsing, feature ex-
traction, and graph generation. The resulting time
per image is 0.25 seconds (0.15 for preprocessing
and 0.10 for inference and postprocessing), with
a low GPU memory consumption of around 1300
megabytes.
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5 Conclusions and Future Work

In this work we have addressed the automation of
information extraction on unstructured documents,
given as inputs the predictions from an OCR en-
gine and an entity tagging model, and focusing
on two tasks, entity building and entity linking.
We have justified the suitability of GNNs for the
considered use case and proposed a model based
on this approach. This model tackles the prob-
lem in two stages that are strongly connected by
using the concept of hypernodes. We have also
proposed a novel strategy of propagating the fea-
tures from the segment nodes to the entity nodes in
an optimal way. The results of the conducted ex-
periments demonstrate that the proposed model is
suitable for solving the tasks, and that the proposed
feature propagation strategy is optimal and outper-
forms other approaches. In addition, we have com-
pared our model with other state-of-the-art methods
that perform the EB and EL tasks using the pub-
lic benchmark CORD and, although the models
are not fully comparable, it can be observed that
our model achieves state-of-the-art results with an
extremely lower number of parameters.

Future work will focus on expanding the appli-
cation of the model to address also the ET task.
To this end, new types of features could be consid-
ered, based on text or image, as we believe that the
layout information is not enough to solve ET task.
In addition, we will keep enhancing the current
capabilities of the model, exploring new ways of
propagating the features, improving the postpro-
cessing, and optimizing the GNN architectures.
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