Discourse annotation — Towards a dialogue
system for pair programming

Cecilia Domingo® — Paul Piwek® — Svetlana Stoyanchev** —
Michel Wermelinger*

* The Open University, United Kingdom
** Toshiba Europe Limited, United Kingdom

ABSTRACT. Much work has been carried out on dialogue system development in different fields.
With recent advances in Programming Language Processing tasks, dialogue systems aimed at
programmers are becoming another viable area of application. However, the data necessary for
a dialogue system that can assist programmers involves not only code, but the natural language
around it. How should this data be annotated? In this review we examine the most common
approaches to dialogue annotation, paying special attention to programming settings. We first
look at the broader theories that inform these approaches, and after our review of the most
widely used annotation schemes we analyze the peculiarities of the programming context and
how well suited the existing schemes are for this setting.

RESUME. Le développement de systemes de dialogue a fait I’objet d’une grande attention dans
différents domaines. Avec les progres récents des tdches de traitement du langage de program-
mation, les systemes de dialogue destinés aux programmeurs deviennent un autre domaine
d’application viable. Cependant, afin de développer un systeme de dialogue pour assister les
programmeurs, il est nécessaire de traiter non seulement le code, mais aussi le langage naturel
associé. Comment ces données doivent-elles étre annotées ? Dans cet article, nous présentons
une synthese des méthodes les plus courantes d’annotation des dialogues, avec un accent par-
ticulier sur le domaine de la programmation. On consideére d’abord les théories sur lesquelles
ces méthodes sont basées, on énumere les principales méthodes et on analyse les particularités
du domaine de la programmation et dans quelle mesure les principales méthodes d’annotation
sont adaptées a ce domaine.

KEYWORDS: dialogue systems, discourse annotation, programming language processing.

MOTS-CLES : systemes de dialogue, annotation discursive, traitement du langage de program-
mation.

TAL. Volume 63 —n° 3 /2023, pages 11 a 35

12 TAL. Volume 63 —n° 3 /2023

1. Introduction

Dialogue systems have become pervasive in our everyday life, spanning a wide range
of domains (Liu et al., 2020; Kuyven et al., 2018; Thoppilan et al., 2022). While
programmers put their efforts into developing this wide range of systems, few dia-
logue systems exist which focus on assisting these programmers. There exist other
kinds of tools which assist programmers in some ways. Recently, for instance, Github
released Copilotﬂ a tool that autocompletes code, and Amazon released the similar
CodeWhisperer toolﬂ In educational settings, there are numerous Intelligent Tutoring
Systems (ITS) that can give feedback or some guidance to people learning to program
(Keuning et al., 2019). However, none of these tools follow a dialogic approach and
harness the potential of dialogue systems.

One activity where programmers would highly benefit from a dialogue system as-
sisting them is pair programming. Pair programming is a technique where two pro-
grammers work together on one piece of code (Hanks et al., 2011). A sample from
a pair-programming session can be found below in Example 1EI; we will be using it
to illustrate different phenomena. In this session, two programmers demonstrate the
technique, writing a program that detects high temperatures from an input list of tem-
peratures. In this particular session, both participants are sitting together in front of
the computer. However, only one of the participants takes control of the mouse and
keyboard, assuming the role of “driver”; the other participant, the “navigator”, col-
laborates with verbal guidance. The video allows us to see not only the participants,
but also the screen where they are coding (albeit with faulty synchronization in this
case) and a whiteboard they use for brainstorming, all in different windows merged
into the same video. The technique they demonstrate, pair programming, is widely
used, and has been proven very beneficial, especially in educational contexts (ibid).
However, it can be difficult to implement, due to scheduling problems or partner in-
compatibility (ibid). A dialogue system could help ameliorate these issues. In fact,
Wizard-of-Oz studies have already demonstrated the value of a dialogue system as a
pair-programming partner: it could bring many of the benefits of pair programming
(e.g., better performance, higher confidence), and it would be valued by users (Kuttal
et al., 2021). However, there is not sufficient data to develop such systems (Wood
etal.,2018).

Before more data can be made available, it is important to reflect on what this data
would look like and how it would need to be processed. Some dialogue systems can
be built with unannotated data (Thoppilan et al., 2022). However, such systems re-
quire very large amounts of data and high computational power (ibid). A more viable
alternative is to follow a supervised approach. Our envisioned system would enter
the category of task-oriented systems, as it should collaborate with the human user to

1. https://github.com/features/copilot/.
2. |https://aws.amazon.com/codewhisperer/.

3. We recommend watching the video of the session to understand the context of the sample.
https://youtu.be/zdE2MS6gcbE.

https://github.com/features/copilot/
https://aws.amazon.com/codewhisperer/
https://youtu.be/zdE2MS6gcbE

Dialogue annotation for pair programming 13

achieve a goal, which in this case is developing a program. For such dialogue systems,
the usual approach is a dialogue-state architecture (Jurafsky and Martin, 2021). These
systems have a component that detects relevant entities in an utterance (slot filling),
a dialogue state tracker that records the dialogue state at each point by considering
the slots and the dialogue acts (which we shall discuss in Section @, and a set
of dialogue policies that determine the system’s actions base don the dialogue state.
These components require annotated data for training and testing the components —
in a supervised approach, the target slots and dialogue acts need to be known. Then,
exactly which annotations do we need for dialogues in order to develop a system to
replace a human partner in pair-programming sessions? In this paper we reflect on this
issue by analyzing existing theories of dialogue and the annotation schemes derived
from them, and compare our findings with the characteristics of pair-programming
dialogue.

Example 1 — Sample from pair-programming session

(1) Navigator: You could, you could put a print list if you want, just to.
2) Driver: Okay.

3) Navigator: But I would always just run it each time and I generally keep versions as well.

I don’t think we need to do that here, but I would keep...

Could build version A, version B so that, if something goes wrong,

you can get back to something that worked.
4) Driver: [Typing] Right.

5) Navigator: Yeah, again, it’s just there, maybe there may be other ways of doing it now
that I don’t know, but I would just save a, b, c, 1, 2, 3.

(6) Driver: Okay. [Pointing at the screen] So that’s our first version anyway. So saved that.

@) Navigator: Just run it.

) Driver: [Overlapping] If we run...

9) Navigator: It shouldn’t, don’t get any errors. Something works.

[Looking at screen] Yeah, it works, fine.
(10) Driver: [Overlapping] There you go. Okay.
(11 Navigator: Fine. Okay. So where are we? [Looking at reference book]

So we’ve got our input, [looking at whiteboard] so we’re back to our pattern, right.
So I know it needs a list. Set some sort of variable to the first item in the list.
(12) Driver: Uhum, okay. So again, uuum, what do we call it, something that’s sensible again.

(13) Navigator: It’s the highest temperature, isn’t it the term?
(14) Driver: [Overlapping] [Typing] Aye.

(15) Navigator: Highest value or something. Put maybe highest temp, it’s probably,

since you’ve used temp at the...[Shrugging] Yeah, highest Temp.
(16) Driver: [Typing] And... we’re gonna save that.
(17) Navigator: [Overlapping] The first item in the list
(18) Driver: [Typing and mumbling] Sensor...
19) Navigator: [Mumbling] Temps...
20) Driver: [Typing and mumbling, overlapping] Temps. And... okay.
21 Navigator: Yeah.

14 TAL. Volume 63 —n° 3 /2023

(22) Driver: Wanna do zero?
(23) Navigator: Zero.

24) Driver: Zero.

25) Navigator: I think...

(26) Driver: Because...

27 Navigator: Because an array always, well, doesn’t always, that’s the problem. And Python...
(28) Driver: [Overlapping, smiling] Python is...

(29) Navigator: An array starts...S list, an array. If ’'m saying array...amm, a list...

(30) Driver: [Overlapping] Yeah
31 Navigator: A list starts at zero.
(32) Driver: [Overlapping] Zero.

2. Discourse theories
2.1. Definition

Discourse can be defined as “joint activities in which conventional language plays a
dominant role” (Clark, 2005, p. 50). This broad definition can be considered even
broader if we take Skidmore’s continuum of addressivity (Skidmore, 2019), where
dialogues can range from the truly dialogic to the monologic. For the purposes of
analyzing discourse in relation to dialogue systems, we wish to emphasize in this
review the joint-activity aspect of discourse to obtain insights applicable to the more
dialogic part of the spectrum (ibid). Thus, we will look at discourse theories as they
apply to dialogue and not other types of discourse.

2.2. Key concepts

Numerous discourse theories have been developed, with more than a few achieving
great influence. Therefore, instead of providing a detailed account of each of them,
we will now summarize the key themes they cover.

2.2.1. Acts and actions

As we will discuss in more detail in Section one of the theories that has had the
strongest influence in how dialogue is conceptualized in NLP is Speech Act Theory
(Austin, 2018). In this view, utterances are actions performed by the participants in
discourse. The theory describes several levels of actions, from the phonetic act of
making noises to the perlocutionary act of causing an effect on the hearer.

When the focus of the analysis is on the characteristics of discourse as an action be-
tween participants, instead of merely looking at the micro details of phonetics or syn-
tax, we must turn to the level of illocutionary and perlocutionary acts and their effects.
Austin (2018) distinguishes numerous types of such effects, such as verdictives (the

Dialogue annotation for pair programming 15

act of, as the name suggests, emitting a verdict) or exercitives (the act of issuing a
recommendation, like (1) in our example). This classification was then built upon by
Searle (1979) and several other authors.

Austin’s idea of acts emphasizes the effects of utterances, yet it pays little attention to
the interaction between the participants originating and receiving these effects. This
cooperative element of the speech acts was explored by Clark and Schaefer (1989).

2.2.2. Cooperative dimension

The central view in Clark and Schaefer’s (1989) theories is that using language is per-
forming a joint action. Participating in dialogue is not seen as the sum of speakers’
individual actions, but as a coordinated activity between them. Perhaps the most influ-
ential account of how participants cooperate in discourse are Grice’s (1957) maxims:
“make your contribution as informative as is required”, “try to make your contribu-
tion one that is true”, “be relevant”, “be perspicuous” (Grice, 1991, p. 26). These
are the rules that allow speakers to follow the Cooperative principle and achieve the
goal of their discourse. The Cooperative principle states that speakers should make
the contributions to the joint activity (discourse) that are required to achieve its goal
(Grice, 1991). Sperber and Wilson (2010) build on Grice’s work to develop their
relevance theory. One key aspect of it is that communication relies on participants
inferring meaning from the speaker’s utterances. Inferences are linked to relevance:
the inferred meaning of an utterance should be relevant to the context. Relevance, on
its part, is mediated by effort: “an assumption is relevant in a context to the extent that
the effort required to process it in this context is small” (ibid p. 125). Warren (2006)
also builds on Grice’s work, observing cooperation as a feature of naturalness in con-
versation data. A more dialogic equivalent of the Cooperative principle is the principle
of least collaborative effort (Clark, 2005): participants will try to minimize the total
effort of the joint activity, though this may involve putting additional effort on produc-
ing the utterances so that little effort is needed to understand them. For instance, in
(5) of our example, the navigator essentially repeats what he says in utterance three,
possibly trying to emphasize the goal of the utterances.

Gregoromichelaki et al. (2011), addressing some limitations in Grice’s theories, dis-
cuss another factor that enables cooperation: incrementality. Discourse is produced
and processed gradually, which enables participants to adjust it based on the feed-
back they receive. Yet the most widely discussed concept when studying the social
elements of discourse is grounding, or how participants in discourse build a common
ground (Clark and Schaefer, 1989; Clark, 2005).

2.2.3. Common ground

The common ground in a joint activity can be defined as the shared knowledge avail-
able to participants in discourse, be it knowledge about the world or the joint activity
itself (Clark, 2005). Joint activities begin with an initial common ground that is built
upon as the activity progresses, through accumulation or even deletion (Clark and
Schaefer, 1989; Clark, 2005). Conceptualizations of the common ground can be built

16 TAL. Volume 63 —n° 3 /2023

as iterative propositions ad infinitum (i.e., it involves the speakers knowing that X is
true, knowing that they know, knowing that they know they know, etc.); but actual
processing cannot be expected to take place this way (ibid). In conversation, for the
common ground to be built upon (grounding), participants need to provide sufficient
evidence that they have adequately processed each other’s contributions (ibid). This
may be done through showing continued attention, making a new contribution that is
relevant to their counterpart’s, acknowledging understanding, repeating all or part of
the contribution or displaying understanding some other way (ibid). While this is still
a recursive process, with participants giving evidence of understanding contributions,
then of understanding the understanding and so forth, this recursion does not con-
tinue ad infinitum, as the required level of evidence becomes weaker for each iteration
(ibid). For instance, in our example the driver often acknowledges understanding of
the navigator’s utterances simply by saying “okay”, and then they can move on to a
different contribution. The concept of common ground is more concretely conceptu-
alized by Grosz and Sidner (1986), who present the idea of a focus space, a discourse
dimension containing the purpose of a discourse segment and the available referents
for it. Pickering and Garrod (2004) adopt Clark’s definition of the common ground,
but argue that most dialogue uses a simpler, implicit common ground. This is built as
speakers align their situational models; this alignment facilitates both comprehension
and production for the speakers.

Beyond the theory, the concept of common ground has also been empirically tested.
For instance, Jordan and Walker (2005) created a model to predict the content of re-
ferring expressions, and some of the features they employed reflected the theories
on common ground (e.g., previously used attributes, other referents that could act as
distractors, attribute saliency, etc.). Although the model’s accuracy did not reach be-
yond 50%, the features related to the focus space showed some predictive power (fea-
tures related to differences between the referent and distractors present in the focus
space). Mitchell et al. (2012) also carried out some experiments regarding the com-
mon ground through the study of convergence (how participants in discourse adapt
to each other). After analyzing tutor-mentee interactions over several weeks, they
saw that lexical convergence increased over time: the words preferred by a partici-
pant became shared knowledge. An extensive practical study of convergence has also
been carried out by Dubuisson et al. (2021), who developed a framework to compute
measures of alignment and used it to analyze dialogues between humans and between
humans and agents, observing differences in the flexibility of the alignment. Their
work also opens doors for improving alignment in dialogue systems. Another impor-
tant contribution that bridges theory and practice is Ginzburg’s conversation theory,
which builds a grammar for dialogue based on corpus data.

As we have mentioned, the focus space contains the referents and knowledge available
and relevant to a particular discourse segment (Grosz and Sidner, 1986). In addition to
that, it contains the purpose of the segment (ibid). In Grosz and Sidner’s model, that
intention that the segment tries to achieve determines how discourse is segmented:
discourse units each have their own purpose contribution to the purpose of the overall

Dialogue annotation for pair programming 17

discourse (ibid). However, it is not only their theory which is primarily driven by the
concept of purpose or intention — intention is another key pillar of discourse theories.

2.2.4. Intention

Grosz and Sidner (1986) see intentions as the element that structures discourse: the
whole discourse will have a purpose (discourse purpose, or DP), but there will also
be sub-goals that define the segments of the discourse (discourse segment purpose,
or DSP) and become the key element of the focus space at any point. Even before
this model, intention was already seen as a driving force within discourse. Austin
(2018) reflected it through the illocutionary force of utterances: people say things to
achieve a certain effect, and the type of desired effect is what allowed Austin and then
Searle (1975, in Clark, 2005) and other authors to classify utterances. Grice (1991,
p-26) also emphasized the importance of intentions through the Cooperative principle:
“make your conversational contribution such as is required, at the stage at which it
occurs, by the accepted purpose or direction of the talk exchange in which you are
engaged”. Grice (1957) also points out that it is not enough for utterances to have an
intention, but that speakers must intend for this intention to be recognized, and that
other participants in discourse must recognize the intention. As influential as Grice’s
theories have been, this and the theories it has guided have not been free of criticism.
Gregoromichelaki et al. (2011), while accepting the concept of intention as useful for
high-level conceptualizations of discourse, reject the claim that it has any significant
effect in online processing of discourse due to its intractability. One of their arguments
is the fact that people with low skills/experience in detecting other speakers’ intentions
and emotions (e.g., children and people who have autism but good verbal skills) may
be able to participate in discourse (ibid). Instead, what would drive discourse pro-
cessing is social conventions (ibid). When signals are used in non-conventional ways,
there are other resources that can help participants solve the coordination problems
of discourse, such as explicit agreement, saliency or precedents (Clark, 2005). For
instance, in our example the speakers agree to refer to variables regarding temperature
as “temp”.

2.2.5. Structures

Finally, after having discussed the concepts on which discourse scholars define dis-
course structure, we can provide a brief account of what these structures look like. We
have presented Clark and Schaefer’s model (1989) as highly influential; this model,
stemming from the idea that discourse is a type of joint action that uses language,
views discourse as a tree of linked contributions and acceptances. One participant
contributes an utterance, but for it to be added to the common ground and for partici-
pants to coordinate the individual actions into the joint action, the contribution needs
to be accepted — and the acceptance utterance then becomes a new contribution for the
first participant to accept.

Grosz and Sidner (1986) provide another model of discourse structure which accounts
for more elements in it. As we mentioned, they establish purpose as the driving force

18 TAL. Volume 63 —n° 3 /2023

that defines the discourse segments. The segments can be nested, and dominance and
precedence relations can be established between them. These segments with distinct
purposes contributing to the overall discourse purpose form the intentional structure
of discourse. They also define the attentional structure of discourse: this is a stack of
focus spaces, each containing the purpose of the segment and the referents and rela-
tions relevant to it. The last structural element of discourse is the linguistic structure,
the mere sequence of utterances.

Another type of structure that has been widely studied is rhetorical structure, espe-
cially through Rhetorical Structure Theory (RST) (Mann and Thompson, 1988, in
Hou et al., 2020). This theory sees the structure of discourse as links between utter-
ances building a coherent unit (Hobbs, 1979, in Moore et al., 2003). In RST, discourse
units are schemas consisting of a nucleus and one or more satellites (ibid). The nu-
clei convey the core content of the discourse, while the satellites support the nuclei or
other satellites through rhetorical relations like motivation, generalization, evidence,
etc. (ibid). For instance, in (5) of our example, we can observe an antithesis relation
between the first and second part. Although RST was initially devised for monologic
discourse, it has later been applied to dialogue (Daradoumis, 1993).

2.3. Links between discourse theories and NLP

In the previous section we have presented some of the most influential discourse theo-
ries, and we have also briefly mentioned some empirical studies that drew from those
theories. Still, as Pery-Woodley and Scott (2006) observed, there is some divide be-
tween discourse theories and NLP tasks that could benefit from them. Discourse the-
ories help us conceptualize the macro-structure of discourse (e.g., cross-paragraph
relations), but NLP tends to be more concerned with the micro-elements (e.g., the
purpose of an individual sentence), as macro-structure is more intractable (ibid). On
the other hand, discourse theories would also benefit from a link to empirical studies
and NLP techniques that could test the theories and find connections between macro-
and micro-structures. When it comes to bringing the insights from discourse theo-
ries into the NLP domain and, more specifically, to dialogue system development, we
identify two key challenges: multimodality and online processing.

2.3.1. Multimodality in dialogue

Some of the dominating discourse theories acknowledge that dialogue involves both
verbal and non-verbal signals (Clark and Schaefer, 1989; Grice, 1991; Clark, 2005).
For instance, in (6) of our example, the driver uses both pointing gestures and demon-
strative pronouns to refer to the program. For Clark (2005, p. 13), a signal is “any
action by which someone means something for another person”, and most combine
modalities. Beyond theory, multimodality is a key concept in NLP research, and in-
creasingly so (Admoni and Scassellati, 2014). Thus, we need to examine how truly
suitable the theories are to account for the processing of non-verbal signals.

Dialogue annotation for pair programming 19

2.3.2. Online processing

In dialogue systems, the need for online (i.e., live) processing is undeniable, as “dia-
logues are created incrementally” (Skantze, 2021, p. 83): when we observe dialogue
live, we cannot observe the final product, only its gradual development. Clark (2005,
p. 29) already advocated for an “action approach” over a “product approach” to dis-
course. However, the main theories we have discussed fail to account for incremen-
tality. Grosz and Sidner’s model (1986), with the constant updating of the focus space
stack, reflects this notion at the utterance level, but does not accurately represent incre-
mental processing of utterance sub-elements (Gregoromichelaki et al., 2011). Skantze
(2021) aims to fill this gap with a model of incremental processing focused specifically
on dialogue systems.

3. Annotation schemes

Annotation schemes help us bridge the gap between discourse theories and NLP tasks,
as they facilitate discourse processing. Two of the main theories that are employed
are Rhetorical Structure Theory (RST) and Speech Act Theory, each with a different
focus. RST conceptualizes discourse through the relations between units. Although
rhetorical relations represent speakers’ intentions, a stronger emphasis is placed on the
idea of intentions by Speech Act Theory. Another difference between the two theories
is that RST emphasizes the relations between discourse units, whereas Speech Act
Theory gives more weight to the actual discourse units. Given this divergence, we
shall divide our account of annotation schemes into at least two trends.

3.1. Relational schemes

3.1.1. Rhetorical Structure Theory (RST)

RST conceptualizes discourse as consisting of propositions linked by coherence rela-
tions, which give rise to implicit propositions, helping us understand the initial propo-
sitions (ibid). In practice, it turns discourse into a set of schemas: a nucleus with
satellites linked to it through rhetorical relations. For instance, in (5) of our example,
the sentence starting with “but” would be a satellite linked to the rest of the utterance,
the nucleus, through an antithesis relation.

Although RST was initially proposed for monologic discourse, it has later also been
applied to dialogue. One approach has been to apply it to each turn separately, though
this does not account for relations between utterances (Fawcett and Davies, 1992,
in Daradoumis, 1993). Daradoumis (1993) addresses this by developing Dialogic
Rhetorical Structure Theory (DRST), combining RST with an exchange model. The
exchange model classifies RST schemas through additional dialogic relations: con-
sent, elicitation, ascertainment. Within the schemas, it incorporates Clark and Schaef-
fer’s theory (Clark and Schaefer, 1989) by marking contribution and support relations.
Another difference between DRST and RST is its dynamic nature: dialogue itself is

20 TAL. Volume 63 —n° 3 /2023

dynamic, so the representation is constantly changing, with schema nuclei and satel-
lites changing their status (Daradoumis, 1993).

RST has successfully been harnessed for different NLP tasks, most notably summa-
rization and text generation (Taboada and Mann, 2006; Hou et al., 2020). Some re-
search has also been done in dialogue: e.g., Fischer et al. (1994) design a dialogue
system for database queries, where RST allows the system to represent the links be-
tween dialogue acts. NLP research using this theory has largely been enabled through
the Rhetorical Structure Theory Discourse Treebank (RST-DT) (Carlson et al., 2003).
It is a corpus of 385 Wall Street Journal articles annotated by humans with 78 RST
relations (ibid). Another key resource for NLP tasks involving discourse relations is
the Penn Discourse Treebank (PDTB) (Prasad et al., 2019), the largest resource of its
type. Like the RST, it consists of annotated Wall Street Journal articles, but for the
PDTB the number is 2,159 (Hou et al., 2020).

Segmented Discourse Representation Theory (SDRT) SDRT was developed to
address the shortcomings of RST and Discourse Representation Theory (DRT)
(Lascarides and Asher, 2008). DRT (Kamp, 1981, in Asher & Lascarides, 2008) uses
first-order logic to build semantic representations of discourse; combining these repre-
sentations with RST reduces anaphora resolution options to the more “pragmatically
preferred” (Lascarides and Asher, 2008, p. 1).

3.1.2. Mapping relational annotation schemes

With at least three very influential schemes for annotating discourse relations (RST,
SDRT, PDTB), attempts have been made to map them for higher resource reusability.
One approach is finding an intersection (Demberg et al., 2019), or another is using an
additional schema (Sanders et al., 2021; Roze et al., 2019). Bunt and Prasad (2016)
proposed an ISO standard for coherence relation annotation; they also mapped it to
the PDTB and RST.

3.2. Speech Act Theory

As discussed in Section [2.2] Speech Act Theory (Austin, 2018) sees utterances as the
performance of speech acts. Acts range from the mere phonetic act of making sounds
to the illocutionary act of uttering something with a purpose and the perlocutionary
act of uttering something that has an effect (ibid). For instance, (15) of our example
(Section [T has the effect of the driver typing the variable name that the navigator sug-
gested. The function of an utterance is called the illocutionary force, which can be
implicit or can be made explicit through illocutionary force indicating devices (ifids)
(Allan, 1997). These can be words like “please”, the use of the imperative mood
(as in utterance 15), or illocutionary verbs (verbs that perform an action by being
uttered, such as “to name”). Austin focused on this last resource for the classifica-
tion of illocutionary forces. Searle (1979) expanded upon Austin’s classification and
pointed out that speech acts can be implicit: the illocutionary force of an utterance

Dialogue annotation for pair programming 21

may be hidden behind the apparent performance of a different illocutionary act, such
as when commands are softened by phrasing them as questions. Speech Act The-
ory has been critiqued on the basis that it focuses on illocutionary forces (what the
speaker intends with an utterance), but these are not always evident: not to discourse
annotators, and often even to hearers and speakers (Allan, 1997; Gregoromichelaki
et al., 2011). Another issue is that Speech Act Theory looks at speech acts after
they are completed, whereas speakers process them incrementally in real time (ibid).
Yet another critique is that Speech Act Theory looks at utterances as isolated acts
(Allwood, 1977; Allan, 1997), without considering how they contribute to joint activi-
ties (Clark and Schaefer, 1989). Moreover, Austin and Searle’s focus on illocutionary
verbs places too much emphasis on the lexical dimension of discourse, neglecting oth-
ers (Allwood, 1977). Despite all the criticism, Speech Act Theory has become highly
influential for dialogue annotation, with numerous schemes based on it.

3.2.1. Schemes derived from Speech Act Theory

A large number of annotation schemes have been created which label speech acts (also
known as “dialogue acts” in this context). For instance, Klein er al. (1999) already
discussed sixteen influential schemes. Among the speech-act labelling schemes, the
most widely used seem to be DAMSL and HCRC MapTask (either directly or through
adapted versions).

DAMSL This scheme was developed by Allen and Core (1997) with the name
Dialogue Act Markup in Several Layers. It has also been augmented for use with the
Switchboard corpus (Jurafsky and Shriberg, 1997). As the name suggests, this scheme
captures utterance intentions in several layers. The first layer, the forward commu-
nicative functions, concerns the speech acts (illocutionary acts). The other two layers
are the backward communicative functions (how the utterance relates to the previous
one), and the utterance features (form and content of the utterance). Unlike Speech
Act Theory as developed by Austin (2018) and Searle (1979), DAMSL assigns several
labels to an utterance (in addition to the scheme having three layers, each utterance
can have several labels for each layer); this way it can capture the speech act with more
nuance. This schema uses very generic labels with the goal of being applicable to any
domain (e.g., statements are either assertions or reassertions; if not, they are simply
“other”). However, this can result in some broad labels dominating in a corpus: for
instance, Stolcke et al. (2000) annotated the general-domain Switchboard corpus and
assigned the Statement label to more than a third of utterances. Weisser (2015) aimed
to address this shortcoming of DAMSL by expanding it into a more nuanced scheme:
DART. Whereas DAMSL has fewer than 15 functions per layer, DART has a total of
120 functions in its second version (Core and Allen, 1997; Weisser, 2015). Despite the
large number of labels, it is intended to be simple to use thanks to its clear XML struc-
ture, which is aimed for easy automation and human interpretation (Weisser, 2015).
DART has already been applied to a wide variety of dialogue types, such as political
debates, call-center interactions or courtroom dialogue (ibid).

22 TAL. Volume 63 —n° 3 /2023

HCRC MapTask The HCRC MapTask project aimed to obtain dialogues that
could be manipulated for some linguistic features (e.g., phonological characteristics
of landmarks mentioned) (Anderson et al., 1991). It collected data using a cooperative
task design named the “map task”, where two participants each have a map, but only
one of them has information on the route that the other needs to follow on their map
(Brown et al., 1984). This approach to data gathering, which allowed for controlling
numerous variables, as well as the corpus itself and the way it was annotated, have
been highly influential. DAMSL, more closely linked to Speech Act Theory, focuses
on the annotation of individual speech acts, paying only some limited attention to the
relations between them. The annotation scheme of the HCRC MapTask, on the other
hand, has three levels of annotations that go from the macro-structure of dialogue
to the individual acts (Kowtko et al., 1993; Carletta et al., 1997). The highest level
consists of transactions, which are sub-dialogues that serve to achieve the purpose of
the overall dialogue. The middle level consists of dialogue games: they start with
an initiation move and end when the goal of the game is achieved or abandoned.
Finally, the lower level consists of the actual moves, a limited set of twelve speech
acts. While the tagset of moves and games is widely used (Kowtko et al., 1993; Chen
and Di Eugenio, 2013; Ribeiro et al., 2022), annotation at the level of transactions is
very difficult, resulting in low inter-annotator agreement (Carletta et al., 1997).

Adapted schemes It is difficult to find the right degree of granularity in a scheme
so that the nuances of dialogue are accurately captured, but without making annotation
too complex. For instance, one problem with studies that use versions of DAMSL is
that a large number of utterances are labelled as “statement”, so no distinction can be
made between them (Margolis et al., 2010; Robe et al., 2020). The need for additional
layers and tags is even more evident in tasks that involve more than textual data. Ar-
guably, though, all NLP tasks could benefit from processing input in more than one
modality: Stolcke et al. (2000), for instance, achieve greater speech act classification
accuracy when combining word features with prosodic features. Some tasks involve
yet more modalities, such as processing hand gestures. One example is the ELDERLY-
AT-HOME multimodal corpus, where researchers had to expand the HCRC MapTask
tagset to include labels that could describe the haptic actions involved in the task of
providing care to elderly people — e.g., grabbing an object that the other person asks
for (Chen and Di Eugenio, 2013).

3.3. ISO standard

As we have described, numerous annotation schemes exist, some focused on coher-
ence relations, some more focused on speech acts, all with different degrees of gran-
ularity, and with varied suitability for multimodal annotation. In order to promote re-
source reusability, an ISO standard has been proposed for dialogue annotation, derived
from the DIT++ annotation scheme (Bunt, 2009; Bunt, 2019; ISO, 2019). It appears
to be mostly influenced by Speech Act Theory, as the focus is on annotating utter-
ance function (ibid). It is intended to be suitable for multimodal annotation. Though

Dialogue annotation for pair programming 23

the annotation guidelines do not define any specific tags for non-textual modalities
(e.g., eye gaze, facial gestures, hand movements, etc.), contributions in these modali-
ties could be tagged with any of the standard’s communicative function labels which
described the function of the gesture. Furthermore, Petukhova and Bunt (2012) give
some detailed examples of how such contributions could be coded following the ISO
standard. In our example, for instance, the annotations for utterance 6 would feature
a label called “handMove” with a shape parameter set to “pointing”. The standard
aims to be highly flexible: it consists of hierarchical labels across two general-domain
functions and nine domain-specific functions (Bunt, 2009; Bunt, 2019; ISO, 2019).
Depending on the needs of annotators, labels can be assigned on as many functions
as is seen fit, and the hierarchy can be employed to the depth that is deemed appro-
priate (ibid). For instance, Zarisheva and Scheffler (2015) used the ISO standard on
Twitter conversations; they attempted to simplify annotation by assigning labels on
only one function per utterance, but found that this lowered inter-annotator agree-
ment. The hierarchy also provides flexibility not only for how deeply or widely it
can be used, but also for its expansion: the task function is given empty in the stan-
dard, leaving it to researchers to complete it with whichever functions they require
(Bunt, 2009; Bunt, 2019; ISO, 2019). The ISO standard also defines a representa-
tion standard, the Dialogue Act Markup Language, which offers many options for
enriching the annotations (ibid). For instance, it supports adding rhetorical relations
through another ISO standard; thus, this standard can combine the two main trends
in discourse annotation, with both speech act and rhetorical relation labels (ibid). In
addition to the rhetorical relations, the standard also defines its own dependence re-
lations between utterances: feedback and function relations (ibid). The standard has
already demonstrated its usability for NLP tasks. For instance, Ribeiro et al. (2022)
successfully apply convolutional neural networks to the classification of speech acts
in dialogue text annotated with the standard.

3.4. Segmentation

We have discussed different ways in which dialogue segments can be labelled. How-
ever, the question remains of how to divide dialogues into relevant segments. In re-
lational schemes, the common practice seems to be segmenting utterances by clauses
(elementary discourse units) when using RST, and by sentences when using the PDTB
scheme (Polakova et al., 2017; Sanders et al., 2021). When following a scheme based
on Speech Act Theory, one option is annotating full turns (i.e., everything a speaker
says before being interrupted by another, or before ending the dialogue) (Das and Pon-
Barry, 2018). However, a common approach is annotating by utterances, which can
be equivalent to a turn, but also to a set of turns or a turn fragment (Bunt, 2009; Bunt
and Prasad, 2016; Bunt, 2019). What does then define the boundaries of an utterance?
Core and Allen (1997), in line with Grosz and Sidner’s (1986) theory of intentional
structure, find these boundaries in the changes of function: when the speech act starts
fulfilling a new function, that marks the start of a new segment. Nevertheless, Weisser
(2015) acknowledges that this concept of “utterance” is often very vaguely defined;

24 TAL. Volume 63 —n° 3 /2023

“utterance” is then defined by Weisser as the smallest independent unit with seman-
tic and pragmatic content. Nonetheless, most works on dialogue annotation fail to
provide an account of how segmentation was carried out, leaving the definition of
utterance and segment vague and/or implicit.

3.5. Processing dialogue without annotating discourse

Discourse theories have been highly influential for the creation of annotation schemes
to build the corpora used for developing dialogue systems. Nonetheless, such systems
can also be built without complex discourse data. In fact, Pery-Woodley and Scott
(2006) point out that the macro-structures of discourse are built through processing
micro-structures, but macro-structures are not linguistically explicit, which is one of
the main issues for discourse processing in NLP. An option then is to focus on the
smallest micro-elements. This is viable, for instance, in medical dialogue systems:
Liu et al. (2020) build a dialogue system that identifies patients’ gastrointestinal prob-
lems based on the recognition of entities (specific words describing symptoms and
medicines). Advances in deep learning and the higher computational capacity that
has enabled these advances also offer the alternative of developing dialogue systems
without annotating discourse. Recently, for example, Thoppilan et al. (2022) trained
transformer models with billions of unannotated dialogues and other texts to develop
a generic dialogue system. The models were then fine-tuned with data obtained by
having crowd-workers interact with the system (ibid).

4. Pair-programming discourse

As we have detailed in the previous section, there are numerous schemes available for
dialogue annotation. Some of them are focused on specific tasks, whereas others aim
to be applicable to a wide range of dialogue types; some analyze discourse through
the relations between segments, whereas others look at the speaker’s intention when
uttering the segments. And there is also the ISO standard, which combines the differ-
ent approaches and claims to be suitable for a wide range of dialogue annotation tasks
(Bunt, 2009; Bunt, 2019; ISO, 2019). Are this and other schemes then well-suited for
the annotation of dialogues produced in programming tasks, or how would they need
to be customized? To answer this question, we first need to look at what distinguishes
dialogue in this context from other types of dialogue.

We can observe several different types of interactions among programmers — there
are even instances of programmers talking to a cardboard image of another program-
mer to develop their ideas (Bryant et al., 2008). We would like to focus on pair-
programming interactions, as this is a widely employed and studied practice which
has proven to be very beneficial (Hanks et al., 2011). It has also been shown that a
dialogue system facilitating this type of interaction would be highly valuable (Robe
et al., 2020; Kuttal et al., 2021; Robe, 2021). However, no such tool exists yet —
annotated pair-programming dialogue would bring its development closer to reality.

Dialogue annotation for pair programming 25

Such data is lacking; in fact, even unannotated pair-programming data is scarce. Most
works on pair programming are primarily concerned with the results of the practice,
so researchers perform their analysis on the code produced or on participant surveys
rather than dialogue samples (Werner and Denning, 2009; Hanks et al., 2011; Adeliyi
et al., 2021). There are some exceptions; below we summarize the main characteris-
tics of pair-programming dialogue that we have been able to extract from the literature.
As we will detail in Section[5.1] we later aim to gather our own data to enrich the pool
of knowledge on this type of dialogue. In Section|l} we already provided a brief def-
inition of pair programming, as well as a sample transcription from a session. It is
part of the Agile approach to software development; it is “a technique in which two
individuals share a single computer as they work together to develop software” (Hanks
et al., 2011). The programmers normally take either of two roles: the driver and the
navigator — though there is some debate about whether these roles are so clearly dis-
tinct or even always present (Hanks et al., 2011, p. 135). The driver is the person in
charge of the mouse and keyboard, who writes the code, while the navigator offers
some guidance. These roles are often switched. Below we detail what the roles imply
for the dialogue, as well as other characteristics of pair-programming dialogue. We
then end this section with a brief illustration of the phenomena that are observable in
the sample we used as an example.

4.1. Roles

Some of the literature on pair programming, especially when offering guidelines for
the practice, defines very distinct navigator and driver roles, and recommends switch-
ing frequently. However, there often is no observable difference in how navigator and
driver talk (Bryant et al., 2008) with regard to levels of abstraction; the main difference
is mainly control of the keyboard, which may affect how decisions are made, unless
both participants have exactly equal access to the keyboard — such as when there are
two keyboards. Still, differences may be observed in the amount of talk, as the driver
will be focused on typing. Below we summarize how the roles affect some features of
the dialogue.

Switching roles: Switching frequency might be imposed, especially in edu-
cational settings. However, students may find this hinders the natural workflow
(Tsompanoudi et al., 2013). On the other hand, in some sessions the roles are fixed,
particularly if participants do not have two keyboards to switch easily. When switches
happen, they’re often taking advantage of pauses; sometimes, though, the navigator
requests to switch. Sometimes it is easier for the navigator to switch and type than to
explain what they mean (Chong and Hurlbutt, 2007; Zarb and Hughes, 2015).

Driver “muttering”: The drivers, while typing, may verbalize what they are typ-
ing; as most of their attention may be devoted to the typing, their verbalization may
be in the form of “muttering” (Zarb and Hughes, 2015). Whatever the form of the ver-
balization, it is encouraged by experts, as it allows the navigator to understand what
the driver is thinking and see whether they need assistance (ibid).

26 TAL. Volume 63 —n° 3 /2023

Navigator giving instructions: Navigators are encouraged to offer suggestions
to contribute to the program (ibid). In less equitable interactions, these suggestions
may be given in a more domineering tone (Lewis and Shah, 2015). However, such
commands without justification hinder collaboration (Wegerif and Mercer, 1996).

Driver deciding unilaterally: Another example of inequitable interaction and,
thus, unsuccessful collaboration, is when the driver makes decisions on their own.
When only one keyboard and mouse is available for pair programming, whoever has
control of it has the final say about what makes it into the code (Chong and Hurlbutt,
2007). For minor decisions, it may be easier for the navigator to accept what the driver
chose instead of arguing (ibid).

4.2. Multimodality

Like any other form of spoken dialogue, pair programming involves more than verbal
communication (Clark, 2005). Additionally, as pair programming involves working
on some code, the code will be commonly referenced and thus become a key element
of the discourse.

Spoken discourse: The fact that we are dealing with spoken dialogue has some
implications for its structure. The goal of an utterance may not be clear to the speaker
from the beginning (Gregoromichelaki et al., 2011), and this may be reflected in the
structure: sentences may be ungrammatical, there may be repetitions, speakers may
stutter, etc. This is also true for the overall structure of the discourse: regardless of
each individual speaker’s intentions, the intentional structure of the discourse arises
from the joint dialogue (Grosz and Sidner, 1986). Spoken discourse also introduces
prosodic features as an important modality to analyze. In unstructured discourse like
a natural pair-programming interaction, utterances may be as simple and ambiguous
as “mmmm”; a sound like this can indicate both approval and disapproval depending
on the tone (Zarb and Hughes, 2015). Prosody also helps speakers manage turns
(Skantze, 2021).

Gestures: Facial expressions and other body movements play an important role
in communication. For instance, eye gaze can signal attention and serve as a turn-
management device (Heylen et al., 2002). A special kind of gesture is pointing (Chen
and Di Eugenio, 2013); this gesture allows speakers to call a referent into the dis-
course. In the case of pair programming, this can be reference materials (a book, a
whiteboard, a digital guide, etc.) or an element of the code. Additionally, pair pro-
gramming has the peculiarity that pointing can be performed with either the body or
an input device.

Actions replacing utterances: Non-verbal actions can contribute to the joint ac-
tivity just like linguistic actions (Clark, 2005). The driver coding as a reaction to a
suggestion from the navigator is a form of uptake (ibid). Also, sometimes the navi-
gator may find it easier to request to drive and type in code than having to describe it
(Chong and Hurlbutt, 2007).

Dialogue annotation for pair programming 27

4.3. Skill levels

When the participants have different skills levels, that has an impact on the collabora-
tion (Chong and Hurlbutt, 2007; Plonka et al., 2015). Due to the interaction of diverse
factors, pairing programmers with different levels may result in both equitable and
inequitable collaboration (Lewis and Shah, 2015). The goal of the session must be
borne in mind: it may be knowledge transfer between expert and novice, or it may be
simply to finish a project (Chong and Hurlbutt, 2007). Where time pressure is more
important than the need to learn, the expert may take a more dominant role, giving
direct instructions or driving without giving explanations (ibid). The novice, on their
part, may take a passive role to avoid feeling like they are slowing down project com-
pletion or making a fool of themselves in front of the expert (ibid). When priority is
given to knowledge transfer, an expert navigator may use mentoring strategies ranging
from least to most explicit: hinting at problems, pointing out specific problems, and
giving clear explanations (Plonka et al., 2015). When the expert is driving, they can
still mentor the novice by verbalizing their thoughts (ibid).

4.4. Domain

Pair programming is a specialized task and, as such, requires specialized terminology.
This can come both from the programming domain and from the domain of the real-
world problem that the code aims to solve. The combination of these domains also
means that the content of the dialogue will switch among different “levels of abstrac-
tion”: from the concrete level of the programming language’s syntax, to the abstract
real-world problem, going through the intermediate level of discussing code sections
(Bryant er al., 2008). It has been hypothesized that each of the two pair-programming
roles deal with different levels. However, studies have contradicted this hypothesis,
showing that both participants speak and initiate dialogue segments at all levels of ab-
straction (Chong and Hurlbutt, 2007; Bryant et al., 2008) (as measured through spe-
cific coding schemes that tag these labels). The studies have also shown that most talk
occurs at the intermediate level of abstraction, the discussion of code sections (ibid).
Dialogue may also occur outside any of the levels, for instance, when the programmers
deviate from the task and talk socially (Bryant et al., 2008). However, these off-topic
utterances may also be valuable for the interaction: e.g., they may help programmers
disconnect from a difficult problem and reapproach it with a fresh perspective (Zarb
and Hughes, 2015). Other disruptions to the workflow, of course, may be undesirable
interruptions. One such kind may be an interruption from a third party outside the
pair, or the pair programmers getting distracted (Chong and Siino, 2006).

4.5. Collaboration

Pair programming is a collaborative task, as participants work towards solving the
same task jointly. For collaboration to be successful, participants need to discuss the

28 TAL. Volume 63 —n° 3 /2023

task with each other, make joint decisions, build on each other’s ideas, correct each
other’s mistakes, and justify their contributions (Wegerif and Mercer, 1996; Bigman
et al., 2021). These features can be observed in successful implementations of the
pair-programming technique. A good understanding between pair-programming part-
ners is known as “jelling” (Adeliyi et al., 2021). Jelling can result in some peculiar
discourse phenomena. For example, participants may repeat what the other said to
show uptake. Other phenomena resulting from good rapport may make the dialogue
difficult to interpret to third parties. For instance, when there is great common ground,
it may not be necessary for participants to finish their sentences: they may be finished
by their partner or be left unfinished.

4.6. Example

In the example that we have presented (Section[I)), we can observe many of the fea-
tures that we have discussed. The participants only had one keyboard, which may
have deterred them from switching roles. They have a similar skill level, which may
have facilitated their successful collaboration. They establish such a good connection
that they are even able to finish each other’s thoughts, evidence of great shared com-
mon ground (Clark, 2005): e.g., when they discuss array characteristics in Python.
Despite the equitable collaboration, we are able to see some of the characteristics that
distinguish the role of driver and navigator: e.g., the navigator offers suggestions, and
the driver types them in, in one instance verbalizing what they are typing through
“muttering”. The driver’s actions also remind us of the importance of multimodality:
non-linguistic actions such as saving a file when the navigator suggests doing so is a
form of uptake. Multimodality is also important for turn-taking: we can clearly see the
participants facing each other to indicate the end of a turn, especially after questions.
They also often point at the screen or reference materials when discussing them. We
also see several features reflective of spoken discourse. For instance, some sentences
are left unfinished (e.g., “I think...”). We also see the navigator starting to discuss
how arrays always start a certain way, only to change his mind mid-sentence (turn
27). Another interesting feature is the large number of sentences starting with “so”
(e.g., turns 7, 11, or 12), structuring the discourse in an improvised manner. In this
fragment we cannot see the whole range of abstraction levels that can be discussed in
a pair-programming session — here we mainly see the intermediate level (discussing
broad aspects of the program), which may be the most frequent one in pair program-
ming (Chong and Hurlbutt, 2007; Bryant et al., 2008). What we observe abundantly,
though, is the use of terminology: the participants are often referring to temperatures
(problem domain terminology), and using many programming terms (e.g., “print list”,

9%

“variable”, “array”, etc.).

Dialogue annotation for pair programming 29

5. Conclusions

In the previous sections, we have looked at the most influential discourse theories and
dialogue annotation schemes, as well as the main characteristics of dialogue during
pair-programming sessions; thus, we may now attempt to answer our initial question:
how can pair-programming dialogue be annotated for its analysis and the development
of NLP-based systems that can assist programmers in these sessions?

Discourse theories, particularly Clark and Schaeffer’s work (Clark and Schae-
fer, 1989), have allowed us to see that dialogues are joint activities. As such,
they consist of contributions that need to be accepted by partners (uptake). Es-
pecially in a context like pair programming, where we seek effective collabora-
tion, we need to annotate whether this uptake takes place. The ISO standard
(Bunt, 2009; Bunt, 2019; ISO, 2019) captures this concept through dependence re-
lations between utterances (feedback and functional relations), as well as feedback
and dialogue management functions.

Grosz and Sidner’s (1986) influential description of an attentional space and Clark’s
(2005) theories of common ground also show us the value of representing the speak-
ers’ shared basis. The ISO standard (Bunt, 2009; Bunt, 2019; ISO, 2019) and all the
schemes based on Speech Act Theory allow us to annotate the purpose of segments;
SDRT (Lascarides and Asher, 2008), on the other hand, allows us to build a semantic
representation of the segments and find the most pragmatically plausible referents to
resolve anaphora. With segment purposes and referents, we have the main elements
of the focus space described by Grosz and Sidner (1986). As we mentioned in Section
[3.1] SDRT combines DRT and RST. While the ISO standard does not include the logic
representations of DRT, it does allow for annotation of the coherence relations of RST.

Another important aspect highlighted by influential scholars like Clark (2005), and
evident also from observations of pair-programming sessions, is that multimodality is
very important. The ISO standard (Bunt, 2009; Bunt, 2019; ISO, 2019) is designed to
allow for the annotation of non-verbal contributions to discourse. The standard func-
tions may not accurately describe all non-verbal contributions in pair programming,
but the scheme allows for customization, especially through the Task dimension (ibid).
For instance, we observed that sometimes a contribution may simply be the driver cod-
ing. Additionally, we observed pointing as a frequent form of non-verbal contribution.
Chen and Di Eugenio (2013) adapt the HCRC MapTask scheme to add labels to de-
scribe pointing and other similar hand gestures; a similar Gesture dimension might be
added to the ISO standard. The standard also allows for the optional annotation of
three types of qualifiers: certainty, conditionality, and sentiment. These labels could
allow annotators to capture the information conveyed through prosody and other non-
verbal modalities.

We have mentioned the Task dimension of the ISO standard as an option for labelling
task-related functions of non-verbal contributions, such as the driver coding. This
dimension could code a lot of valuable information for the analysis of pair program-
ming. For instance, Wood et al. (2018) distinguish utterances not simply by general

30 TAL. Volume 63 —n° 3 /2023

function, like Statement or Question, but also by programming-related topic (e.g., API
or implementation). Other studies code stages of programming-related problem solv-
ing, such as “reviewing code”, “muttering while typing”, and “suggesting” (Zarb and
Hughes, 2015). These studies also see the value of off-task contributions; less desir-
able interruptions of the workflow may also occur frequently, and as such might need
to be coded to be differentiated (Plonka e al., 2012). Another crucial concept related
to pair programming is the participant’s role. While it may not always be distinguish-
able from looking at the utterances (Chong and Hurlbutt, 2007; Bryant et al., 2008), it
would be useful to code who is using the keyboard and/or who has access to it. Roles
are already annotated in some corpora in other settings, such as the HCRC MapTask
corpus, which annotates the roles of Giver (the person giving directions) and Follower
(the person following directions) (Anderson et al., 1991).

Lastly, as the goal in pair programming is often for programmers to improve their
skills through collaboration, it might be valuable to add labels stemming from ped-
agogical theories. For example, a very influential code for dialogue in collaborative
learning tasks was developed by Wegerif and Mercer (1996). These authors distin-
guish one type of talk, disputational talk, which is not conducive to learning, as it
merely fosters conflict. Tsan et al. (2021) offer a more fine-grained classification of
conflict that includes some positive conflict. Task-related conflict may even constitute
what Wegerif and Mercer (1996) consider the most effective kind of talk for learning:
exploratory talk. Werner and Denning (2009) incorporate Wegerif and Mercer’s theo-
ries with other codes inspired by Vygotskyan theories. Useful codes are also found in
Plonka et al. (2015), who analyze mentoring strategies.

5.1. Future work

With this work, we aimed to draw some conclusions about how pair-programming
dialogues could be annotated for the development of dialogue systems. To do this, we
have extracted the most relevant insights from the literature. We started by looking
at the theoretical work, to then examine more practical work on dialogue annotation
and on the analysis of pair programming. This last section described our conclusions,
linking the characteristics of dialogue in general, and pair-programming dialogue in
particular, with existing annotation schemes. However, we have put special empha-
sis on the ISO standard. Standards can make linguistic resources easier to compare
and reuse. The standard for dialogue annotation claims to be usable for a wide range
of dialogue types and annotation uses, and it can be customized. Our analysis of
the literature leads us to suggest that it might be suitable for the annotation of pair-
programming dialogue, provided some customization is made and some of the op-
tional annotations are used, as discussed above in Section[5} A Gesture dimension
would need to be added, and the Task dimension would need to be developed with
labels related to coding actions, pair-programming roles and features of collaboration.
The optional sentiment qualifiers would be useful, and dependence relations should
also be annotated.

Dialogue annotation for pair programming 31

Pair-programming dialogue and similar dialogues have been annotated with simpler
schemes (Robe et al., 2020; Kuttal et al., 2021; Robe, 2021), but this may result in
most of the dialogue being fit into one category. The imbalanced categories then make
it difficult to train models that can be usable for NLP tasks, such as intent detection
in dialogue systems (ibid): how can a dialogue system choose the appropriate policies
if all it knows for most utterances is that they are statements, without any further dis-
tinction? The higher granularity that we recommend here, on the other hand, also has
disadvantages. Firstly, complex annotation schemes may result in low annotation reli-
ability. Additionally, the annotation process becomes slower and thus more expensive.
Therefore, our next work will be testing our hypothesis that a customized version of
the ISO standard is suitable for pair-programming data before any large corpus can be
annotated. We have applied the insights from this paper to annotate the video from
which we extracted our Example 1 (Section [I). This has allowed us to make some
initial decisions about our annotation guidelines, which is the recommended proce-
dure before annotating a larger corpus (Fuoli, 2018). Over the next months, we are
planning to annotate additional videos that we have obtained; this shall help us bet-
ter analyze pair-programming dialogue, as well as continue to refine our annotation
scheme by introducing additional annotators. Afterwards, we plan to collect our own
data to be able to gather richer multimodal input. Once our data is collected, we aim
to start training and testing a subsystem of an NLU component for slot filling (see
Section [T). It is our hope that the outcome of our research will then pave the way for
the development of further system components and eventually the development of a
dialogue system that can effectively function as a pair-programming partner.

* ACKNOWLEDGEMENT: This work has been carried out with financial support
from EPSRC Training Grant DTP 2020-2021 Open University and Toshiba Europe
Limited.

6. References

Adeliyi A., Wermelinger M., Kear K., Rosewell J., “Investigating Remote Pair Programming
In Part-Time Distance Education”, United Kingdom and Ireland Computing Education Re-
search conference, ACM, Glasgow United Kingdom, p. 1-7, 2021.

Admoni H., Scassellati B., “Data-Driven Model of Nonverbal Behavior for Socially Assistive
Human-Robot Interactions”, Proceedings of the 16th International Conference on Multi-
modal Interaction, ACM, Istanbul Turkey, p. 196-199, 2014.

Allan K., “Speech Act Theory: An overview”, Concise encyclopedia of philosophy of language,
Pergamon, Exeter, UK, p. 454-467, 1997.

Allwood J., “A Critical look at Speech Act Theory”, Logic, Pragmatics and Grammar, Univer-
sity of Goteborg, Lund, Sweden, p. 53-99, 1977.

Anderson A., Thompson H. S., Bader M., Bard E., Boyle E. H., Doherty-Sneddon G., Garrod
S. C,, Isard S. D., Kowtko J. C., McAllister J., Miller J., Sotillo C. F., Weinert R., “The
HCRC Map Task Corpus: A Natural Spoken Dialogue Corpus”, Language and Speech, vol.
34,10 4, p. 351-366, 1991.

32 TAL. Volume 63 —n° 3 /2023

Austin J. L., How to do things with words: The William James Lectures deliveres at Harvard
University in 1955, Martino Fine Books, Eastford, CT, 2018.

Bigman M., Roy E., Garcia J., Suzara M., Wang K., Piech C., “PearProgram: A More Fruitful
Approach to Pair Programming”, Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education, ACM, Virtual Event USA, p. 900-906, 2021.

Brown G., Anderson A., Shillcock R., Yule G., Teaching talk, 1** edn, Cambridge University
Press, 1984.

Bryant S., Romero P., du Boulay B., “Pair programming and the mysterious role of the naviga-
tor”, International Journal of Human-Computer Studies, vol. 66, n° 7, p. 519-529, 2008.

Bunt H., “The DIT++ taxonomy for functional dialogue markup”, 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary, 2009.

Bunt H., Guidelines for using 1SO standard 24617-2, Technical report, Tilburg University, 2019.

Bunt H., Prasad R., “ISO DR-Core (ISO 24617-8): Core Concepts for the Annotation of Dis-
course Relations”, ACL 2016, 2016.

Carletta J., Isard A., Isard S., Kowtko J., Doherty-Sneddon G., Anderson A., “The Reliability of
a Dialogue Structure Coding Scheme”, Computational Linguistics, vol. 23, n0 1, p. 13-31,
1997.

Carlson L., Marcu D., Okurowski M. E., “Building a Discourse-Tagged Corpus in the Frame-
work of Rhetorical Structure Theory”, in N. Ide, J. Véronis, J. van Kuppevelt, R. W. Smith
(eds), Current and New Directions in Discourse and Dialogue, vol. 22, Springer Nether-
lands, Dordrecht, p. 85-112, 2003.

Chen L., Di Eugenio B., “Multimodality and Dialogue Act Classification in the RoboHelper
Project”, SIGDIAL, Metz, France, p. 183-192, 2013.

Chong J., Hurlbutt T., “The Social Dynamics of Pair Programming”, 29th International Con-
ference on Software Engineering (ICSE’07), IEEE, Minneapolis, MN, USA, p. 354-363,
2007.

Chong J., Siino R., “Interruptions on software teams: a comparison of paired and solo pro-
grammers”’, Proceedings of the 2006 20th anniversary conference on Computer supported
cooperative work — CSCW ’06, ACM Press, Banff, Alberta, Canada, p. 29, 2006.

Clark H. H., Using language, 6. print edn, Cambridge University Press, Cambridge, 2005.

Clark H. H., Schaefer E. F., “Contributing to Discourse”, Cognitive Science, vol. 13, n© 2,
p- 259-294, 1989.

Core M., Allen J., “Coding Dialogs with the DAMSL Annotation Scheme”, Working Notes of
the AAAI Fall Symposium on Communicative Action in Humans and Machines, Cambridge,
MA, p. 28-35, 1997.

Daradoumis T., “Towards a Representation of the Rhetorical Structure of Interrupted Ex-
changes”, Fourth European Workshop on Trends in Natural Language Generation, An Ar-
tificial Intelligence Perspective, p. 106-124, 1993.

Das R., Pon-Barry H., “Turn-Taking Strategies for Human-Robot Peer-Learning Dialogue”,
Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue, Association
for Computational Linguistics, Melbourne, Australia, p. 119-129, 2018.

Demberg V., Scholman M. C., Asr F. T., “How compatible are our discourse annotation frame-
works? Insights from mapping RST-DT and PDTB annotations”, Dialogue & Discourse,
vol. 10, n® 1, p. 87-135, 2019.

Dialogue annotation for pair programming 33

Dubuisson Duplessis G., Langlet C., Clavel C., Landragin F., “Towards alignment strategies in
human-agent interactions based on measures of lexical repetitions”, Language Resources
and Evaluation, vol. 55, n© 2, p. 353-388, 2021.

Fischer M., Maier E., Stein A., “Generating Cooperative System Responses in Information
Retrieval Dialogues”, Proceedings of the 7" International Workshop on Natural Language
Generation, Kennebunkport, Maine, 1994.

Fuoli M., “A stepwise method for annotating appraisal”, Functions of Language, vol. 25, n© 2,
p- 229-258, 2018.

Gregoromichelaki E., Kempson R., Purver M., Mills G. J., Cann R., Meyer-Viol W., Healey
P. G. T., “Incrementality and intention-recognition in utterance processing”, Dialogue &
Discourse, vol. 2,n0 1, p. 199-233, 2011.

Grice P., “Meaning”, The Philosophical Review, vol. 66, n° 3, p. 377-388, 1957.
Grice P., Studies in the Way of Words, 1991.

Grosz B., Sidner C., “Attention, intentions, and the structure of discourse”, Computational
Linguistics, vol. 12, n® 3, p. 175-204, 1986.

Hanks B., Fitzgerald S., McCauley R., Murphy L., Zander C., “Pair programming in education:
a literature review”, Computer Science Education, vol. 21, n° 2, p. 135-173, 2011.

Heylen D., van Es L., Nijholt A., van Dijk B., “Experimenting with the Gaze of a Conversational
Agent”, International CLASS Workshop on Natural, Intelligent and Effective Interaction in
Multimodal Dialogue Systems, Copenhagen, Denmark, p. 93-100, 2002.

Hou S., Zhang S., Fei C., “Rhetorical structure theory: A comprehensive review of theory,
parsing methods and applications”, Expert Systems with Applications, vol. 157, p. 113421,
2020.

1SO, ISO/DIS 24617-2, Second Edition, Technical report, 2019.

Jordan P. W., Walker M. A., “Learning Content Selection Rules for Generating Object Descrip-
tions in Dialogue”, Journal of Artificial Intelligence Research, vol. 24, p. 157-194, 2005.

Jurafsky D., Martin J., “Chatbots & Dialogue Systems”, Speech and Language Processing,
Stanford University, p. 1-39, 2021.

Jurafsky D., Shriberg E., “Switchboard SWBD-DAMSL shallow-discourse-function annotation
coders manual”’, https://web.stanford.edu/” jurafsky/ws97/manual.augustl.
html, 1997. Accessed on March 10", 2023.

Keuning H., Jeuring J., Heeren B., “A Systematic Literature Review of Automated Feedback
Generation for Programming Exercises”, ACM Transactions on Computing Education, vol.
19, n0 1, p. 1-43, 2019.

Klein M., “An Overview of the State of the Art of Coding Schemes for Dialogue Act Annota-
tion”, in G. Goos, J. Hartmanis, J. van Leeuwen, V. Matousek, P. Mautner, J. Ocelikova,
P. Sojka (eds), Text, Speech and Dialogue, vol. 1692, Springer Berlin Heidelberg, Berlin,
Heidelberg, p. 274-279, 1999.

Kowtko J. C., Isard S. D., Doherty-Sneddon G., “Conversational Games Within Dialogue”,
HCRC Technical Report, vol. 31, p. 1-12, 1993.

Kuttal S. K., Ong B., Kwasny K., Robe P., “Trade-offs for Substituting a Human with an Agent
in a Pair Programming Context: The Good, the Bad, and the Ugly”, Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems, ACM, Yokohama Japan,
p. 1-20, 2021.

https://web.stanford.edu/~jurafsky/ws97/manual.august1.html
https://web.stanford.edu/~jurafsky/ws97/manual.august1.html

34 TAL. Volume 63 —n° 3 /2023

Kuyven N. L., André Antunes C., Jodo de Barros Vanzin V., Luis Tavares da Silva J.,
Loureiro Krassmann A., Margarida Rockenbach Tarouco L., “Chatbots na educa¢ido: uma
Revisdo Sistematica da Literatura”, RENOTE, 2018.

Lascarides A., Asher N., “Segmented Discourse Representation Theory: Dynamic Semantics
With Discourse Structure”, in H. Bunt, R. Muskens (eds), Computing Meaning, Springer
Netherlands, Dordrecht, p. 87-124, 2008.

Lewis C. M., Shah N., “How Equity and Inequity Can Emerge in Pair Programming”, Proceed-
ings of the 11™ annual International Conference on International Computing Education
Research, ACM, Omaha Nebraska USA, p. 41-50, 2015.

Liu W, Tang J., Qin J., Xu L., Li Z., Liang X., “MedDG: A Large-scale Medical Consultation
Dataset for Building Medical Dialogue System”, arXiv:2010.07497 [cs], 2020.

Margolis A., Livescu K., Ostendorf M., “Domain Adaptation with Unlabeled Data for Dialog
Act Tagging”, Proceedings of the 2010 Workshop on Domain Adaptation for Natural Lan-
guage Processing, Association for Computational Linguistics, Uppsala, Sweden, p. 45-52,
2010.

Mitchell C., Boyer K. E., Lester J., “From strangers to partners: examining convergence within
a longitudinal study of task-oriented dialogue”, Proceedings of the 13th Annual Meeting of
the Special Interest Group on Discourse and Dialogue, Seoul, South Korea, p. 94-98, 2012.

Petukhova V., Bunt H., “The coding and annotation of multimodal dialogue acts”, Proceedings
of the 8" International Conference on Language Resources and Evaluation (LREC’12),
European Language Resources Association (ELRA), Istanbul, Turkey, p. 1293-1300, 2012.

Pickering M. J., Garrod S., “Toward a mechanistic psychology of dialogue”, 2004.

Plonka L., Sharp H., van der Linden J., “Disengagement in pair programming: Does it matter?”,
2012 34th International Conference on Software Engineering (ICSE), IEEE, Zurich, p. 496-
506, 2012.

Plonka L., Sharp H., van der Linden J., Dittrich Y., “Knowledge transfer in pair programming:
An in-depth analysis”, International Journal of Human-Computer Studies, vol. 73, p. 66-78,
2015.

Poldkova L., Mirovsky J., Synkova P., “Signalling Implicit Relations: A PDTB - RST Compar-
ison”, Dialogue & Discourse, vol. 8, n° 2, p. 225-248, 2017.

Prasad R., Webber B., Lee A., Joshi A., “Penn Discourse Treebank Version 3.0”, https://
catalog.ldc.upenn.edu/LDC2019T05, 2019. Accessed on March 10", 2023.

Péry-Woodley M.-P., Scott D. R., “Computational Approaches to Discourse and Document
Processing”, Trait. Autom. des Langues, vol. 47, p. 7-19, 2006.

Ribeiro E., Ribeiro R., Martins de Matos D., “Automatic Recognition of the General-Purpose
Communicative Functions Defined by the ISO 24617-2 Standard for Dialog Act Annota-
tion”, Journal of Artificial Intelligence Research, 2022.

Robe P, “Designing a Pair Programming Conversational Agent”, Master’s thesis, University
of Tulsa, Tulsa, Oklahoma, 2021.

Robe P, Kaur Kuttal S., Zhang Y., Bellamy R., “Can Machine Learning Facilitate Remote Pair
Programming? Challenges, Insights & Implications”, 2020 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), IEEE, Dunedin, New Zealand, p. 1-
11, 2020.

https://catalog.ldc.upenn.edu/LDC2019T05
https://catalog.ldc.upenn.edu/LDC2019T05

Dialogue annotation for pair programming 35

Roze C., Braud C., Muller P., “Which aspects of discourse relations are hard to learn? Prim-
itive decomposition for discourse relation classification”, Proceedings of the 20th Annual
SIGdial Meeting on Discourse and Dialogue, Association for Computational Linguistics,
Stockholm, Sweden, p. 432-441, 2019.

Sanders T. J., Demberg V., Hoek J., Scholman M. C., Asr F. T., Zufferey S., Evers-Vermeul
J., “Unifying dimensions in coherence relations: How various annotation frameworks are
related”, Corpus Linguistics and Linguistic Theory, vol. 17,n° 1, p. 1-71, 2021.

Searle J. R., “A taxonomy of illocutionary acts”, Expression and Meaning: Studies in the Theory
of Speech Acts, Cambridge University Press, p. 1-29, 1979.

Skantze G., “Turn-taking in Conversational Systems and Human-Robot Interaction: A Review”,
Computer Speech & Language, vol. 67, p. 101178, 2021.

Skidmore D., “Dialogism and education”, The Routledge International Handbook of Research
on Dialogic Education, p. 27-37, 2019.

Sperber D., Wilson D., Relevance: communication and cognition, 2" edn, Blackwell, 2010.

Stolcke A., Ries K., Coccaro N., Shriberg E., Bates R., Jurafsky D., Taylor P., Martin R., Ess-
Dykema C. V., Meteer M., “Dialogue Act Modeling for Automatic Tagging and Recognition
of Conversational Speech”, Computational Linguistics, vol. 26, n° 3, p. 339-373, 2000.

Taboada M., Mann W. C., “Applications of Rhetorical Structure Theory”, Discourse Studies,
vol. 8, nO 4, p. 567-588, 2006.

Thoppilan R., De Freitas D., Hall J., et al, “LaMDA: Language Models for Dialog Applica-
tions”, arXiv:2201.08239 [cs], 2022.

Tsan J., Vandenberg J., Zakaria Z., Boulden D. C., Lynch C., Wiebe E., Boyer K. E., “Col-
laborative Dialogue and Types of Conflict: An Analysis of Pair Programming Interactions
between Upper Elementary Students”, Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education, ACM, Virtual Event USA, p. 1184-1190, 2021.

Tsompanoudi D., Satratzemi M., Xinogalos S., “Exploring the effects of collaboration scripts
embedded in a distributed pair programming system”, Proceedings of the 18th ACM con-
ference on Innovation and technology in computer science education — ITiCSE ’13, ACM
Press, Canterbury, England, UK, p. 225, 2013.

Warren M., Features of naturalness in conversation, J. Benjamins, 2006.

Wegerif R., Mercer N., “Computers and Reasoning Through Talk in the Classroom”, Language
and Education, vol. 10, n© 1, p. 47-64, 1996.

Weisser M., “Speech act annotation”, in K. Aijmer, C. Rithlemann (eds), Corpus Pragmatics,
Cambridge University Press, Cambridge, p. 84-114, 2015.

Werner L., Denning J., “Pair Programming in Middle School: What Does It Look Like?”,
Journal of Research on Technology in Education, vol. 42, n® 1, p. 29-49, 2009.

Wood A., Rodeghero P., Armaly A., McMillan C., “Detecting Speech Act Types in Developer
Question/Answer Conversations During Bug Repair”, http://arxiv.org/abs/1806.
05130, 2018. Accessed on March 10", 2023.

Zarb M., Hughes J., “Breaking the communication barrier: guidelines to aid communication
within pair programming”, Computer Science Education, vol. 25, n® 2, p. 120-151, 2015.

Zarisheva E., Scheffler T., “Dialog Act Annotation for Twitter Conversations”, Proceedings of
the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue, Associ-
ation for Computational Linguistics, Prague, Czech Republic, p. 114-123, 2015.

http://arxiv.org/abs/1806.05130
http://arxiv.org/abs/1806.05130

	Introduction
	Discourse theories
	Definition
	Key concepts
	Acts and actions
	Cooperative dimension
	Common ground
	Intention
	Structures

	Links between discourse theories and NLP
	Multimodality in dialogue
	Online processing

	Annotation schemes
	Relational schemes
	Rhetorical Structure Theory (RST)
	Mapping relational annotation schemes

	Speech Act Theory
	Schemes derived from Speech Act Theory

	ISO standard
	Segmentation
	Processing dialogue without annotating discourse

	Pair-programming discourse
	Roles
	Multimodality
	Skill levels
	Domain
	Collaboration
	Example

	Conclusions
	Future work

	References

