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Abstract

To proactively offer social media users a safe
online experience, there is a need for systems
that can detect harmful posts and promptly
alert platform moderators. In order to guar-
antee the enforcement of a consistent policy,
moderators are provided with detailed guide-
lines. In contrast, most state-of-the-art models
learn what abuse is from labeled examples and
as a result base their predictions on spurious
cues, such as the presence of group identi-
fiers, which can be unreliable. In this work we
introduce the concept of policy-aware abuse
detection, abandoning the unrealistic expec-
tation that systems can reliably learn which
phenomena constitute abuse from inspecting
the data alone. We propose a machine-friendly
representation of the policy that moderators
wish to enforce, by breaking it down into a
collection of intents and slots. We collect and
annotate a dataset of 3,535 English posts with
such slots, and show how architectures for in-
tent classification and slot filling can be used
for abuse detection, while providing a ratio-
nale for model decisions.1

1 Introduction

The central goal of online content moderation
is to offer users a safer experience by taking
actions against abusive behaviors, such as hate
speech. Researchers have been developing super-
vised classifiers to detect hateful content, starting
from a collection of posts known to be abusive and
non-abusive. To successfully accomplish this task,
models are expected to learn complex concepts
from previously flagged examples. For example,
hate speech has been defined as ‘‘abusive speech
targeting specific group characteristics, such as
ethnic origin, religion, gender or sexual orienta-

1Our code and data are available at https://github
.com/Ago3/PLEAD.

tion’’ (Warner and Hirschberg, 2012), but there
is no clear definition of what constitutes abusive
speech.

Recent research (Dixon et al., 2018) has shown
that supervised models fail to grasp these complex-
ities; instead, they exploit spurious correlations in
the data, they become overly reliant on low-level
lexical features and flag posts because of, for
instance, the presence of group identifiers alone
(e.g., women or gay). Efforts to mitigate these
problems focus on regularization, for example,
preventing the model from paying attention to
group identifiers during training (Kennedy et al.,
2020; Zhang et al., 2020), however, they do
not seem effective at producing better classifiers
(Calabrese et al., 2021). Social media companies,
on the other hand, give moderators detailed guide-
lines to help them decide whether a post should
be deleted, and these guidelines also help en-
sure consistency in their decisions (see Table 1).
Models are not given access to these guidelines,
and arguably this is the reason for many of their
documented weaknesses.

Let us illustrate this with the following exam-
ple. Assume we are shown two posts, the abusive
‘‘Immigrants are parasites’’, and the non-abusive
‘‘I love artists’’, and are asked to judge whether
a new post ‘‘Artists are parasites’’ is abusive.
Although the post is insulting, it does not contain
hate speech, as professions are not usually pro-
tected, but we cannot know that without access to
moderation guidelines. Based on these two posts
alone, we might struggle to decide which label to
assign. We are then given more examples, specif-
ically the non-abusive ‘‘I hate artists’’ and the
abusive ‘‘I hate immigrants’’. In the absence of
any other information, we would probably label
the post ‘‘Artists are parasites’’ as non-abusive.
The example highlights that 1) the current prob-
lem formulation (i.e., given post p and a collec-
tion of labeled examples C, decide whether p
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Post: Artists are parasites

Policy: Posts containing dehumanizing comparisons
targeted to a group based on their protected charac-
teristics violate the policy. Protected characteristics
include race, ethnicity, national origin, disability, reli-
gious affiliation, caste, sexual orientation, sex, gender
identity, serious disease, and immigration status.

Old Formulation: Is the post abusive?
Our Formulation: Does the post violate the policy?

Table 1: Although it is hard to judge whether a
post is abusive based solely on its content, taking
the policy into account facilitates decision mak-
ing. The example is based on the Facebook
Community Standards.

is abusive) is not adequate, since even humans
would struggle to agree on the correct classifica-
tion, and 2) relying on group identifiers is a nat-
ural consequence of the problem definition, and
often not incorrect. Note that the difficulty does
not arise due to the lack of data annotated with
real moderator decisions who would be presum-
ably making labeling decisions according the
policy. Rather, models are not able to distinguish
between necessary and sufficient conditions for
making a decision based on examples alone
(Balkir et al., 2022).

In this work we depart from the common ap-
proach that aims to mitigate undesired model
behavior by adding artificial constraints (e.g.,
ignoring group identifiers when judging hate
speech) and instead re-define the task through
the concept of policy-awareness: given post p
and policy P , decide whether p violates P . This
entails that models are given policy-related in-
formation in order to classify posts like ‘‘Artists
are parasites’’; for example, they know that posts
containing dehumanizing comparisons targeted to
a group based on their protected characteristics
violate the policy, and that profession is not listed
among the protected characteristics (see Table 1).
To enable models to exploit the policy, we for-
malize the task as an instance of intent classifica-
tion and slot filling and create a machine-friendly
representation of a policy for hate speech by
decomposing it into a collection of intents and
corresponding slots. For instance, the policy in
Table 1 expresses the intent ‘‘Dehumanization’’
and has three slots: ‘‘target’’, ‘‘protected charac-
teristic’’, and ‘‘dehumanizing comparison’’. All

slots must be present for a post to violate a pol-
icy. Given this definition, the post in Table 1
contains a target (‘‘Artists’’) and a dehumanizing
comparison (‘‘are parasites’’) but does not vio-
late the policy since it does not have a value for
protected characteristic.

We create and make publicly available the
Policy-aware Explainable Abuse Detection
(PLEAD) dataset, which contains (intent and slot)
annotations for 3,535 abusive and non-abusive
posts. To decide whether a post violates the policy
and explain the decision, we design a sequence-
to-sequence model that generates a structured
representation of the input by first detecting and
then filling slots. Intent is assigned determinis-
tically based on the filled slots, leading to the
final abusive/non-abusive classification. Experi-
ments show our model is more reliable than
classification-only approaches, as it delivers trans-
parent predictions.

2 Related Work

We use abuse as an umbrella term covering any
kind of harmful content on the Web, as this is
accepted practice in the field (Vidgen et al., 2019;
Waseem et al., 2017). Abuse is hard to recognize,
due to ambiguity in its definition and differences
in annotator sensitivity (Ross et al., 2016). Recent
research suggests embracing disagreements by
developing multi-annotator architectures that cap-
ture differences in annotator perspective (Davani
et al., 2022; Basile et al., 2021; Uma et al., 2021).
While this approach better models how abuse is
perceived, it is not suitable for content modera-
tion where one has to decide whether to remove
a post and a prescriptive paradigm is preferable
(Röttger et al., 2022).

Zufall et al. (2020) adopt a more objective
approach, as they aim to detect content that is
illegal according to EU legislation. However, as
they explain, illegal content constitutes only a
tiny portion of abusive content, and no explicit
knowledge about the legal framework is provided
to their model. The problem is framed as the
combination of two binary tasks: whether a post
contains a protected characteristic, and whether it
incites violence. The authors also create a data-
set which, however, is not publicly available.

Most existing work ignores these annotation
difficulties and models abuse detection with
transformer-based models (Vidgen et al., 2021b;
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Table 2: Definition of policy guidelines, intents, and slots associated with them. Example posts and
their annotations. Wording in the guidelines that is mapped onto slots is .

Kennedy et al., 2020; Mozafari et al., 2019).
Despite impressive F1-scores, these models are
black-box and not very informative for moder-
ators. Efforts to shed light on their behavior,
reveal that they are good at exploiting spurious
correlations in the data but unreliable in more re-
alistic scenarios (Calabrese et al., 2021; Röttger
et al., 2021). Although explainability is consid-
ered a critical capability (Mishra et al., 2019)
in the context of abuse detection, to our knowl-
edge, Sarwar et al. (2022) represent the only
explainable approach. Their model justifies its
predictions by returning the k nearest neigh-
bors that determined the classification outcome.
However, such ‘‘explanations’’ may not be easily
understandable to humans, who are less skilled
at detecting patterns than transformers (Vaswani
et al., 2017).

In our work, we formalize the problem of
policy-aware abuse detection as an instance of
intent classification and slot filling (ICSF), where
slots are properties like ‘‘target’’ and ‘‘pro-
tected characteristic’’ and intents are policy rules
or guidelines (e.g., ‘‘dehumanization’’). While
Ahmad et al. (2021) use ICSF to parse and ex-
plain the content of a privacy policy, we are not
aware of any work that infers policy violations in
text with ICSF. State-of-the-art models developed
for ICSF are sequence-to-sequence transform-
ers built on top of pretrained architectures like
BART (Aghajanyan et al., 2020), and also repre-
sent the starting point for our modeling approach.

3 Problem Formulation

Given a policy for the moderation of abusive
content, and a post p, our task is to decide

whether p is abusive. We further note that poli-
cies are often expressed as a set of guidelines
R = {r1, r2, . . . rN} as shown in Table 2 and a
post p is abusive when its content violates any
ri ∈ R. Aside from deciding whether a guideline
has been violated, we also expect our model to
return a human-readable explanation that should
be specific to p (i.e., an extract from the policy
describing the guideline being violated is not an
explanation), since customized explanations can
help moderators make more informed decisions
and developers better understand model behavior.

Intent Classification and Slot Filling The gen-
eration of post-specific explanations requires
detection systems to be able to reason over the
content of the policy. To facilitate this process, we
draw inspiration from previous work (Gupta et al.,
2018) on ICSF, a task where systems have to
classify the intent of a query (e.g., IN:CREATE
CALL for the query ‘‘Call John’’) and fill the
slot associated with it (e.g., ‘‘Call’’ is the filler
for the slot SL:METHOD and ‘‘John’’ for SL:
CONTACT). For our task, we decompose poli-
cies into a collection of intents corresponding to
the guidelines mentioned above, and each intent
is characterized by a set of properties, namely,
slots (see Table 2).

The canonical output of ICSF systems is a
tree structure. Multiple representations have been
defined, each with a different trade-off between
expressivity and ease of parsing. For our use
case, we adopt the decoupled representation pro-
posed in Aghajanyan et al. (2020): Non-terminal
nodes are either slots or intents, the root node is
an intent, and terminal nodes are words attested
in the post (see Figure 1). In this representation,
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Figure 1: Decoupled representation for a post.

it is not necessary for all input words to appear in
the tree (i.e., in-order traversal of the tree cannot
reconstruct the original utterance). Although this
ultimately renders the parsing task harder, it is
crucial for our domain where words can be asso-
ciated with multiple slots or no slots, and rea-
soning over long-term dependencies is necessary
to recognize, for example, a derogatory opinion
(see Figure 1).

Importantly, we first identify the slots occur-
ring in a post and then deterministically infer
the author’s intent, as this renders the output
tree an explanation of the final classification out-
come rather than a post-hoc justification (Biran
and Cotton, 2017). Likewise, since we view the
predicted slots as an explanation for intent, we can-
not jointly perform intent classification and slot
filling, to avoid producing inconsistent expla-
nations (Camburu et al., 2020; Ye and Durrett,
2022).

Hate Speech Taxonomy As a case-study, we
model the codebook2 for hate speech annotations
designed by the Alan Turing Institute (Vidgen
et al., 2021b). This policy is very similar to the
guidelines that social media platforms provide to
moderators and users.3

We obtained an intent from each section of
the policy, and associated it with a set of slots
(see Table 2). We followed the policy guidelines
closely and slots were mostly extracted verbatim
from them (see underlined policy terms in Table 2
which give rise to slots). We refrained from
renaming or grouping slots to create more abstract
labels (e.g., using SL:AbusiveSpeech to
replace SL:DehumanisingComparison, SL:

2https://github.com/bvidgen/Dynamically
-Generated-Hate-Speech-Dataset.

3e.g., https://transparency.fb.com/en-gb
/policies/community-standards/hate-speech.

ThreateningSpeech, SL:Derogatory-
Opinion, and SL:NegativeOpinion). Note
that commonsense knowledge is required to de-
cide whether a span is the right filler for a slot.
For instance, [SL:ThreateningSpeech dog]
would be odd, while [SL:Threatening-
Speech should be shot] would not.

In addition to slots corresponding to different
types of hate speech, most intents have a Target
who is being abused because of a Protected-
Characteristic. In contrast to previous work
(Sap et al., 2020; Ousidhoum et al., 2019), we
distinguish targets from protected groups, as
this allows annotators to better infer the target’s
characteristics from context. A post is deemed
abusive (i.e., violates the policy) if and only if
all slots for at least one of the (hateful) intents
are filled. We also introduce a new intent (i.e.,
IN:NotHateful) to accommodate all posts
that do not violate the policy.

Besides being more machine-friendly, our for-
mulation is advantageous in reducing the amount
of abusive instances required for training, since
a model can learn to predict slots even from
non-abusive instances (e.g., slots SL:Target
and SL:DehumanisingComparison are also
present in the non-abusive ‘‘Artists are para-
sites’’). This is particularly important in this
domain, since in absolute terms, abusive posts
are (luckily) relatively infrequent compared to
non-abusive ones (Founta et al., 2018), and most
harmful content is detected by moderators and
subsequently deleted.

Counter Speech In a few cases, posts might
quote hate speech, but the authors clearly
distance themselves from the harmful mes-
sage. To enable models to correctly recognize
counter speech—speech that directly counters
hate, for example, by presenting facts or reacting
with humor (Mathew et al., 2019)—we intro-
duce a new slot encoding the author’s stance
(i.e., SL:NegativeStance). For instance, the
post ‘‘It’s nonsense to say that Polish people
are nasty’’ expresses a derogatory opinion that
is based on a protected characteristic of a tar-
get (i.e., ‘‘Polish people’’). Even though all slots
for the Derogation intent are filled, the post
is not abusive as the author is reacting to the
hateful message. A post is hateful if and only if
there are fillers for all associated slots but not for
SL:NegativeStance.
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Dehumanization Threatening Derogation Pro Hate Crime Not Hateful
N◦ LCS (%) A (%) N◦ LCS (%) A (%) N◦ LCS (%) A (%) N◦ LCS (%) A (%) N◦ LCS (%) A (%)

Target 972 63.38 97.32 610 71.46 98.60 1102 64.91 97.91 0 — — 836 56.75 95.16
ProtectedCharacteristic 1006 75.50 95.02 639 82.44 97.08 1156 78.63 95.16 0 — — 139 68.45 93.60
DehumanisingComparison 883 50.99 96.32 0 — — 0 — — 0 — — 36 60.42 97.22
ThreateningSpeech 0 — — 585 56.89 97.55 0 — — 0 — — 48 51.45 96.63
DerogatoryOpinion 0 — — 0 — — 994 45.56 93.50 0 — — 378 48.97 92.98
HateEntity 0 — — 0 — — 0 — — 173 69.87 94.64 1 100.00 33.33
Support 0 — — 0 — — 0 — — 173 44.44 90.71 0 — —
NegativeStance 0 — — 0 — — 0 — — 0 — — 40 53.87 94.02

Number of instances 883 585 994 173 900

Table 3: Number of occurrences per slot for each intent; inter-annotator agreement measured by Longest
Common Subsequence score (LCS), and percentage of annotations approved by expert (A).

4 The PLEAD Dataset

Post Selection To validate our problem for-
mulation and for model training we created a
dataset consisting of posts with slot annotations
(e.g., Target, ThreateningSpeech). We
built our annotation effort on an existing dataset
associated with the policy guidelines introduced
in Section 3 and extended it with additional span-
level labels. This dataset (Vidgen et al., 2021b)
was created by providing annotators with a clas-
sification model trained on 11 other datasets, and
asking them to write hateful and non-hateful sen-
tences such that they fooled the model in pre-
dicting the opposite class (hateful for non-hateful
and vice versa). The process was iterative, we
used sentences from the second round onwards,
which were annotated with policy violations.

The dataset is not balanced, that is, some poli-
cies are violated more frequently than others. To
mitigate this and reduce annotation costs, we se-
lected all posts from the less popular policies and
a random sample of posts from the most popu-
lar ones. We further merged posts annotated with
derogation and animosity classes as they are sim-
ilar, the main difference being the extent to which
the negative opinion is implied. The number of
selected posts per intent is shown in Table 3. We
note that this is a collection of hard examples,
as they were written so as to fool a state-of-the-
art model. Most non-abusive posts in the dataset
have annotations for all slots save one, or they
contain counter speech and are easily confusable
with hate speech.

Annotation Task We performed two annota-
tion tasks, one for hateful posts and one for non-
hateful ones. For hateful posts, annotators were
presented with the post, information about the
target(s), its characteristics, and the slots. They
were then asked to specify the spans of text cor-
responding to each slot. The dataset already con-

tains annotations about which policy is being
violated. For instance, for posts labeled as Pro
Hate Crime, annotators look for spans corre-
sponding to HateEntity and Support. In-
formation about the target and its characteristics
is also present in metadata distributed with the
dataset, and we used it to steer annotators to-
wards a correct reading of the posts. In general
the original posts, metadata, and labels are of
high-quality; Vidgen et al. (2021b) report ex-
tremely high agreement for instances created dur-
ing round 2, moderate for the following rounds
and disagreements were resolved by an expert
annotator.

Each post can contain multiple targets, and
each target can be associated with multiple pro-
tected characteristics (e.g., black woman indi-
cates both the race and gender of a target). Our
annotation scheme assumes that only one opinion
is annotated for each post. For instance, the post
‘‘I love black people but hate women’’ contains
both a non-hateful and hateful opinion, but we
only elicit annotations for the hateful one. Like-
wise, when a post contains more than one hateful
opinion,4 annotators select the one that better
fits the associated policy and target description.
Equally, for non-hateful posts, we asked annota-
tors to focus on a single opinion, with a prefer-
ence for opinions that resemble hateful messages
(e.g., the second opinion in ‘‘I love cats, but I
wish all wasps dead’’). Annotators could spec-
ify as many spans (and associated slots) as they
thought appropriate, including none. If enough
elements were selected for a post to violate a
rule (e.g., both HateEntity and Support
were specified), annotators were asked whether
the post contained counter speech (and if so, to

4Manual inspection of a sample of hateful instances re-
vealed the percentage of instances with multiple hateful
opinions to be ∼3%.
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specify a span of text for NegativeStance)
or derogatory terms used as reclaimed identity
terms (e.g., the n-word used by a member of the
Black community).

Annotator Selection We recruited annotators
resident in English-speaking countries through
the Amazon Mechanical Turk crowdsourcing
platform. To ensure high-quality annotations we
designed a quiz for each policy rule and assessed
the fairness of the quiz through a two-phase pilot
study: In the first phase annotators were shown the
instructions and asked to annotate eight sentences.
These annotations were then used as possible
correct answers for the quiz or to clarify the
instructions. During the second phase, new anno-
tators were shown the updated instructions and
asked to pass a quiz consisting of three questions.

The pilot showed that most crowdworkers who
understood the task were able to pass the quiz,
but no one was able to pass the quiz without un-
derstanding the task. Only successful annotators
were granted a guideline-specific qualification that
allowed them to annotate real instances. To en-
force consistency, annotators were prompted to
pass a quiz after every 30-post batch, and each
batch contained posts associated with one rule.
To ensure the data was annotated correctly, we
included two control questions in each batch.
These were not simple attention checks, but reg-
ular posts for which the correct answers were
known (from the pilot study). For the annotation
of non-hateful posts, we only admitted annotators
who had submitted at least 300 annotations for
hateful posts, and used the first batch of annota-
tions as a further qualification test. Overall, 75%
of annotations were produced by women, 91%
by people who identify as straight, and 75% by
people with ethnicity other than white. We re-
lease a full breakdown of demographic informa-
tion with our dataset.

Annotation Quality We collected three anno-
tations per post. We measured inter-annotator
agreement, as the length of the longest common
subsequence (LCS) normalized by the length of
the longest span. LCS better reflects our anno-
tation task compared to more standard measures
like Cohen’s Kappa (McHugh, 2012) which could
be calculated on the token level. However, our an-
notators do not consider words indvidually, they
primarily make decisions for sequences of tokens.

Aside from presuming a different annotation task,
token-based Kappa leads to extremely unbalanced
data with the un-annotated tokens vastly out-
numbering the labels of interest, artificially inflat-
ing agreement.

As shown in Table 3, average LCS scores
are high for relations like Target and Pro-
tectedCharacteristic, but drop to ∼45%
for relations like DerogatoryOpinion. After
a quick inspection, we discovered that poor
scores were the result of non-overlapping but
nevertheless valid annotations. For instance, in
‘‘Homosexuality means the end of the family.
The next step is legalizing pedophilia.’’, both
‘‘‘means the end of the family’’ and ‘‘legalizing
pedophilia’’ were annotated as derogatory opin-
ions, but since there is no overlap between the
spans, agreement is 0. To better assess the quality
of the annotations, an expert annotator manually
reviewed 50% in each category. As shown in
Table 3, the percentage of valid annotations was
remarkably high, which leads us to conclude
that they are reliable.

A Note on Ethics To protect annotators from
exposure to hateful content, we tagged our project
with the ‘‘offensive content’’ label on Amazon
Mechanical Turk, included a warning in the task
title, and asked for consent twice (first at the
end of the information sheet, and then with a
one-sentence checkbox). Annotators were pre-
sented with small batches of 30 sentences, and
invited to take a break at the end of each session.
They were also offered the option to quit anytime
during the session, or to abandon the study at
any point. A reminder to seek help in case they
experienced distress was provided at the begin-
ning of each session. The study was approved by
the relevant ethics committee (details removed
for anonymous peer review).

5 Abuse Detection Model

ICSF is traditionally modeled as a sequence-
to-sequence problem where the input utterance
represents the source sequence, and the target
sequence is a linearized version of the corre-
sponding tree. For instance, the linearized ver-
sion of the tree in Figure 1 would be: [IN:
Derogation, [SL:Target, black, people],
[SL:ProtectedCharacteristic, black],
. . . ]. Due to the nature of our domain, where
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Figure 2: We first generate the meaning sketch based on the input post (a), and then refine it by filling the slots
(b). The intent (in red) is inferred deterministically based on predicted slots yslots. The model is trained with an
intent-aware loss (a).

posts can contain multiple sentences, all of
which might have to be considered to discover
policy violations (e.g., because of coreference),
we adopt the conversational approach to ICSF
introduced in Aghajanyan et al. (2020). In this
setting, all sentences are parsed in a single ses-
sion (rather than utterance-by-utterance) which
is pertinent to our task, as we infer intent after
filling the slots, and would otherwise have no
information on which slots to carry over (e.g.,
detecting a target in the first utterance does not
constrain the set of slots that could occur in the
following ones).

Our sequence-to-sequence model is built on
top of BART (Lewis et al., 2020). However, in
canonical ICSF, BART generates the intent first,
and then uses it to look for the slots associated
with it. In our case, intent is inferred post-hoc,
based on the identified slots, not vice versa. Our
model adopts a two-step approach where BART
first generates a coarse representation of the input,
namely, a meaning sketch with coarse-grained
slots, and then refines it (Dong and Lapata, 2018).
The meaning sketch is a tree where non-terminal
nodes are slots, and leaves are <mask> to-
kens. The sketch for the example in Figure 1
and its refined version are shown in Figure 2.
Specifically, we first encode source tokens wi

(Figure 2a):

e1, . . . , e|x| = Encoder(w1, . . . , w|p|)

where |x| is the number of tokens in post x, and
then use the hidden states to generate the meaning
sketch by computing probability distribution pc

over the vocabulary for each time step t as:

dct = Decoderc(e1, . . . , e|x|; d
c
t−1; s

c
t−1)

pct = softmax(Wdct + b)

where sct−i is the incremental state of the decoder.
We then decode the meaning sketch z1, . . . , zT :

zt = argmax(pct)

And refine it (see Figure 2b) by first re-encoding
the source tokens jointly with the meaning
sketch (which is gold at training time, predicted
otherwise):

v1, . . . , v|x|+T = Encoder(w1, . . . , w|x|; z1, . . . , zT )

A second decoder generates then a new probabil-
ity distribution over the vocabulary:

dft = Decoderf (v1, . . . , v|x|+T ; d
f
t−1; s

f
t−1)

p
f
t = softmax(Wdft + b)

At inference time, we use beam search to gener-
ate the final representation starting from pf .

The training objective is to jointly learn to
generate the correct sketch z for post x, and the
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correct tree t from x and z. We define our loss
function for tuple (x, z, t) as:

Lc,i = −
∑

v∈V
1[zi=v] log(pci,v)

Lf,i = −
∑

v∈V
1[ti=v] log(pfi,v)

L = meani(Lc,i) + meani(Lf,i)

where V is the vocabulary and i is an index
over the sequence length.

Although this loss penalizes the model for
hallucinating or missing slots, it does not dis-
criminate between errors that cause the prediction
of a wrong intent, and those that are less rele-
vant (e.g., hallucinating a threat when no target
has been detected). In fact, intent is not part of
our sequence-to-sequence task since it is only
predicted post-hoc. To help the model learn how
combinations of slots relate to intents, we include
intent classification as an additional training task.

We essentially predict intent starting from the
probability of each slot to appear in the sketch
(Figure 2a). In other words, we restrict pct to slot
tokens (e.g., SL:Target) and normalize it, to
obtain a new probability distribution qt over the
set of slots. We aggregate these probabilities by
taking the maximum value over the sequence
length, thus obtaining a single score for each slot.
Since each intent can be modeled as a disjunc-
tion of slot combinations (e.g., the NotHateful
intent could result from a tree containing only a
target, or only a target AND a protected charac-
teristic), we pass the slot scores through two lin-
ear layers with activation functions:

sslots = ReLU(Ws2s q+ bs2s)

sintent = softmax(Ws2i q+ bs2i)

thus obtaining a probability distribution sintent
over intents I . Ws2s ∈ R

|S|×|S| models slot-to-
slot interactions, while Ws2i ∈ R

|S|×|I| models
interactions between combinations of slots and
intents. We then modify our loss to include the
new classification loss for an input post with
intent c:

Lintent = −
∑

i∈I
1[c=i] log(sintent,i)

L = meani(Lc,i) + meani(Lf,i) + Lintent

The new loss aims to assign higher penalty to
meaning sketches that lead to intent misclassifi-
cation. The two linear layers are trained on gold
intents and sketches. The layers are then added to
the BART-base architecture while kept frozen, so
that the model cannot modify its weights to ‘‘cover
up’’ wrong sketches by still mapping them to the
right intents. Note that this additional classifica-
tion task is only meant to improve the quality of
the generated sketches: Intent is added post-hoc
in the output tree depending on the slots that have
been detected (Figure 2a).

6 Experimental Results

We performed experiments on the PLEAD dataset
(Section 4). Rather than learning complex struc-
tures with nested slots, we post-process an in-
stance with T targets into T equivalent instances,
one per target. Furthermore, we discarded in-
stances with reclaimed identity terms as these are
not taken into account by our current modeling
of the policy, and are too infrequent (< 0.01%).
We split the dataset into training, validation, and
test set (80%/10%/10%), keeping the same intent
distribution over the splits.

6.1 Why Explainability?

Our first experiment provides empirical support
for our hypothesis that classifiers trained on col-
lections of abusive and non-abusive posts do not
necessarily learn representations directly related
to abusive speech. We would further argue that
if a model performs well on the test set, it has
not necessarily learned to detect abuse. For this
experiment, we trained RoBERTa (Vidgen et al.,
2021b) with five different random seeds, and
obtained an F1-score of ∼80% in the binary
classification setting with a low standard devia-
tion (see Table 4). We further examined the out-
put of these five RoBERTa models using AAA
(Calabrese et al., 2021) and HateCheck (Röttger
et al., 2021). AAA stands for Adversarial Attacks
against Abuse and is a metric that better captures
a model’s performance on hard-to-classify posts,
by penalizing systems which are biased on low-
level lexical features. It does so by adversarially
modifying the test data (based on patterns found
in the training data) to generate plausible test
samples. HateCheck is a suite of functional tests
for hate speech detection models.
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Seed F1 AAA GIN GIP IND
1 79.04 52.27 58.57 49.05 72.31
2 79.04 54.10 61.43 54.76 50.77
3 80.45 56.70 52.86 75.71 56.92
4 80.74 47.18 34.29 62.86 56.92
5 80.74 35.69 21.43 23.33 52.31
Std 0.89 8.31 17.20 19.44 8.54

Table 4: Performance of RoBERTa on PLEAD
(measured by F1 and AAA) and HateCheck func-
tionality tests for neutral (GIN ) and positive
(GIP ) group identifiers and attacks on individu-
als (IND).

Firstly, we observe high standard deviations
across AAA-scores. Models obtained with seeds
4 and 5 have identical F1-scores, but a gap of 12
points on AAA, suggesting that they may be mod-
eling different phenomena. HateCheck tests on
group identifiers confirm this hypothesis, as the
model trained with random seed 5 misclassifies
most neutral (GIN ) or positive (GIP ) sentences
containing group identifiers as hateful, while the
model trained with seed 4 can distinguish between
different contexts and recognises most positive
sentences as not hateful. Likewise, the models
obtained with seeds 1 and 2 have identical F1-
scores, and also similar AAA-scores, but a 20-
point gap on the test containing attacks on
individuals (IND). This suggests that classifiers
tend to model different phenomena (like the pres-
ence of group identifiers or violent speech) rather
than policy violations and that similarities in
terms of F1-score disguise important differences
amongst models.

6.2 Model Evaluation
Since the output of our model is a parse tree,
we represent it as set of productions and evaluate
using F1 (Quirk et al., 2015) on: (a) the entire
tree (PF1), (b) the top level (i.e., productions
rooted in intent, PF1I ), and (c) the lower level
(i.e., productions rooted in correctly detected slots,
PF1L). We also report exact match accuracy for
the full tree (EMAT ).

We compare our model (BART+MS+I) to ab-
lated versions of itself, including a BART model
without meaning sketches or an intent-aware loss,
and a variant with meaning sketches but no
intent-aware loss (BART+MS). We also com-
pare against two baselines which encode the input

post with an LSTM or BERT, respectively, and
then use a feed-forward neural network to predict
which slot labels should be attached to each to-
ken (Weld et al., 2021). The LSTM was initialized
with GloVe embeddings (Pennington et al., 2014).
For BERT, we concatenate the hidden represen-
tation of each token to the embedding of the
CLS token, and compute the slots associated to a
word as the union of the slots predicted for the
corresponding subwords. We enhance these base-
lines by modeling slot prediction as a multi-
label classification task (i.e., one-vs-one) in line
with Pawara et al. (2020). For each pair of slots
< s1, s2 >, we introduce an output node and use
gold label 1 (−1) if s1 (s2) is the right tag for
the token, and 0 otherwise.

As an upper bound, we report F1 score by
comparing the annotations of one crowdworker
against the others. Recall that annotation of hateful
posts was simplified by asking participants to
look for specific slots; as a result, some scores
are only available for non-hateful instances where
annotators could select from all the slots.

Our results are summarized in Table 5 (scores
are means over five runs; hyperparameter values
can be found in our code documentation). Our
model achieves a production F1 of 52.96%, out-
performing all comparison models. When looking
at the top level of the tree (PF1I ), model perfor-
mance on hateful instances (H) is considerably
inferior to non-hateful ones (NH). This is not
surprising, since hateful instances can be repre-
sented with ∼4 sketches while non-hateful ones
are noiser and can present a larger number of slot
combinations. Model performance at filling cor-
rectly detected slots for hateful and non-hateful
instances is comparable (61.93% and 62.66%),
approaching the human ceiling. EMAT scores are
slightly higher for the non-hateful class, but this
is not unexpected since hateful trees all have at
least three slots, while many non-hateful ones
have only one (i.e., a target).

Our model achieves an F1 of 57.17% on in-
tent classification. In the binary setting, F1 jumps
to 74.84%, suggesting that some mistakes on in-
tent classification are due to the model confusing
different hateful intents. As with all other mod-
els in the literature, the AAA-score is just below
random guessing (Calabrese et al., 2021). Over-
all, improvement with respect to baselines is sig-
nificant for all metrics. We also observe that
both sketches and our intent-aware loss have a
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Model
Tree Intent Hateful?

PF1 PF1I PF1L EMAT F1 F1 AAA MeanH NH All H NH All H NH All H NH All
Humans — 61.52 — — 81.23 — 59.90 55.80 59.29 — 21.59 — — — — —

LSTM 40.66 20.08 36.30 54.20 18.42 45.97 33.91 32.03 34.63 0.00 0.90 0.11 48.10 57.73 40.55 49.14
BERT 40.45 16.58 35.26 59.54 16.92 50.31 25.39 23.43 25.02 0.00 0.00 0.00 52.35 76.77 31.19 53.98

BART 37.57 57.26 41.45 37.73 74.13 45.12 47.82 54.89 49.15 15.51 2.73 5.95 51.78 62.89 54.83 58.86
BART + MS 55.13 38.49 51.92 58.55 33.52 53.77 62.83 61.67 62.63 13.64 13.48 13.60 55.07 69.46 47.00 58.23
BART + MS + I 56.94 36.21 52.96 62.79 28.61 56.29 61.93 62.66 62.04 13.79 14.16 13.88 57.17 74.84 45.83 60.34

Table 5: Production F1 on the full tree (PF1), top layer (PF1I ) and lower layer (PF1L); exact match
accuracy on full tree (EMAT ); F1 on intent classification; F1 and AAA on binary classification. All
scores are computed on the test set and reported as percentages of hateful (H) and non-hateful (NH)
instances, and their combination (All). Best performing models are boldfaced.

1. Never turn your back on [a brown skinned mud monkey]DehumanComp They do whatever the [jews]Target, PC tell them to do
2. I d keep my distance if [I]Target was a l3zv0z because we re coming for you Strong and hard Beware
3. Yes we gotta keep those [foxes]Target out [they steal natural resources]DehumanComp like food at the expense of our pets
4. More [refugees]Target Cool more the merrier There is literally no reason not to do this
5. Children are better off not being adopted and raised by sexually active [couples → women]Target, PC in general [their sexual

degeneracy will mess]DerogatoryOpinion up the children they raise but it won t show immediately
6. Yes we gotta keep those [foxes → apes]Target out [they steal natural resources]DehumanComp like food at the expense of our pets

Table 6: Posts that are incorrectly parsed (but not necessarily incorrectly classified) by our model.

large impact on the quality of the generated trees,
and the intent predictions based on them. PF1L
scores for BART + MS are higher but these are
computed on correctly detected slots; the pro-
portion of correct slots detected by this model
is worse than the full model (see PF1I for
BART+MS vs. BART+MS+I).

6.3 Error Analysis
We sampled 50 instances from the test set, and
manually reviewed the trees generated by the five
variants of our model (one per random seed).
Overall, we observe that error patterns are con-
sistent among all variants. In posts containing
multiple targets, a recurrent mistake is to link the
hateful expression to the wrong target, especially
if the mention of the correct target is implicit
(see example 1 in Table 6).

We also see cases where the parsing is coherent
to the selected target, but this prevents the model
from detecting hateful messages towards a differ-
ent target (e.g., ‘‘l3zv0z’’ in example 2). Some
mistakes stem from difficulty in distinguishing
DerogatoryOpinion from other slots, as in
example 3 where the opinion is misclassified as
a dehumanizing comparison. This is a reasonable
mistake, as comparisons to criminals are consid-
ered dehumanizing according to the policy (and
therefore annotation instructions) and are often
annotated as DehumanisingComparison in
the dataset. We also observe that for posts cor-
rectly identified as non-hateful, the model tends

to miss out on protected characteristics even when
they occur (example 4). The model also halluci-
nates values for slots due to stereotypes prominent
in the dataset. In example 5, ‘‘women’’ is mistak-
enly generated as the target of a sentence about
sexual promiscuity (of couples), and in example
6 the model hallucinates ‘‘apes’’ as the animal
in the comparison. In future work, hallucinations
could be addressed by explicitly constraining the
decoder to the input post.

Finally, we analyzed the behavior of the model
in AAA scenarios, and observed that it struggles
with counter speech, as the negative stance is
often expressed with a negative opinion about
the proponent of the hateful opinion, and there-
fore tagged as DerogatoryOpinion. Adding
words that correlate with the hateful class to
non-hateful posts succeeds in misleading our
model; non-hateful instances often differ from
hateful ones by a slot, rendering distractors more
effective. However, for the same reason, the ad-
dition of such words can also flip the label (e.g.,
adding ‘‘#kill’’ to a post containing a target and
a protected characteristic), and the model is in-
correctly penalized by AAA (which assumes the
label remains the same).

7 Discussion

The overwhelming majority of approaches to de-
tecting abusive language online are based on train-
ing supervised classifiers with labeled examples.
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Classifiers are expected to learn what abuse is
based on these examples alone. We depart from
this approach, reformulate the problem as policy-
aware abuse detection, and model the policy ex-
plicitly as an Intent Classification and Slot Filling
task. Our experiments show that conventional
black-box classifiers learn to model one of the
phenomena represented in the dataset, but small
changes such as different random initialization
can lead the very same model to learn differ-
ent ones. Our ICSF-based approach guides the
model towards learning policy-relevant phenom-
ena, and this can be demonstrated by the explain-
able predictions it produces.

We acknowledge that policies for hate speech,
as most human developed guidelines, leave some
room for subjective interpretation. For instance,
moderators might disagree on whether a certain
expression represents a dehumanizing compari-
son. However, the more detailed the policy is
(e.g., by listing all possible types of comparisons),
the less freedom moderators will have to make
subjective judgments. The purpose of policies is
to make decisions as objective as possible, and our
new problem formulation shares the same goal.

While our model still makes errors, the pro-
posed formulation allows us to precisely pinpoint
where these errors occur and design appropriate
mitigation strategies. This is in stark contrast with
existing approaches, where instability is the con-
sequence of spurious correlations in the data, it
is hard to isolate errors and, consequently, miti-
gation strategies are often not grounded in human
knowledge about abuse. For example, our anal-
ysis showed that our model can sometimes fail
to generate the correct tree by mixing the targets
and sentiments of multiple opinions. This sug-
gests that it would be useful to have nested slots,
for example, a derogatory opinion as the child
of its corresponding target. This could also help
the model learn the difference between deroga-
tory opinions (nested within a target node) and
negative stance (nested within an opinion node),
facilitating the detection of counter speech exam-
ples. Introducing a slot for the proponent of an
opinion could also help, as the model would then
recognise when a hateful opinion is expresed by
someone other than the author.

Finally, we would like to emphasize that our
modeling approach is not policy-specific and
could be adapted to other policies used in indus-
try or academia. Our formulation of abuse detec-

tion and the resulting annotation are compatible
with more than one dataset (e.g., Vidgen et al.,
2021a) and could be easily modified—for ex-
ample, by removing or adding intents and slots.
Extending our approach to other policies would
require additional annotation effort, however,
this would also be the case in the vanilla clas-
sification setting if one were to use a different
inventory of labels.

8 Conclusions

In this work we introduced the concept of
policy-aware abuse detection which we argue al-
lows to develop more interpretable models and
yields high-quality annotations to learn from.
Humans who agree on the interpretation of a post
also agree on its classification label. Our new
task requires models to produce human-readable
explanations that are specific to the input post.
To enable models to reason over the policy, we
formalize the problem of abuse detection as an
instance of ICSF where each policy guideline
corresponds to an intent, and is associated with
a specific set of slots. We collect and release an
English dataset where posts are annotated with
such slots, and design a new neural model by
adapting and enhancing ICSF architectures to our
domain. The result is a model which is more
reliable than existing approaches, and more ‘‘ra-
tional’’ in its predictions and mistakes. In the
future, we would like to investigate whether
and how the explanations our model produces
influence moderator decisions.
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