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Abstract

Discourse parsing has been studied for de-
cades. However, it still remains challenging to
utilize discourse parsing for real-world appli-
cations because the parsing accuracy degrades
significantly on out-of-domain text. In this pa-
per, we report and discuss the effectiveness
and limitations of bootstrapping methods for
adapting modern BERT-based discourse de-
pendency parsers to out-of-domain text with-
out relying on additional human supervision.
Specifically, we investigate self-training, co-
training, tri-training, and asymmetric tri-
training of graph-based and transition-based
discourse dependency parsing models, as well
as confidence measures and sample selection
criteria in two adaptation scenarios: mono-
logue adaptation between scientific disciplines
and dialogue genre adaptation. We also release
COVID-19 Discourse Dependency Treebank
(COVID19-DTB), a new manually annotated
resource for discourse dependency parsing of
biomedical paper abstracts. The experimental
results show that bootstrapping is significantly
and consistently effective for unsupervised
domain adaptation of discourse dependency
parsing, but the low coverage of accurately
predicted pseudo labels is a bottleneck for
further improvement. We show that active
learning can mitigate this limitation.

1 Introduction

Discourse parsing aims to uncover structural or-
ganization of text, which is useful in Natural
Language Processing (NLP) applications such as
document summarization (Louis et al., 2010;
Hirao et al., 2013; Yoshida et al., 2014; Bhatia
et al., 2015; Durrett et al., 2016; Xu et al.,
2020), text categorization (Ji and Smith, 2017;
Ferracane et al., 2017), question answering
(Verberne et al., 2007; Jansen et al., 2014), and
information extraction (Quirk and Poon, 2017).
In particular, dependency-style representation of

discourse structure has been studied intensively
in recent years (Asher and Lascarides, 2003;
Hirao et al., 2013; Li et al., 2014b; Morey et al.,
2018; Hu et al., 2019; Shi and Huang, 2019).
Figure 1 shows an example of discourse depen-
dency structure, which is recorded in COVID-19
Discourse Dependency Treebank (COVID19-DTB),
a new manually annotated resource for discourse
dependency parsing of biomedical abstracts.

State-of-the-art discourse dependency parsers
are generally trained on a manually annotated
treebank, which is available in a limited number
of domains, such as RST-DT (Carlson et al., 2001)
for news articles, SciDTB (Yang and Li, 2018)
for NLP abstracts, and STAC (Asher et al., 2016)
and Molweni (Li et al., 2020) for multi-party
dialogues. However, when the parser is applied
directly to out-of-domain documents, the parsing
accuracy degrades significantly due to the domain
shift problem. In fact, we normally face this issue
in the real world because human supervision is
generally scarce and expensive to obtain in the
domain of interest.

Unsupervised Domain Adaptation (UDA) aims
to adapt a model trained on a source domain, where
a limited amount of labeled data is available, to
a target domain, where only unlabeled data is
available. Bootstrapping (or pseudo labeling) has
been shown to be effective for the UDA problem
of syntactic parsing (Steedman et al., 2003b,a;
Reichart and Rappoport, 2007; Søaard and Rishøj,
2010; Weiss et al., 2015). In bootstrapping for
syntactic parsing, we first train a model on the
labeled source sentences, the model is used to
give pseudo labels (i.e., parse trees) to unlabeled
target sentences, and then the model is retrained on
the manually and automatically labeled sentences.

On the contrary, despite the significant progress
achieved in discourse parsing so far (Li et al.,
2014b; Ji and Eisenstein, 2014; Joty et al., 2015;
Perret et al., 2016; Wang et al., 2017; Kobayashi
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Figure 1: An example of discourse dependency struc-
ture for a COVID-19 related biomedical paper abstract
(Israeli et al., 2020), which we manually annotated for
our new dataset.

et al., 2020; Koto et al., 2021), bootstrapping
for the UDA problem of discourse parsing is
still not well understood. Jiang et al. (2016) and
Kobayashi et al. (2021) explored how to enrich
the labeled dataset using bootstrapping methods;
however, their studies are limited to the in-domain
setup, where the labeled and unlabeled datasets
are derived from the same domain. In contrast
to these studies, we focus on the more realistic
and challenging scenario, namely, out-of-domain
discourse parsing, where the quality and diversity
of the pseudo-labeled dataset become more crucial
for performance enhancement.

In this paper, we perform a series of analyses of
various bootstrapping methods in UDA of modern
BERT-based discourse dependency parsers and
report the effectiveness and limitations of these
approaches. Figure 2 shows an overview of our
bootstrapping system. Specifically, we investigate
self-training (Yarowsky, 1995), co-training (Blum
and Mitchell, 1998; Zhou and Goldman, 2004),
tri-training (Zhou and Li, 2005), and asymmet-
ric tri-training (Saito et al., 2017) of graph-based
and transition-based discourse dependency pars-
ing models, as well as confidence measures and
sample selection criteria in two adaptation sce-
narios: monologue adaptation between scientific
disciplines and dialogue genre adaptation. We
show that bootstrapping improves out-of-domain
discourse dependency parsing significantly and
consistently across different adaptation setups.

Figure 2: An overview of our bootstrapping system for
unsupervised domain adaptation of discourse depen-
dency parsing.

Our analyses also reveal that bootstrapping has
a difficulty in creating pseudo-labeled data that
is both diverse and accurate, which is a current
limiting factor in further improving accuracy, and
furthermore it is difficult to boost the coverage by
simply increasing the number of unlabeled docu-
ments. We show that an active learning approach
can be an effective solution to the limitation.1

The rest of this paper is organized as follows:
Section 2 provides an overview of related studies.
Section 3 clarifies the problem and describes the
methodology: bootstrapping algorithms, discourse
dependency parsing models, confidence measures,
and sample selection criteria. Section 4 describes
the details of COVID19-DTB. Section 5 describes
the experimental setup. In Section 6 we report
and discuss the experimental results and provide
practical recommendations for out-of-domain dis-
course dependency parsing. Finally, Section 7
concludes the paper.

2 Related Work

Various discourse parsing models have been
proposed in the past decades. For constituency-
style discourse structure like RST (Mann and
Thompson, 1988), the parsing models can be cate-
gorized into the chart-based approach (Joty et al.,
2013; Joty et al., 2015; Li et al., 2014a, 2016a),
which finds the globally optimal tree using an effi-
cient algorithm like dynamic programming, or the

1Our code is available at https://github.com
/norikinishida/discourse-parsing. The COVID19-
DTB dataset is also available at https://github.com
/norikinishida/biomedical-discourse-treebanks.
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transition-based (or sequential) approach (Marcu,
1999; Sagae, 2009; Hernault et al., 2010b; Feng
and Hirst, 2014; Ji and Eisenstein, 2014; Wang
et al., 2017; Kobayashi et al., 2020; Zhang et al.,
2020; Koto et al., 2021), which builds a tree in-
crementally by performing a series of decisions.
For dependency-style discourse structure like the
RST variants (Hirao et al., 2013; Li et al., 2014b;
Morey et al., 2018) or Segmented Discourse Rep-
resentation Theory (Asher and Lascarides, 2003),
the models can also be categorized into the graph-
based approach (Li et al., 2014b; Yoshida et al.,
2014; Afantenos et al., 2015; Perret et al., 2016) or
the transition-based (sequential) approach (Muller
et al., 2012; Hu et al., 2019; Shi and Huang, 2019).
Recently, pre-trained transformer encoders such as
BERT (Devlin et al., 2019) and SpanBERT (Joshi
et al., 2019) have been shown to greatly improve
discourse parsing accuracy (Guz and Carenini,
2020; Koto et al., 2021). In this paper, we are not
aiming at developing novel parsing models. In-
stead, we aim to investigate the effectiveness and
limitations of bootstrapping methods for adapting
the modern BERT-based discourse parsers.

Manually annotated discourse treebanks are sig-
nificantly scarce, and their domains are limited.
For example, the most popular discourse tree-
bank, RST-DT (Carlson et al., 2001), contains
only 385 labeled documents in total. To address
the lack of large-scale labeled data, a number
of semi-supervised, weakly supervised, and un-
supervised techniques have been proposed in the
discourse parsing literature. Hernault et al. (2010a)
proposed a semi-supervised method that utilizes
unlabeled documents to expand feature vectors
in SVM classifiers in order to achieve better
generalization for infrequent discourse relations.
Liu and Lapata (2018) and Huber and Carenini
(2019) proposed to exploit document-level class
labels (e.g., sentiment) as distant supervision to in-
duce discourse dependency structures from neural
attention weights. Badene et al. (2019a,b) investi-
gated a data programming paradigm (Ratner et al.,
2016), which uses rule-based labeling functions to
automatically annotate unlabeled documents and
trains a generative model on the weakly supervised
data. Kobayashi et al. (2019) and Nishida and
Nakayama (2020) proposed fully unsupervised
discourse constituency parsers, which can produce
only tree skeletons and rely strongly on pre-trained
word embeddings or human prior knowledge on
document structure.

Technically most similar to our work, Jiang
et al. (2016) and Kobayashi et al. (2021) proposed
to enlarge the training dataset using a combination
of multiple parsing models. Jiang et al. (2016)
used co-training for enlarging the RST-DT train-
ing set with 2,000 Wall Street Journal articles,
with a focus on improving classification accu-
racy on infrequent discourse relations. Kobayashi
et al. (2021) proposed to exploit discourse sub-
trees that are agreed by two different models for
enlarging the RST-DT training set. Interestingly,
their proposed methods improved the classifica-
tion accuracy especially for infrequent discourse
relations.

These studies mainly assume the in-domain sce-
nario and focus on enlarging the labeled set (e.g.,
RST-DT training set) using in-domain unlabeled
documents, and the system evaluation is generally
performed on the same domain with the original
labeled set (e.g., RST-DT test set). In this paper,
instead, we particularly focus on the UDA sce-
nario, where the goal is to parse the target-domain
documents accurately without relying on human
supervision in the target domain. We believe this
research direction is important for developing us-
able discourse parsers, because a target domain to
which one would like to apply a discourse parser is
normally different from the domains/genres of ex-
isting corpora, and manually annotated resources
are rarely available in most domains/genres.

3 Method

3.1 Problem Formulation

The input is a document represented as a se-
quence of clause-level (in single-authored text)
or utterance-level (in multi-party dialogues) spans
called Elementary Discourse Units (EDUs).2 Our
goal is to derive a discourse dependency structure,
y = {(h, d, r) | 0 ≤ h ≤ n, 1 ≤ d ≤ n, r ∈ R},
given the input EDUs, x = e0, e1, . . . , en, which
is analogous to syntactic dependency structure.
A discourse dependency, (h, d, r), represents that
the d-th EDU (called dependent) relates to the h-th
EDU (called head) directly with the discourse re-
lation r ∈ R. Each EDU except for the root node,
e0, has a single head.

In this paper, we assume that we have a lim-
ited number of labeled documents in the source

2We call both single-authored text and multi-party
dialogues as documents.
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domain, while a large collection of unlabeled
documents is available in the target domain. In
particular, we assume that the source and target
domains have different data distributions lexically
or rhetorically (e.g., vocabulary, document length,
and discourse relation distributions), but the do-
mains share the same annotation scheme (e.g.,
definition of discourse relation classes). Our task
is to adapt a parsing model (or models) trained in
the source domain to the target domain using the
unlabeled target data.

3.2 Bootstrapping

The aim of this paper is to investigate the effec-
tiveness and limitations of various bootstrapping
methods in UDA of modern BERT-based dis-
course dependency parsers. We show the overall
flow of the bootstrapping methods in Figure 2. Ini-
tially we have a small set of labeled documents,
Ls, in the source domain, and a large collec-
tion of unlabeled documents, U t, in the target
domain. Then the bootstrapping procedure works
as follows:

(1) Train initial models on Ls = {(xs, ys)}.

(2) Parse unlabeled documents xt ∈ U t using
the current model f , such as, f : U t → Lt =
{(xt, f(xt))}.3,4

(3) Measure the confidence scores of the
pseudo-labeled data and select a subset,
L̃t ⊂ Lt, that is expected to be reliable and
useful.

(4) Retrain the models on Ls ∪ L̃t for several
epochs (set to 3 in this work).

Steps (2)-(4) loop for many rounds until a
predefined stopping criterion is met.

Bootstrapping can be interpreted as a methodol-
ogy where teachers generate pseudo supervision
for students, and the students learn the task on it.
Existing bootstrapping methods vary depending

3For bootstrapping methods that employ multiple models
(e.g., co-training), Lt is created for each model f .

4In our experiments, for every bootstrapping round we
used 5K sampled documents instead of the whole unlabeled
documents U t, because parsing the whole documents at every
bootstrapping round is computationally expensive and does
not scale to a large-scale dataset. The 5K samples were
flashed for every bootstrapping round.

on how the teacher and student models are used.
In this paper, we specifically explore the following
bootstrapping methods: self-training (Yarowsky,
1995; McClosky et al., 2006; Reichart and
Rappoport, 2007; Suzuki and Isozaki, 2008; Huang
andHarper, 2009), co-training (Blum and Mitchell,
1998; Zhou and Goldman, 2004; Steedman et al.,
2003b,a), tri-training (Zhou and Li, 2005; Weiss
et al., 2015; Ruder and Plank, 2018), and asym-
metric tri-training (Saito et al., 2017).

Self-Training Self-Training (ST) starts with a
single model f trained on Ls. The overall proce-
dure is the same as the one described above. The
single model is both a teacher and a student for
itself. Thus, it is difficult for the model to obtain
novel knowledge (or supervision) that the model
has not learn, and its errors may be amplified by
the retraining cycle.

Co-Training Co-Training (CT) starts with two
parsing models, f1 and f2, that are expected to
have different inductive biases with each other.
The two models are pre-trained on the same Ls.
In Step 2, each model independently parses the
unlabeled documents: U t → Lt

i (i = 1, 2). In Step
3, each of the pseudo-labeled sets are filtered by
a selection criterion: Lt

i → L̃t
i. In Step 4, each

model fi is retrained on Ls ∪ Lt
j (j �= i).

In CT, the two models teach each other. Thus,
each model is the teacher and the student for the
other model simultaneously. In contrast to ST,
each model can obtain knowledge that it has not
yet learned. CT can be viewed as enhancing the
agreement between the models.

Tri-Training (TT) Tri-Training (TT) consists
of three different models, f1, f2, and f3, which
are initially trained on the same Ls. In contrast to
CT, where the single teacher fi is used to generate
pseudo labels L̃t

i for the student fj (j �= i), TT
uses two teachers, fi and fj (j �= i), to generate a
pseudo-labeled set Lt

i,j for the remaining student
fk (k �= i, j). We measure the confidence for
the pair of teachers’ parse trees, (yti , y

t
j), using

the ratio of agreed dependencies (described in
Subsection 3.4), based on which we determine
whether or not to include the teachers’ predictions
in the pseudo-labeled set.

Asymmetric Tri-Training (AT) Asymmetric
Tri-training (AT) is an extension of TT for UDA.
A special domain-specific model f t

1 is used only
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for test inference; the other two models, f2 and f3,
are used only to generate pseudo labels L̃t. The
domain-specific model f t

1 is retrained on only L̃t,
while f2 and f3 are retrained on Ls ∪ L̃t.

3.3 Parsing Models

We employ three types of BERT-based dis-
course dependency parsers: (1) A graph-based
arc-factored model (McDonald et al., 2005)
with a biaffine attention mechanism (Dozat and
Manning, 2017), (2) a transition-based shift-
reduce model (Nivre, 2004; Chen and Manning,
2014; Kiperwasser and Goldberg, 2016), and (3)
the backward variant of the shift-reduce model.

EDU Embedding We compute EDU embed-
dings using a pre-trained Transformer encoder.
This manner is common across the three parsing
models, though the Transformer parameters are
untied and fine-tuned separately. Specifically, we
first break down the input document into non-
overlapping segments of 512 subtokens, and then
encode each segment independently by the Trans-
former encoder. Lastly, we compute EDU-level
span embeddings as a concatenation of the Trans-
former output states at the span endpoints (wi and
wj) and the span-level syntactic head word5 wk,
i.e., [wi;wj ;wk].

Arc-Factored Model Arc-Factored Model (A)
is a graph-based dependency parser, which can
find the globally optimal dependency structure
using dynamic programming. Specifically, we
employ the biaffine attention model (Dozat and
Manning, 2017) for computing dependency scores
s(h, d) ∈ R, and we decode the optimal struc-
ture y∗ using Eisner Algorithm, such that the
tree score

∑
(h,d)∈y s(h, d) is maximized. We

predict the discourse relation classes for each
unlabeled dependency (h, d) ∈ y∗ using an-
other biaffine attention layer and MLP, namely,
r∗ = argmax

r
P (r | h, d). To reduce the com-

putational time for inference, we employed the
Hierarchical Eisner Algorithm (Zhang et al.,
2021), which decodes dependency trees from the
sentence level to the paragraph level and then to
the whole text level.

5A span-level syntactic head word is a token whose parent
in the syntactic dependency graph is ROOT or is not within
the EDU’s span. When there are multiple head words in
an EDU, we choose the left most one. We used the spaCy
en core web sm model to obtain the syntactic dependency
graph.

Shift-Reduce Model Shift-Reduce Model (S)
is a transition-based dependency parser, which
builds a dependency structure incrementally by
executing a series of local actions. Specifically, we
employ the arc-standard system proposed by Nivre
(2004), which has a buffer to store the input EDUs
to be analyzed and a stack to store the in-progress
subtrees and defines the following action classes:
SHIFT, RIGHT-ARC-l, and LEFT-ARC-l. We
decode the dependency structure y∗ using a greedy
search algorithm, i.e., taking the action a∗ that is
valid and the most probable at each decision step:
a∗ = argmax

a
P (a | σ), where σ denotes the

parsing configuration.

Backward Shift-Reduce Model We expect that
different inductive biases can be introduced by
processing the document from the back. As the
third model option, we develop a backward variant
of the Shift-Reduce Model (B), which processes
the input sequence in the reverse order.

3.4 Confidence Measures

The key challenge in bootstrapping on out-of-
domain data is how to assess the reliability (or
usefulness) of the pseudo labels and how to select
an error-free and high-coverage subset. We define
confidence measures to assess the reliability of
the pseudo-labeled data. In Section 3.5, we define
selection criteria to filter out unreliable pseudo-
labeled data based on their confidence scores.

Model-based Confidence For the bootstrap-
ping methods that use a single teacher to generate
a pseudo-labeled set (i.e., ST, CT), we define
the confidence of the teacher model based on
predictive probabilities of the decisions used to
build a parse tree. A discourse dependency struc-
ture consists of a set (or series) of decisions.
Therefore, we use the average of the predictive
probabilities over the decisions.6 How to calculate

6We also tested a model-based confidence measure
using the entropy of predictive probabilities, where we
replaced the predictive probability of a decision (e.g.,
P (h∗ | d)) with the corresponding (negative) entropy, e.g.,
−H(h | d) =

∑
0≤h≤n P (h | d) logP (h | d). Entropy has

been used especially in the active learning literature to cal-
culate data uncertainty (Li et al., 2016b; Kasai et al., 2019).
However, the predictive probabilities outperformed the en-
tropy counterparts consistently in our experiments. Thus,
we adopted the predictive probabilities for the model-based
confidence measure.
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the model-based confidence measure C(x, y)
depends on the parsing models:

• Arc-Factored Model:

C(x, y) =
1

2n

n∑
d=1

{P (h | d) + P (r | h, d)},

where (h, d, r) ∈ y.

• Shift-Reduce Model, Backward Model:

C(x, y) =
1

|A(x, y)|
∑

(a,σ)∈A(x,y)

P (a | σ),

where A(x, y) denotes the action and configura-
tion sequence to produce the parse tree y for x.

Agreement-based Confidence For the boot-
strapping methods that use multiple teachers to
generate a pseudo-labeled set (i.e., TT, AT), we
use the agreement level between the two teacher
models as the confidence for the pseudo-labeled
data. Specifically, we compute the rate of la-
beled dependencies agreed between two predicted
structures, yi and yj , as follows:

C(x, yi, yj) =
1

n

n∑
d=1

1
[
hid = hjd ∧ rid = rjd

]
,

where 1[·] is the indicator function, and hid and rid
denote the head and the discourse relation class
for the dependent d in yi, respectively. It is worth
noting that both yi and yj have the same number
of dependencies, n. The higher the percentage
is, the more correct dependencies are expected
to be included.

3.5 Sample Selection Criteria
Inspired by Steedman et al. (2003a), we define
two kinds of sample selection criteria, each of
which focuses on the reliability (i.e., accuracy)
and the usefulness (i.e., training utility) of the
data, respectively.

Rank-above-k This is a reliability-oriented se-
lection criterion. We keep only the top N × k
samples with higher confidence scores, where N
is the number of candidate pseudo-labeled data,
and k ∈ [0.0, 1.0]. Specifically, we first rank
the candidate pseudo-labeled data based on the
teacher-side confidence scores, and then we se-

COVID19-DTB SciDTB

Root Root
Elaboration Elaboration, Progression, Summary
Comparison Contrast, Comparison
Cause-Result Cause-Effect, Explain
Condition Condition
Temporal Temporal
Joint Joint
Enablement Enablement
Manner-Means Manner-Means
Attribution Attribution
Background Background
Findings Evaluation
Textual-Organization –
Same-Unit Same-Unit

Table 1: Discourse relation classes in COVID19-
DTB and their correspondences with SciDTB’s
classes.

lect a subset that satisfies R(x) ≤ N × k. where
R(x) ∈ [1, N ] denotes the ranking of x.

Rank-diff-k This is a utility-oriented selection
criterion. In contrast to Rank-above-k, which re-
lies only on the teacher-side confidence, this
criterion utilizes both the teacher-side and the
student-side confidence scores. This criterion
retain the pseudo-labeled data whose relative rank-
ing on the teacher side is higher than the relative
ranking on the student side by a margin k or more.
Specifically, after ranking the candidates indepen-
dently for each side, we compute the gap of the
relative rankings on the two sides, and then select
a subset that meets Rteacher(x) + k ≤ Rstudent(x).

4 COVID19-DTB

We release a new discourse dependency tree-
bank for scholarly paper abstracts on COVID-19
and related coronaviruses like SARS and MERS
in order to test unsupervised domain adaptation
of discourse dependency parsing. We name our
new treebank COVID-19 Discourse Dependency
Treebank (COVID19-DTB).

4.1 Construction
We followed the RST-DT annotation guideline
(Carlson and Marcu, 2001) for EDU segmen-
tation. Based on SciDTB and Penn Discourse
Treebank (PDTB) (Prasad et al., 2008), we defined
14 discourse relation classes shown in Table 1.
We carefully analyzed the annotation data of
SciDTB and found that some classes are hard
to discriminate even for humans, which can lead
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COVID19-DTB SciDTB

Total number of documents 300 1045 (unique: 798)
Total number of EDUs 6005 15723
Avg number of EDUs / doc 20.0 15.0
Avg dependency distance 2.7 2.5
Max. dependency distance 38 26
Avg Root position 6.6 3.9

Table 2: Dataset statistics for the COVID19-DTB
and SciDTB datasets.

to undesirable inconsistencies in the new dataset.
Thus, we have merged some classes, such as
Cause-Effect + Explain → Cause-Result. Some
classes are also renamed from SciDTB to fit
the biomedical domain, such as Evaluation →
Findings.

First, we sampled 300 abstracts randomly from
the 2020 September snapshot of The COVID-19
Open Research Dataset (CORD-19) (Wang et al.,
2020), which contains over 500,000 scholarly arti-
cles on COVID-19 and related coronaviruses like
SARS and MERS. Then, the 300 abstracts were
segmented into EDUs manually by the authors.
Then, we employed two professional annotators
to give gold discourse dependency structures to the
300 abstracts. The annotators were trained using
a few examples and a manual guideline, and then
they annotated the 300 abstracts independently.7

We divided the results into development and test
splits, each of which consists of 150 examples.

4.2 Corpus Statistics

Table 2 and Figure 3 show the statistics and the
discourse relation distribution of COVID19-DTB.
We also show the statistics and the distribution
of SciDTB for comparison. We mapped discourse
relations in SciDTB to the corresponding classes in
COVID19-DTB. We removed the Root relations
in computing the proportions.

The average number of EDUs per document
in each corpus was 20.0 and 15.0, respectively.
Although the average dependency distances in the
two corpora are almost the same (2.7 vs. 2.5),
the maximum dependency distance of COVID19-
DTB is significantly longer than that of SciDTB.
Furthermore, the average position of Root’s direct
dependent is located further back in COVID19-
DTB (6.6 vs. 3.9). Although the overall discourse

7The inter-annotator agreement is thus not calculated in
the current version of the dataset. Instead, we had several
discussions with each annotator to maintain the annotation
consistency at a satisfactory level.

Figure 3: Distributions of discourse relation classes
in COVID19-DTB and SciDTB. Discourse relations in
SciDTB are mapped to the corresponding classes in
COVID19-DTB.

relation distributions look similar, the propor-
tions of Elaboration and Same-Unit are larger in
COVID19-DTB. These differences reflect the fact
that biomedical abstracts tend to be longer, have
more complex sentences with embedded clauses,
and contain more detailed information, suggesting
the difficulty of discourse parser adaptation across
the two domains.

5 Experimental Setup

Datasets We evaluated the bootstrapping meth-
ods on two UDA scenarios: The first setup was
a monologue adaptation between scientific dis-
ciplines: NLP and biomedicine (especially on
COVID-19), which is actually an important sce-
nario because there is still no text-level discourse
treebank on biomedical documents. We used the
training split of SciDTB (Yang and Li, 2018)
as the labeled source dataset, which contains 742
manual discourse dependency structures on the ab-
stracts in ACL Anthology. We also used the 2020
September snapshot of CORD-19 (Wang et al.,
2020) as the unlabeled target dataset, which con-
tains about 76,000 biomedical abstracts. We used
the development and test splits of COVID19-
DTB for validation and testing, respectively.
The discourse relation labels in the SciDTB
training set were mapped to the corresponding
classes of COVID19-DTB. We mapped Textual-
Organization relations in COVID19-DTB to Elab-
oration, because there is no corresponding class
in SciDTB. We also mapped Temporal relations
in the two datasets to Condition to reduce the
significant class imbalance.

The second setup was an adaptation across di-
alogue genres, that is, dialogues in a multi-party
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game and dialogues in Ubuntu Forum. We used
the training split of STAC (Asher et al., 2016)
as the labeled source dataset, which contains 887
manually labeled discourse dependency structures
on multi-party dialogues in the game, The Settlers
of Catan. We also used the Ubuntu Dialogue
Corpus (Lowe et al., 2015) as the unlabeled tar-
get dataset, which contains dialogues extracted
from the Ubuntu chat logs. We retained dialogues
with 7-16 utterances and 2-9 speakers. We also
removed dialogues with long utterances (more
than 20 words). Finally, we obtained approxi-
mately 70,000 dialogues. We used the develop-
ment and test splits of Molweni (Li et al., 2020)
for validation and testing. Each split contains 500
manually labeled discourse dependency structures
on multi-party dialogues derived from the Ubuntu
Dialogue Corpus.

The unlabeled target documents in both se-
tups were segmented into EDUs using a publicly
available EDU segmentation tool (Wang et al.,
2018).

Evaluation We employed the traditional eval-
uation metrics in dependency parsing literature,
namely, Labeled Attachment Score (LAS) and
Unlabeled Attachment Score (UAS). We also used
Root Accuracy (RA), which indicates how well a
system can identify the most representative EDU
in the document (i.e., the dependent of the special
root node).

Implementation Details As the pre-trained
transformer encoders, we used SciBERT (Beltagy
et al., 2019) and SpanBERT (Joshi et al., 2019)
in the first and second adaptation setups, respec-
tively. The dimensionality of the MLPs in the
arc-factored model and the shift-reduce models
are 100 and 128, respectively. We used AdamW
and Adam optimizers for optimizing the trans-
former’s parameters (θbert) and the task-specific
parameters (θtask), respectively, following Joshi
et al. (2019). We first trained the base models
on the labeled source dataset using the following
hyper-parameters: batch size = 1, learning rate
(LR) for θbert = 2e−5, LR for θtask = 1e−4, warmup
steps = 2.4K. Then, we ran the bootstrapping meth-
ods using the models with: batch size = 1, LR for
θbert = 2e−6, LR for θtask = 1e−5, warmup steps =
7K. We trained all approaches for a maximum of
40 epochs. We applied early stopping when the
validation LAS does not increase for 10 epochs.

Abstracts Dialogues
Method Selection LAS UAS RA LAS UAS

Source-only (A) − 61.3 74.8 82.0 29.9 55.1
Source-only (S) − 61.8 74.5 78.0 33.2 66.1
Source-only (B) − 60.0 72.9 78.0 29.2 55.6
ST (A ← A) above-0.6 65.8 78.7 88.7 34.7 60.6
ST (S ← S) above-0.6 65.3 76.9 84.7 37.9 67.4
CT (A ← S) above-0.6 66.2 78.1 86.0 38.0 64.8
CT (S ← A) above-0.6 66.1 78.2 86.0 39.1 64.4
CT (A ← S) diff-100 66.0 78.3 88.0 38.5 66.5
CT (S ← A) diff-100 66.2 78.8 84.7 39.5 66.0
CT (S ← B) above-0.6 65.3 76.8 84.0 38.1 67.2
CT (B ← S) above-0.6 65.6 76.9 87.3 38.5 67.4
CT (S ← B) diff-100 65.5 76.8 86.0 39.1 67.5
CT (B ← S) diff-100 65.5 76.6 86.7 39.2 67.7
TT (A ← S, B) above-0.6 65.9 78.5 87.3 38.5 66.6
TT (S ← A, B) above-0.6 65.9 78.4 86.0 39.1 66.7
TT (A ← S, B) diff-100 65.4 77.4 86.7 38.6 66.8
TT (S ← A, B) diff-100 65.1 77.7 87.3 38.9 66.5
AT (A ← S, B) above-0.6 64.9 77.3 85.3 36.9 66.7
AT (S ← A, B) above-0.6 65.3 77.4 88.7 38.6 63.2
AT (A ← S, B) diff-100 65.3 77.6 84.7 36.9 65.7
AT (S ← A, B) diff-100 64.6 77.6 85.3 38.2 61.9

Table 3: LAS for methods with and without boot-
strapping in the two UDA setups. Arrows indicate
the teacher and student models: For example, TT
(S ← A, B) shows the test performance of the
Shift-Reduce Model (S) that is trained with the
Arc-Factored Model (A) and the Backward Shift-
Reduce Model (B) using Tri-Training (TT). RA is
omitted for the dialogue adaptation setup because
the accuracy is nearly 100% for most systems.

6 Results and Discussion

6.1 Effectiveness

We verified the effectiveness of bootstrapping
methods on the two UDA scenarios. We evalu-
ated the source-only models, which were trained
only on the labeled source dataset, as the baseline.
Table 3 shows the results. The bootstrapping
methods consistently gave gains in performance
regardless of the adaptation scenarios. The best
systems were CT (A ← S) with Rank-above-0.6
and CT (S ← A) with Rank-diff-100, which out-
performed the source-only systems (e.g., Source-
only (S)) by more than 4.4 LAS points on the
monologue setup (NLP → COVID-19) and by
more than 6.3 LAS points on the dialogue setup
(Game → Ubuntu Forum), respectively. CT, TT,
and AT tended to achieve higher accuracy than
ST, particularly in the dialogue adaptation setup.
These results indicate that bootstrapping is signif-
icantly and consistently effective for UDA of dis-
course dependency parsing in various adaptation
scenarios, and that employing multiple models
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Figure 4: How bootstrapping methods improve per-
formance as a function of document length (i.e., the
number of EDUs) in the target domain.

is particularly effective in reducing the unintended
tendency of ST to amplify its own errors.

Next, we further analyzed in what kind of doc-
uments the bootstrapping system is particularly
effective. We divided the COVID19-DTB test set
into bins by the number of EDUs in each docu-
ment (n ≤ 15, 15 < n ≤ 30, n > 30), and for
each bin we examined the percentage of examples
improved by the bootstrapping systems over the
source-only system. Figure 4 shows the results.
When the document length was 10 or shorter, there
was no improvement in most examples; however,
when the length was longer than 30, the percent-
age was jumped to around 80% with CT, TT,
and AT. These results indicate that the longer the
documents (or maybe the higher the document
complexity) in the target domain, the greater the
benefit of bootstrapping.

We also investigated the importance of employ-
ing different types of parsing models in CT. The
theoretical importance of employing models with
different views (or inductive biases) in CT has
been discussed (Blum and Mitchell, 1998; Abney,
2002; Zhou and Goldman, 2004). We trained base
models with the same neural architecture but with
different initial parameters on the labeled source
dataset, and then retrained them using CT. We can
see from the results in Table 4 that the LAS of CT
using different model types is consistently higher
than that of CT with the same model types, sug-
gesting empirically that it is effective to employ
different model types in bootstrapping.

6.2 Analysis of Confidence Measures

One of the key challenges in bootstrapping for
UDA is to assess the true reliability of pseudo-

Abstracts
Method Selection LAS UAS RA

CT (A ← S) above-0.6 66.2 78.1 86.0
CT (S ← A) above-0.6 66.1 78.2 86.0
CT (A ← A) above-0.6 65.5 77.8 76.0
CT (S ← S) above-0.6 65.5 77.9 86.0

Table 4: Comparison of co-training systems
employing different types or the same type of
parsing models.

labeled data. Here, we analyzed the confidence
measures.

Confidence Scores Correlate with Quality
Regardless of the selection criteria, data with high
confidence scores tend to be selected. Figure 5
(a) shows the relationships between the confi-
dence scores and the parsing quality (LAS) in the
target domain. Specifically, we calculated the con-
fidence scores of each example in the COVID19-
DTB test set, sorted the examples in descending
order of their confidence scores, and evaluated
LAS for each of the top k% subset. We confirmed
that the confidence scores were roughly correlated
with the parsing quality, and the top candidates
of higher confidence tended to be more accurate
than the ones of lower confidence. For example, if
we restricted the test data to the top 10% with the
highest confidence scores, the LAS of CT (A ←
S) with Rank-above-0.6 was 76.8%, which was
much higher than the LAS of this system on the
full test set (i.e., 66.2%).

Confident (Accurate) Pseudo Labels are Biased
Next, we examined what kind of documents are
assigned with higher confidence scores. Figure 5
(b) shows the relationships between the confidence
scores and the document length (i.e., the number of
EDUs). We found the strong correlation between
them: Documents with higher confidence scores
are biased to shorter documents. This bias did not
depend on the confidence measures (model-based
vs. agreement-based), the sample selection crite-
ria, and even the presence of bootstrapping. Based
on these results, we can conjecture that longer
documents tend to be of poor quality (low con-
fidence) and less likely to be included in the
selected pseudo-labeled set L̃t. This conjecture
further implies that the current bottleneck of the
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Figure 5: Relationships between the confidence scores and the parsing quality (LAS) or document length. We
used the examples in the COVID19-DTB test set. The examples are sorted in descending order of the confidence
scores.

Figure 6: Relationships between the document length
and the parsing quality (LAS). Documents are sorted
in descending order of the document length.

bootstrapping systems is the low coverage of the
selected pseudo-labeled set L̃t.

Low Coverage of Accurate Pseudo Labels
Based on the above conjecture, it is natural to
expect that there is too little accurate supervi-
sion for longer documents in the selected pseudo-
labeled set, and that the parsing accuracy of the
bootstrapping systems drop especially for longer
documents. Figure 6 shows the relationships be-
tween the parsing quality and the document length.
The use of bootstrapping methods improved the
overall performance over the source-only systems;
however, regardless of the bootstrapping types,
the performance dropped significantly for longer
documents. These results confirm the shortage of
accurate supervision for longer documents in the
selected pseudo-labeled set.

The Problem is Not Sampling, but Prediction
To alleviate this low-coverage issue, we modified
the confidence measures defined in Subsection
3.4 to select longer documents more aggressively
for the pseudo-labeled set L̃t. We simply omit-
ted the averaging calculation over the decisions.
However, as shown in Figure 6 (see the results
with ‘‘w/o avg.’’), the performance degradation
tendency for longer documents did not change.
This fact indicates that the current bottleneck
is not the low coverage of the selected pseudo-
labeled set L̃t, but the low coverage of accurate
supervision in the candidate pseudo-labeled data
pool, that is, Lt.

6.3 Analysis of Selection Criteria

Another important challenge in bootstrapping for
UDA is to select an error-free and high-coverage
subset from the candidate pseudo-labeled data
pool. Here, we analyzed the selection criteria.

There Is a Reliability-Coverage Trade-off
Varying the parameter k of Rank-above-k and
Rank-diff-k, we examined the final parsing quality
and the average number of selected pseudo-labeled
data (out of 5K candidates). We trained and eval-
uated CT (A ← S) on the COVID19-DTB test
set. Figure 7 (lines with circle markers) shows
the results. Rank-above-k achieved a slightly
higher performance than Rank-diff-k. However,
Rank-diff-k achieved the best performance with
less pseudo-labeled data. More interestingly, we
confirmed that, for both criteria, there is a trade-off
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Figure 7: Impacts of the sample selection criteria (Rank-above-k, Rank-diff-k) for different parameters k. We also
show the results when the number of selected pseudo-labeled data is adjusted to 3K.

between reliability (precision) and coverage (re-
call) in the selected pseudo-labeled set: When k
was too strict (i.e., when k was too small for
Rank-above-k, and when the margin k was too
large for Rank-diff-k), the number of selected
pseudo-labeled data was too small, resulting in
lower LAS. When k was relaxed to some extent,
the number of selected pseudo-labeled data in-
creased and the LAS reached the highest LAS.
However, if k was relaxed further, the accu-
racy decreased from the highest point due to the
contamination of too much noisy supervision.

Quantity Is Not the Only Issue Next, we
evaluated the sample selection criteria with-
out the influence of the number of selected
pseudo-labeled data. We selected the same num-
ber of pseudo-labeled data (set to 3K) across
different k by adjusting the number of the un-
labeled samples (set to 5K in the previous
experiments) appropriately. For example, to se-
lect 3K pseudo-labeled data with Rank-above-0.2,
we sampled 15K unlabeled data at each boot-
strapping round. Figure 7 (lines with rectangle
markers) shows the results. In the region where k
was strict, the LAS curves improved compared to
before the adjustment because the number of se-
lected pseudo-labeled data increased. Meanwhile,
in the region where k was relaxed, the LAS curves
decreased or were retained because the selection
size is decreased. More interestingly, even with
this adjusted setting, the strictest k was not the best
parameter. These results indicate that, although the
number of selected pseudo-labeled data is impor-
tant, it is not the only factor that determines the

Figure 8: Impacts of the number of unlabeled target
documents.

optimal parameter k, and that it is still difficult to
identify truly useful pseudo-labeled data based on
these sample selection criteria alone.

6.4 Increasing the Unlabeled Dataset Size

So far, we have demonstrated that the current ma-
jor limitation of bootstrapping is the difficulty of
generating diverse and accurate pseudo-labeled
data pool Lt. The most straightforward way for
mitigating this low-coverage problem is to in-
crease the number of unlabeled target documents.
Figure 8 shows that increasing the number of
unlabeled data with bootstrapping improved the
parsing quality. However, the quality improve-
ment saturated after 5K documents. These facts
demonstrate that the low-coverage problem can
not be mitigated by simply adding more unlabeled
documents. We suspect this is because increas-
ing the diversity of unlabeled documents does
not always increase the diversity of accurately
pseudo-labeled data.
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Method Confidence LAS

Source-only (S) − 33.2
CT (S ← A) w/ above-0.6 − 39.1
Source-only (S) + AL random 45.2
Source-only (S) + AL model-based 45.8
CT (S ← A) w/ above-0.6 + AL random 45.9
CT (S ← A) w/ above-0.6 + AL model-based 46.4
CT (S ← A) w/ above-0.6 + AL agreement-based 46.3

Table 5: LAS for methods with and without active
learning (AL).

6.5 Active Learning

A more direct and promising solution than in-
creasing the unlabeled corpus size is to manually
annotate a small amount of documents that the
bootstrapping system can not analyze accurately.
We tested the potential effectiveness of active
learning (AL) (Settles, 2009). To emulate the AL
process, we used the Molweni training set (9K
dialogues) as the unlabeled target documents and
leveraged the gold annotation. We first mea-
sured the confidence (or uncertainty) scores of
each unlabeled document using the source-only or
co-training systems that had already been trained
in the dialogue adaptation setup. Then, we sampled
100 documents with the worst confidence scores,
because such data are unlikely to be selected in
bootstrapping and accurately parsed. Finally, we
fine-tuned each model on the 100 actively-labeled
data. We also used random confidence (uncer-
tainty) measures as the baseline, whose results are
averaged over 5 trials. Table 5 shows that, even
though only 100 dialogues were annotated manu-
ally, AL improved the performance significantly,
which was difficult to achieve by bootstrapping
alone. Annotating highly uncertainty data is more
effective than annotating randomly sampled di-
alogues. We can also see that the combination
of bootstrapping and AL achieves higher per-
formance than the source-only model with AL,
suggesting that bootstrapping and AL can be com-
plementary and that bootstrapping is useful to
identify potentially useful data in AL. The per-
formance improvement could be further increased
by repeating bootstrapping and AL alternatively,
which is worth investigating in the future.

6.6 Summary and Recommendations

Here, we summarize what we have learned from
the experiments and push the findings a step

further in order to provide practical guidelines for
out-of-domain discourse dependency parsing.

1. Bootstrapping improves out-of-domain dis-
course dependency parsing significantly and
consistently in various adaptation scenarios.
In particular, we recommend co-training with
the arc-factored and shift-reduce models be-
cause co-training tends to be more effective
and more efficient in training than tri-training
variants.

2. A labeled source dataset that is as close as
possible to the target domain is preferable
to suppress the domain-shift problem. The
labeled source dataset should also follow
the the same annotation framework with the
target domain (e.g., definitions of EDUs and
discourse relation classes).

3. It is reasonable to use the models’ predic-
tive probability as the confidence measure
to filter out noisy pseudo labels, because the
confidence scores correlate with the accuracy
of the pseudo labels. In particular, we recom-
mend the Rank-above-k criterion because,
unlike Rank-diff-k, k is independent of the
number of unlabeled data. However, since
the accurately predicted pseudo labels are
biased towards simpler documents, the pars-
ing accuracy on more complex documents is
difficult to improve even with bootstrapping.

4. The low-coverage problem of pseudo labels
is not alleviated by increasing the number
of unlabeled target documents. We recom-
mend manually annotating a small amount of
target documents using active learning and
combining it with bootstrapping.

7 Conclusion

In this paper, we investigated the effectiveness
and limitation of bootstrapping methods in un-
supervised domain adaptation of BERT-based
discourse dependency parsers. The results demon-
strate that bootstrapping is effective significantly
and consistently in various adaptation scenar-
ios. However, regardless of the tuned confidence
measures and sample selection criteria, the boot-
strapping methods have a difficulty in generating
both diverse and accurate pseudo labels, which is
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the current limiting factor in further improvement.
This low-coverage problem cannot be mitigated
by just increasing the unlabeled corpus size. We
confirmed that the active learning can be the
effective solution to this problem.

We have a limitation in this study: Our ex-
periments use only English documents. Although
bootstrapping and discourse parsing models are
language-independent at the algorithmic level, ex-
periments of domain adaptation require labeled
datasets on both source and target domains for
training and evaluation. In order to investigate the
universality and language-dependence features of
the bootstrapping methods in various languages,
it is necessary to develop discourse treebanks in a
variety of languages.

In the future, we will expand the COVID19-
DTB dataset with additional biomedical abstracts
to facilitate the exploration and application of
discourse parsing technologies to biomedical
knowledge acquisition.
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