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Abstract

Multi-task learning, in which several tasks
are jointly learned by a single model, allows
NLP models to share information from multi-
ple annotations and may facilitate better pre-
dictions when the tasks are inter-related. This
technique, however, requires annotating the
same text with multiple annotation schemes,
which may be costly and laborious. Active
learning (AL) has been demonstrated to op-
timize annotation processes by iteratively se-
lecting unlabeled examples whose annotation
is most valuable for the NLP model. Yet,
multi-task active learning (MT-AL) has not
been applied to state-of-the-art pre-trained
Transformer-based NLP models. This paper
aims to close this gap. We explore various
multi-task selection criteria in three realistic
multi-task scenarios, reflecting different re-
lations between the participating tasks, and
demonstrate the effectiveness of multi-task
compared to single-task selection. Our results
suggest that MT-AL can be effectively used
in order to minimize annotation efforts for
multi-task NLP models.1

1 Introduction

Deep neural networks (DNNs) have recently
achieved state-of-the-art results for many natural
language processing (NLP) tasks and applica-
tions. Of particular importance are contextual-
ized embedding models (McCann et al., 2017;
Peters et al., 2018), most of which imple-
ment Transformer-based architectures with the
self-attention mechanism (Vaswani et al., 2017;
Devlin et al., 2019; Raffel et al., 2020).

Nevertheless, DNNs often require large labeled
training sets in order to achieve good performance.
While annotating such training sets is costly and
laborious, the active learning (AL) paradigm aims
to minimize these costs by iteratively selecting

1Our code base is available at: https://github.com
/rotmanguy/MTAL.

valuable training examples for annotation. Re-
cently, AL has been shown effective for DNNs
across various NLP tasks (Duong et al., 2018; Peris
and Casacuberta, 2018; Ein-Dor et al., 2020).

An appealing capability of DNNs is perform-
ing multi-task learning (MTL): Learning multiple
tasks by a single model (Ruder, 2017). This stems
from their architectural flexibility—constructing
increasingly deeper and wider architectures from
basic building blocks—and in their gradient-based
optimization, which allows them to jointly update
parameters from multiple task-based objectives.
Indeed, MTL has become ubiquitous in NLP
(Luan et al., 2018; Liu et al., 2019a).

MTL models for NLP can often benefit from
using corpora annotated for multiple tasks, par-
ticularly when these tasks are closely related and
can inform each other. Prominent examples of
multi-task corpora include OntoNotes (Hovy et al.,
2006), the Universal Dependencies Bank (Nivre
et al., 2020), and STREUSLE (Schneider et al.,
2018). Given the importance of multi-task corpora
for many MTL setups, effective AL frameworks
that support MTL are becoming crucial.

Unfortunately, most AL methods do not support
annotations for more than one task. Multi-task AL
(MT-AL) was proposed by Reichart et al. (2008)
before the neural era, and adapted by Ikhwantri
et al. (2018) to a neural architecture. Recently,
Zhu et al. (2020) proposed an MT-AL model for
slot filling and intent detection, focusing mostly
on LSTMs (Hochreiter and Schmidhuber, 1997).

In this paper, we are the first to systematically
explore MT-AL for large pre-trained Transformer
models. Naturally, our focus is on closely related
NLP tasks, for which multi-task annotation of
the same corpus is likely to be of benefit. Par-
ticularly, we consider three challenging real-life
multi-task scenarios, reflecting different relations
between the participating NLP tasks: 1. Com-
plementing tasks, where each task may provide

1209

Transactions of the Association for Computational Linguistics, vol. 10, pp. 1209–1228, 2022. https://doi.org/10.1162/tacl a 00515
Action Editor: Yue Zhang. Submission batch: 5/2021; Revision batch: 7/2022; Published 11/2022.

c© 2022 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:grotman@campus.technion.ac.il
mailto:roiri@technion.ac.il
https://github.com/rotmanguy/MTAL
https://github.com/rotmanguy/MTAL
https://doi.org/10.1162/tacl_a_00515


valuable information to the other task: Depen-
dency parsing (DP) and named entity recognition
(NER); 2. Hierarchically related tasks, where one
of the tasks depends on the output of the other:
Relation extraction (RE) and NER; and 3. Tasks
with different annotation granularity: Slot filling
(SF, token level) and intent detection (ID, sen-
tence level). We propose various novel MT-AL
methods and tailor them to the specific proper-
ties of the scenarios in order to properly address
the underlying relations between the participating
tasks. Our experimental results highlight a large
number of patterns that can guide NLP researchers
when annotating corpora with multiple annotation
schemes using the AL paradigm.

2 Previous Work

This paper addresses a previously unexplored
problem: multi-task AL (MT-AL) for NLP with
pre-trained Transformer-based models. We hence
start by covering AL in NLP and then proceed
with multi-task learning (MTL) in NLP.

2.1 Active Learning in NLP

AL has been successfully applied to a variety of NLP
tasks, including semantic parsing (Duong et al.,
2018), syntactic parsing (Reichart and Rappoport,
2009; Li et al., 2016), co-reference resolution
(Li et al., 2020), named entity recognition (Shen
et al., 2017), and machine translation (Haffari
et al., 2009), to name a few. Recent works demon-
strated that models like BERT can benefit from
AL in low-resource settings (Ein-Dor et al., 2020;
Grießhaber et al., 2020), and Bai et al. (2020)
suggested basing the AL selection criterion on lin-
guistic knowledge captured by BERT. Other work
performed cost-sensitive AL, where instances may
have different costs (Tomanek and Hahn, 2010;
Xie et al., 2018). However, most previous work
did not apply AL for MTL, which is our main
focus.

2.2 Multi-task Learning in NLP

MTL has become increasingly popular in NLP, par-
ticularly when the solved tasks are closely related
(Chen et al., 2018; Safi Samghabadi et al., 2020;
Zhao et al., 2020). In some cases, the MTL model
is trained in a hierarchical fashion, where informa-
tion is propagated from lower-level (sometimes
auxiliary) tasks to higher-level tasks (Søgaard
and Goldberg, 2016; Rotman and Reichart, 2019;

Sanh et al., 2019; Wiatrak and Iso-Sipila, 2020).
In other cases, different labeled corpora can
be merged to serve as multi-task benchmarks
(McCann et al., 2017; Wang et al., 2018). This
way, a single MTL model can be trained on mul-
tiple tasks, which are typically only distantly re-
lated. This research considers the setup of closely
related tasks where annotating a single corpus
w.r.t. multiple tasks is a useful strategy.

3 Task Definition - Multi-task
Active Learning

In the MT-AL setup, the AL algorithm is provided
with a textual corpus, where an initial (typically
small) set of n0 examples is labeled for t tasks.
The AL algorithm implements an iterative pro-
cess, where at the i-th iteration the goal of the
AL algorithm is to select ni additional unlabeled
examples that will be annotated on all t tasks, such
that the performance of the base NLP model will
be improved as much as possible with respect to
all of them. While such a greedy strategy of gain-
ing the most in the i-th iteration may not yield the
best performance in subsequent iterations, most
AL algorithms are greedy, and we hence follow
this strategy here as well.

We focus on the standard setup of confidence-
based AL, where unlabeled examples with the
lowest model confidence are selected for an-
notation. Algorithm 1 presents a general sketch
of such AL algorithms, in the context of MTL.
This framework, first introduced by Reichart et al.
(2008), is a simple generalization of the single-task
AL (ST-AL) framework, which supports the
annotation of data with respect to multiple tasks.

Algorithm 1 Multi-task Confidence-based Active
Learning (Confidence-based MT-AL)
Input: Labeled data L (annotated on t tasks), Unlabeled
data U
Algorithm:
For i = 1, . . . , T :

1. Train a multi-task learning (MTL) model h on L.

2. For each u ∈ U calculate its aggregated confidence
score Ch(u) on all t tasks according to h.

3. Choose the ni unlabeled examples from U with the
lowest confidence score Ch(u) and send them for
annotation according to all t tasks.

4. Add the newly labeled examples to L and remove them
from U.
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Selection Method Description Participating Tasks Participating Tasks
for Training for Selection

ST-R Single-task random selection One None
ST-EC Single-task entropy-based confidence One One
ST-DA Single-task dropout agreement One One
MT-R Multi-task random selection All None
MT-EC Multi-task entropy-based confidence All One
MT-DA Multi-task dropout agreement All One
MT-AVG Multi-task average entropy-based confidence All All
MT-AVGDA Multi-task average dropout agreement All All
MT-MAX Multi-task maximum entropy-based confidence All All
MT-MIN Multi-task minimum entropy-based confidence All All
MT-PAR Multi-task Pareto entropy-based confidence All All
MT-RRF Multi-task Reciprocal Rank Fusion entropy-based confidence All All
MT-IND Multi-task independent selection entropy-based confidence All All

Table 1: Summary of the ST-AL and MT-AL selection methods explored in this paper.

As discussed in §1, we explore several vari-
ations of the MT-AL setup: Independent tasks
that inform each other (§5), hierarchically related
tasks, where one task depends on the output of
the other (§6), and tasks with different annotation
granularity: word- and sentence-level (§7). Before
we can introduce the MT-AL algorithms for each
of these setups, we first need to lay their shared
foundations: The single-task and multi-task model
confidence scores.

4 Confidence Estimation in Single-task
and Multi-task Active Learning

We now introduce the confidence scores that we
consider for single-task (ST-AL) and multi-task
(MT-AL) active learning. These confidence scores
are essentially the core of confidence-based AL
algorithms (see Steps 2-3 of Algorithm 1). In
Table 1 we provide a summary of the various
ST-AL and MT-AL selection methods we explore.

4.1 Single-task Confidence Scores
We consider three confidence scores that have
been widely used in ST-AL:

Random (ST-R) This baseline method simply
assigns random scores to the unlabeled examples.

Entropy-based Confidence (ST-EC) The single-
task entropy-based confidence score is defined as:

ST-EC(x) = 1− E(x). (1)

For sentence classification tasks such as ID,
E(x) is simply the entropy over the class predic-
tions of a sample x divided by the log number of
labels. In our token classification tasks (DP, NER,

RE, and SF), E(x) is the normalized sentence-level
entropy (Kim et al., 2006), which allows us to es-
timate the uncertainty of the model for a given
sequence of tokens x = (x1 . . . xm):

E(x) = − 1

m · log s

m∑

i=1

s∑

j=1

p(yj |xi) log p(yj |xi),

(2)
where m is the number of tokens, yj is the j’th
possible label, and s is the number of labels.
We perform entropy normalization by averaging
the token-level entropies, in order to mitigate the
effect of the sentence length, and by dividing the
score by the log number of labels. The resulting
confidence score ranges from 0 to 1, where lower
values indicate lower certainty.

Dropout Agreement (ST-DA) Ensemble meth-
ods have proven effective for AL (see, e.g., Seung
et al., 1992; Settles and Craven, 2008). In this
paper, we derive a confidence score inspired by
Reichart and Rappoport (2007). We start by creat-
ing k = 10 different models by performing drop-
out inference for k times (Gal and Ghahramani,
2016). We then compute the single-task dropout
agreement score for a sentence x by calculating
the average token-level agreement across model
pairs:

ST-DA(x) =
1

m · k · (k − 1)

∑

j �=j ′

m∑

i=1
{ŷji=ŷj

′
i },

(3)
where ŷji is the predicted label of model j for the
i’th token. The resulting scores range from 0 to 1,
where lower values indicate lower certainty.2

2For sentence classification tasks, ST-DA is computed
similarly, without averaging over the tokens.
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4.2 Multi-task Confidence Scores
When deriving confidence scores for MT-AL,
multiple design choices should be made. First, the
confidence score of a multi-task model can be
based on both tasks or only on one of them. We
denote with MT-EC and MT-DA the confidence
scores that are equivalent to ST-EC and ST-DA:
The only (important) difference is that they are
calculated for a multi-task model. For clarity, we
will augment this notation with the name of the
task according to which the confidence is calcu-
lated. For example, ST-EC-NER and MT-EC-NER
are the EC scores calculated using the named en-
tity recognition (NER) classifier of a single-task
and a multi-task model, respectively.

We can hence evaluate MT-AL algorithms on
cross-task selection, that is, when the evaluated
task is different from the task used for computing
the confidence scores (and hence for sample se-
lection). For example, evaluating the performance
of a multi-task model, trained jointly on NER and
DP, on the DP task when the confidence scores
used by the MT-AL algorithm are only based on
the NER classifier (MT-EC-NER).

We also consider a family of confidence scores
for MT-AL that are computed with respect to
all participating tasks (joint-selection scores). For
this aim, we consider three simple aggregation
schemes using the average, maximum, or min-
imum operators over the single-task confidence
scores. For example, the multi-task average con-
fidence (MT-AVG) averages for a sample x the
entropy-based confidence scores over all t tasks:

MT-AVG(x) =
1

t

t∑

i=1

MT-EC-i(x), (4)

The multi-task average dropout agreement
score (MT-AVGDA) is similarly defined, but the
averaging is over the MT-DA scores. Finally,
the multi-task maximum (minimum) MT-MAX
(MT-MIN) is computed in a similar manner to
MT-AVG but with the max (min) operator taken
over the task-specific confidence entropies.

Beyond Direct Manipulations of Confidence
Scores Since our focus in this paper is on
multi-task selection, we would like to consider
additional selection methods which go beyond the
simple methods in previous work. The common
principle of these methods is that they are less sen-
sitive to the actual values of the confidence scores

and instead consider the relative importance of the
example to the participating tasks.

First, we consider MT-PAR, which is based on
the Pareto-efficient frontier (Lotov and Miettinen,
2008). We start by representing each unlabeled
sample as a t-dimensional space vector c, where
ci = MT-EC-i is the MT confidence score for task
i. Next, we select all samples for which the cor-
responding vector belongs to the Pareto-efficient
frontier. A point belongs to the frontier if for
every other vector c′ the following holds: 1.
∀i ∈ [t], ci ≤ c′i and 2. ∃i ∈ [t], ci < c′i. If
the number of samples in the frontier is smaller
than the total number of samples to select (n), we
re-iterate the procedure by removing the vectors
of the selected samples and calculating the next
Pareto points. If there are still p points to be se-
lected but the number of the final Pareto points
(f ) exceeds p, we select every 	fp 
 point, ordered
by the first axis.

Next, inspired by the field of information re-
trieval, we propose MT-RRF. This method allows
us to consider the rank of each example with re-
spect to the participating tasks, rather than the
actual confidence values. We first calculate ri,
the ranked list of the i-th task, by ranking the
examples according to their MT-EC-i scores, from
lowest to highest. We next fuse the resulting
t ranked lists into a single ranked list R, us-
ing the reciprocal rank fusion (RRF) technique
(Cormack et al., 2009). The RRF score of an
example x is computed as:

RRF -Score(x) =
t∑

i=1

1

k + ri(x)
, (5)

where k is a constant, set to 60, as in the original
paper. The final ranking is computed over the RRF
scores of the examples—from highest to lowest.
Higher-ranked examples are chosen first for an-
notation as they have lower confidence scores.
Finally, MT-IND independently selects the 	nt 

most uncertain samples according to each task
by ranking the MT-EC scores and re-iterating if
overlaps occur.

We finally compare the selected samples of six
of the MT-AL methods, after training a multi-task
model for a single AL iteration on the DP and
NER tasks (Figure 1). It turns out that while
some of the methods tend to choose very simi-
lar example subsets for annotation (e.g., MT-IND
and MT-RRF share 94% of the selected samples,
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Figure 1: The percentage of shared selected sam-
ples between pairs of MT-AL selection methods (see
experimental details in the text).

and MT-AVG and MT-MIN share 84% of them),
others substantially differ in their selection (e.g.,
MT-MAX shares only 16% of its selected samples
with MT-MIN and 20% with MT-IND). This ob-
servation encourages us to continue investigating
the impact of the various selection methods on
MT-AL.

5 MT-AL for Complementing Tasks

We start by investigating MT-AL for two closely
related, complementing, syntactic tasks: Depen-
dency Parsing (DP) and Named Entity Recog-
nition (NER), which are often solved together
by a joint multi-task model (Finkel and Manning,
2009; Nguyen and Nguyen, 2021).

5.1 Research Questions

We focus on three research questions. At first, we
would like to establish whether MT-AL methods
are superior to ST-AL methods for multi-task
learning. Our first two questions are hence: Q1.1:
Is multi-task learning effective in this setup? and
Q1.2: Is AL effective? If so, which AL strategy is
better: ST-AL or MT-AL?

Next, notice that in MT-AL the confidence
score of an example can be based on one or more
of the participating tasks. That is, even if the base
model for which training examples are selected
is an MTL model, the confidence scores used by
the MT-AL algorithm can be based on one task or
more (§4.2). Our third question is thus: Q1.3: Is it
better to calculate confidence scores based on one

of the participating tasks, or should we consider a
joint confidence score, based on both tasks?3

5.2 Data

We consider the English version of the OntoNotes
5.0 corpus (Hovy et al., 2006), consisting of
seven textual domains: broadcast conversation
(BC), broadcast news (BN), magazine (MZ),
news (NW), bible (PT), telephone conversation
(TC), and web (WB). Sentences are annotated
with constituency-parse trees, named entities,
part-of-speech tags, as well as other labels. We
convert constituency-parse trees to dependency
trees using the ElitCloud conversion tool.4 We do
not report results in the PT domain, as it is not an-
notated for NER. Table 2 summarizes the number
of sentences per split for the OntoNotes domains,
as well as for the additional datasets used in our
next setups.

5.3 Models

We consider two model types: Single-task and
multi-task models. Our single-task model (ST)
consists of the 12-layer pre-trained BERT-base
encoder (Devlin et al., 2019), followed by a
task decoder. At first, we implemented a simple
multi-task model (SMT), consisting of a shared
12-layer pre-trained BERT-base encoder followed
by an independent decoder for each task. How-
ever, early results suggested that it is inferior to
single-task modeling. We therefore implemented
a more complex multi-task model (CMT), illus-
trated in Figure 2. This model consists of (shared)
cross-task and task-specific modules, similar in
nature to the architecture proposed by Lin et al.
(2018). In particular, it uses the 8 bottom BERT
layers as shared cross-task layers and employs
t + 1 replications of the 4 top BERT layers, one
replication for each task, as well as a shared
cross-task replication. The input text, as encoded
by the shared 8 layers, eS1:8, is passed through the
shared and non-shared 4-layer modules, eS8:12 and
eU

i

8:12, respectively. The task classifiers are then
fed with the output of the cross-task layers com-
bined with the output of their task-specific layers,

3This question naturally generalizes when more than two
tasks are involved.

4https://github.com/elitcloud/elit
-java.
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DP-NER NER-RE SF-ID

BC BN MZ NW TC WB NYT24 NYT29 ScieRC WebNLG WLP ATIS SNIPS

Train 11,877 10,681 6,771 34,967 12,889 15,639 56,193 63,305 1,540 4,973 6,690 4,478 13,084
Dev 2,115 1,293 640 5,894 1,632 2,264 5,000 7,033 217 500 2,320 500 700
Test 2,209 1,355 778 2,325 1,364 1,683 5,000 4,006 451 689 2,343 893 700

Table 2: Data statistics. We report the number of sentences in the original splits for each pair of tasks.

Figure 2: Our complex multi-task model architecture
for DP and NER.

following the gating mechanism of Rotman and
Reichart (2019):

ai(x) = σ(W i
g[e

S
8:12(x); e

U i

8:12(x)] + big),

gi(x) = ai(x)� eS8:12(x) + (1− ai(x))� eU
i

8:12(x),

where ; is the concatenation operator, � is the
element-wise product, σ is the Sigmoid function,
and W i

g and big are the gating mechanism parame-
ters. The combined vector gi(x) is then fed to the
i-th task-specific decoder.5

All implementations are based on Hugging-
Face’s Transformers package (Wolf et al., 2020).6

For all models, the DP decoder is based on the
Biaffine parser (Dozat and Manning, 2017) and
the NER decoder is a simple linear classifier.

5.4 Training and Hyper-parameter Tuning
We consider the following hyper-parameters for
the AL experiments. At first, we randomly sample
2% of the original training set to serve as the initial
labeled examples in all experiments and treat the
rest of the training examples as unlabeled. We

5We considered several other parameter-sharing schemes
but witnessed lower performance.

6https://github.com/huggingface
/transformers.

also fix our development set to be twice the size
of our initial training set, by randomly sampling
examples from the original development set. We
then run each AL method for 5 iterations, where at
each iteration, the algorithm selects an unlabeled
set of the size of its initial training set (that is,
2% of the original training set) for annotation. We
then reveal the labels of the selected examples
and add them to the training set of the next
iteration. At the beginning of the final iteration, our
labeled training set consists of 10% of the original
training data.

In each iteration, we train the models with
20K gradient steps with an early stopping crite-
rion according to the development set. We report
LAS scores for DP and F1 scores for NER. For
DP, we measure our AL confidence scores on
the unlabeled edges. When performing multi-task
learning, we set the stopping criterion as the geo-
metric mean of the task scores (F1 for NER and
LAS for DP). We optimize all parameters using
the ADAM optimizer (Kingma and Ba, 2015) with
a weight decay of 0.01, a learning rate of 5e-5,
and a batch size of 32. For label smoothing (see
below), we use α = 0.2. Following Dror et al.
(2018), we use the t-test for measuring statistical
significance (p-value = 0.05).

5.5 Results

Model Architecture (Q1.1) We would first like
to investigate the performance of the single-task
and multi-task models in the full training (FT)
and, more importantly, in the active learning (AL)
setups. We hence compare three architectures:
The single-task model (ST), the simple multi-task
model (SMT), and our complex multi-task model
(CMT). We train each model for DP and for
NER on the six OntoNotes domains using the
cross-entropy (CE) objective function, or with the
label smoothing objective (LS (Szegedy et al.,
2016)) that has been demonstrated to decrease
calibration errors of Transformer models (Desai
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Full Training Active Learning

DP NER DP NER

Avg Best Avg Best Avg Best Avg Best

ST (CE) 87.17 1/6 70.35 0/6 86.43 3/6 74.65 6/6
SMT (CE) 86.94 2/6 67.51 0/6 85.86 2/6 70.31 0/6
CMT (CE) 87.04 3/6 72.79 6/6 85.91 1/6 72.11 0/6

ST (LS) 87.64 0/6 71.31 1/6 88.96 0/6 75.61 2/6
SMT (LS) 86.87 0/6 69.07 0/6 87.53 0/6 73.26 1/6
CMT (LS) 87.98 6/6 72.86 5/6 89.03 6/6 74.44 3/6

Table 3: A comparison of a single-task model
(ST), a simple multi-task model (SMT), and our
complex multi-task model (CMT) in full training
and active learning. Models were trained with
the cross-entropy (CE) or label smoothing (LS)
losses, on all OntoNotes domains.

and Durrett, 2020; Kong et al., 2020). ST-AL is
performed with ST-EC and MT-AL with MT-AVG.

Table 3 reports the average scores (Avg column)
over all domains and the number of domains
where each model achieved the best results (Best).
The results raise three important observations.
First, SMT is worse on average than ST in all
setups, suggesting that vanilla MT is not always
better than ST training. Second, our CMT model
achieves the best scores in most cases. The only
case where it is inferior to ST, but not to SMT, is
on AL with CE training. However, when training
with LS, it achieves results comparable to or
higher than those of ST on AL.

Third, when comparing CE to LS training, LS
clearly improves the average scores of all models
(besides one case). Interestingly, the improvement
is more significant in the AL setup than in the FT
setup. We report that when expanding these exper-
iments to all AL selection methods, LS was found
very effective for both tasks, outperforming CE in
most comparisons, with an average improvement
of 1.8% LAS for DP and 0.9 F1 for NER.

Multi-task vs. Single-task Performance (Q1.2)
We next ask whether MT-AL outperforms strong
ST-AL baselines. Figure 3 presents for every task
and domain the performance of the per-domain
best ST-AL and MT-AL methods after the fi-
nal AL iteration. Following our observations in
Q1.1, we train all models with the LS objective
and base the multi-task models on the effective
CMT model.

Although there is no single method, MT-AL or
ST-AL, which performs best across all domains
and tasks, MT-AL seems to perform consistently

Figure 3: Performance of the best ST-AL vs. the best
MT-AL method per domain (Q1.2).

better. The figure suggests that MT-AL is effec-
tive for both tasks, outperforming the best ST-AL
methods in 4 of 6 DP domains (results are not sta-
tistically significant, the average p-value is 0.19)
and in 5 of 6 NER domains (results for 3 domains
are statistically significant). While the average
gap between MT-AL and ST-AL is small for DP
(0.28% LAS), in NER it is as high as 2.4 F1 points
in favor of MT-AL. In fact, for half of the NER
domains, this gap is greater than 4.2 F1.

When comparing individual selection meth-
ods, MT-AVG, and multi-task DP-based entropy,
MT-EC-DP, are the best selection methods
for DP, with average scores of 89.03% and
88.99%, respectively. Single-task DP-based en-
tropy, ST-EC-DP, is third, with an average score
of 88.96%, while the second best ST-AL method,
ST-DA-DP, is ranked only ninth among all meth-
ods, outperformed by seven different MT-AL
methods. For NER, multi-task NER-based en-
tropy, MT-EC-NER, is the best model with
an average F1 score of 77.13, followed by
MT-MAX with an average F1 score of 75.90.
The single-task NER-based methods, ST-EC-NER
and ST-DA-NER are ranked only fifth and sixth
both with an average score of 75.60. These results
provide an additional indication of the superiority
of MT-AL.
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Figure 4: Performance as a function of the number of
training examples (Q1.2).

In terms of the MT-AL selection methods that
do not perform a simple aggregation, MT-PAR
and MT-RRF perform similarly, averaging 88.31%
LAS for DP and 75.88 F1 for NER, while MT-IND
achieves poor results for DP and moderate results
for NER (an overall comparison of the MT-AL
methods is provided in § 8).

We next compare the per-iteration performance
of ST-AL and MT-AL. To this end, Figure 4
presents the performance for the most promi-
nent MT-AL and ST-AL methods: MT-EC-DP
and ST-EC-DP for DP and MT-EC-NER and
ST-EC-NER for NER, together with the multi-task
random selection method MT-R. We plot for each
method its task score on the NW domain (the one
with the largest dataset) as a function of the train-
ing set size, corresponding to 2% to 10% of the
original training examples. Clearly, the MT-AL
methods are superior across all AL iterations,
indicating the stability of MT-AL as well as
its effectiveness in low-resource setups. Similar
patterns are also observed in the other domains.

As a final evaluation for Q1.2, we directly
compare pairs of MT-AL and ST-AL methods,
performing three comparison types on each of
the domains: Within-task: Comparing the perfor-
mance of ST-EC-i and ST-DA-i to their MT-AL
counterparts (MT-EC-i and MT-DA-i) and to the
joint-selection methods on task i, either DP or
NER (108 comparisons); Cross-task: Comparing

Within-task Cross-task Average

DP NER DP NER DP + NER

MT-AL winning % 47.22 63.88 90.74 89.81 78.78

Table 4: A comparison of MT-AL vs. ST-AL on
within-task, cross-task, and average performance.
Values indicate the percentage of comparisons in
which MT-AL methods were superior.

the performance of ST-EC-i and ST-DA-i to their
MT-AL counterparts and to the joint-selection
methods on the opposite task (e.g., if the mod-
els select according to DP, we evaluate the NER
task; 108 comparisons). This comparison allows
us to evaluate the effect of single- and multi-
task modeling on cross-task performance. Since
single-task models cannot be directly applied to
the opposite task, we record the examples selected
by the ST-AL method and train a model for the
opposite task on these examples; and Average:
Comparing all ST-AL methods to all MT-AL
methods according to their average performance
on both tasks (264 comparisons).

Table 4 reports the percentage of comparisons
where the MT-AL methods are superior. On av-
erage, the two method types are on par when
comparing Within-task performance. More in-
terestingly, for Cross-task performance MT-AL
methods are clearly superior with around 90%
winnings (87% of the cases statistically signif-
icant). Finally, the Average also supports the
superiority of MT-AL methods which perform
better in 79% of the cases (all results are statisti-
cally significant). These results demonstrate the
superiority of MT-AL, particularly (and perhaps
unsurprisingly) when both tasks are considered.

Single-task vs. Joint-task Selection (Q1.3)
Next, we turn to our third question, which com-
pares single-task vs. joint-task confidence scores.
That is, we ask whether MT-AL methods that
base their selection criterion on more than one
task are better than ST-AL and MT-AL meth-
ods that compute confidence scores using a single
task only.

To answer this question, we compare the two
best ST-AL and MT-AL methods that are based
on single-task selection to the two best joint-task
selection MT-AL methods. As previously, all
methods employ the LS objective. Table 5 re-
ports the average scores (across domains) of each
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DP NER Average

ST-EC-DP 88.96 71.34 80.15
ST-EC-NER 86.66 75.75 81.21
MT-EC-DP 88.99 73.75 81.37
MT-EC-NER 86.90 77.13 82.01
MT-AVG 89.02 74.44 81.74
MT-MAX 88.64 75.90 82.27

Table 5: A comparison of AL methods that base
their selection on a single-task vs. joint-task con-
fidence scores. Results are averaged across the
OntoNotes domains (Q1.3).

of these methods for DP, NER, and the average
task score, based on the final AL iteration.

While the method that performs best on aver-
age on both tasks is MT-MAX, a joint-selection
method, the second best method is MT-EC-NER,
a single-task selection method, and the gap is
only 0.26 points. Not surprisingly, performance is
higher when the evaluated task also serves as the
task that the confidence score is based on, either
solely or jointly with another task.

Although the joint-selection methods are effec-
tive for both tasks, we cannot decisively conclude
that they are better than MT-AL methods that
perform single-task selection. However, we do
witness another confirmation for our answer to
Q1.2, as all presented MT-AL methods perform
better on average on both tasks (the Average
column) than the ST-AL methods.

Overconfidence Analysis Originally, we trained
our models with the standard CE loss. How-
ever, our early experiments suggested that such
CE-based training yields overconfident models,
which is likely to severely harm confidence-based
AL methods. While previous work demonstrated
the positive impact of label smoothing (LS) on
model calibration, to the best of our knowledge,
the resulting impact on multi-task learning has
not been explored, specifically not in the context
of AL. We next analyze this impact, which is no-
ticeable in our above results, in more detail.

Figure 5 presents sentence-level confidence
scores as a function of sentence-level accuracy
when separately training a single-task BERT-base
model on DP (left figure) and on NER (right
figure) with the CE objective. The confidence
scores were computed according to the ST-EC
scores. The figure confirms that the model tends

Figure 5: Sentence-level accuracy as a function of
entropy-based confidence, for DP (left) and for NER
(right), when training with the CE objective. The heat
maps represent the point frequency.

to be overconfident in its predictions. Further-
more, the low R2 values (0.1 and 0.13 for DP
and NER, respectively) indicate poor model cali-
bration, since confidence scores are not correlated
with actual accuracy. Similar patterns were ob-
served when training our multi-task models with
the CE objective.

Following this analysis, we turn to investi-
gate the impact of LS on model predictions in
MT-AL. Inspired by Thulasidasan et al. (2019),
who defined the overconfidence error (OE) for
classification tasks, we first slightly generalize
OE to support sentence-level scores for token
classification tasks. Given N sentences, for each
sentence x we start by calculating its accuracy
score acc(x) over its tokens. The confidence
score conf(x) is set to the confidence score of
the corresponding AL method. We then define
OE as:

OE =
1

N

∑N

x=1
conf(x)×max

(
conf(x)− acc(x), 0

)
.

In essence, OE penalizes predictions according to
the gap between their confidence score and their
accuracy, but only when the former is higher.

In Table 6 we compare theOE scores of ST-EC,
trained with the LS objective to 3 alternatives:
ST-EC trained with the CE objective, ST-EC with
the post-processing method temperature scaling
(TS), and ST-DA trained with the CE objective.
Both TS and dropout inference have been shown
to improve confidence estimates (Guo et al., 2017;
Ovadia et al., 2019), and hence serve as alterna-
tives to LS in this comparison. OE scores are
reported on the unlabeled set (given the true labels
in hindsight) at the final AL iteration for both
tasks. Additionally, OE scores for MT-AVG and
MT-AVGDA are also reported and averaged on
both tasks.
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DP

BC BN MZ NW TC WB Average

ST-EC-DP (CE) 0.0720 0.0672 0.0757 0.0506 0.0584 0.3064 0.1051
ST-EC-DP (TS) 0.0753 0.0651 0.0673 0.0421 0.0545 0.3012 0.1009
ST-EC-DP (LS) 0.0269 0.0186 0.0122 0.0107 0.0289 0.1725 0.0450
ST-DA-DP (CE) 0.0410 0.0392 0.0414 0.0337 0.0381 0.1098 0.0505

NER

BC BN MZ NW TC WB Average

ST-EC-NER (CE) 0.0111 0.0167 0.0131 0.0146 0.0090 0.0132 0.0130
ST-EC-NER (TS) 0.0100 0.0172 0.0136 0.0108 0.0087 0.0142 0.0124
ST-EC-NER (LS) 0.0002 0.0002 0.0001 0.0002 0.0009 0.0010 0.0004
ST-DA-NER (CE) 0.0090 0.0121 0.0117 0.0122 0.0082 0.0110 0.0107

DP + NER

BC BN MZ NW TC WB Average

MT-AVG (CE) 0.0436 0.0499 0.0473 0.0345 0.0393 0.1681 0.0637
MT-AVG (TS) 0.0447 0.0468 0.0460 0.0318 0.0396 0.1645 0.0622
MT-AVG (LS) 0.0040 0.0018 0.0013 0.0012 0.0057 0.0546 0.0114
MT-AVGDA (CE) 0.0291 0.0287 0.0302 0.0236 0.0257 0.0718 0.0349

Table 6: Overconfidence Error Results.

The results are conclusive, LS is the least
overconfident method, achieving the lowest OE
scores on all 18 setups, but one. While LS
achieves a proportionate reduction error (PRE)
of between 57.2% and 96.7% compared to the
standard CE method, DA achieves at most a PRE
of 51.9% and TS seems to have almost no effect.
These results confirm that LS is highly effective in
reducing overconfidence scores for BERT-based
models, and we are able to show for the first time
that such a reduction also holds for multi-task
models.

6 MT-AL for Hierarchically
Related Tasks

Until now, we have considered tasks (DP and
NER) that are mutually informative but can be
trained independently of each other. However,
other multi-task learning scenarios involve a task
that is dependent on the output of another task. A
prominent example is the relation extraction (RE)
task that depends on the output of the NER task,
since the goal of RE is to classify and identify
relations between named entities. Importantly, if
the NER part of the model does not perform well,
this harms the RE performance as well. Sample
selection in such a setup should hence reflect the
hierarchical relation between the tasks.

6.1 Selection Methods

Since the quality of the classifier for the inde-
pendent task (NER) now affects also the quality
of the classifier for the dependent task (RE), the
confidence of each of the tasks may get different
relative importance values. Although this in prin-

ciple can also be true for independent tasks (§5),
explicitly accounting for this property seems more
crucial in the current setup.

We hence modify four of our joint-selection
methods (§4) to reflect the inherent a-symmetry
between the tasks, by presenting a scaling
parameter 0 ≤ β ≤ 1:7

a) MT-AVG is now calculated as follows:

MT-AVG(x) = β · MT-EC-RE(x)+

(1− β) · MT-EC-NER(x).

b) MT-RRF is calculated similarly by multiply-
ing the RRF term of RE by β and that of NER by
1− β.

c) MT-IND is calculated by independently
choosing 100 · β% of the selected samples ac-
cording to the RE scores and 100 · (1 − β)%
according to the NER scores.

d) MT-PAR is computed by restricting the first
Pareto condition for the position of the RE confi-
dence score: cRE ≤ qβ ·c′RE , where qβ is the value
of the β-quantile of the RE confidence scores.8

We apply such a condition if β < 0.5. Otherwise,
if β > 0.5 the condition is applied to the NER
component, and when it is equal to 0.5, the orig-
inal Pareto method is used. Since we restrict the
condition to only one of the tasks, fewer samples
will meet this condition (since 0 ≤ qβ ≤ 1), and
the Pareto frontier will include more samples that
have met the condition for the second task.

6.2 Research Questions

In our experiments, we would like to explore two
research questions: Q2.1: Which MT-AL selection
methods are most suitable for this setup? and Q2.2:
What is the best balance between the participat-
ing tasks?

Since RE fully relies on the output of NER,
we limit our experiments only to joint multi-task
models and do not include single-task models.

7 We do not include the MT-MAX and MT-MIN methods in
our evaluation. Since the two tasks exhibit confidence scores
in a similar range, scaling their confidence scores according
to these methods resulted in selecting samples based almost
solely on the task with the higher (in the case of MT-MAX)
or lower (in the case of MT-MIN) scaling parameter.

8The second Pareto condition is similarly modified, but
now with the < sign.
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NER NER Best RE RE Best

MT-R 81.96 0/5 52.47 05
MT-AVG (β = 1.0) 82.64 1/5 59.51 2/5
MT-RRF (β = 0.8) 82.69 1/5 59.65 1/5
MT-IND (β = 1.0) 82.86 2/5 60.15 0/5
MT-PAR (β = 0.7) 82.68 1/5 59.57 2/5

Table 7: Hierarchical MT-AL results. We report
best average F1 results over all five datasets for
the best β configuration per method.

6.3 Experimental Setup

We experiment with the span-based joint NER and
RE BERT model of Li et al. (2021).9 Experiments
were conducted on five diverse datasets: NYT24
and NYT29 (Nayak and Ng, 2020), ScieRC (Luan
et al., 2018), WebNLG (Gardent et al., 2017), and
WLP (Kulkarni et al., 2018). The AL setup is
identical to that of §5.4. Other hyper-parameters
that were not mentioned before are identical to
those of the original implementation.

6.4 Results

Best Selection Method (Q2.1) We start by iden-
tifying the best selection method for this setup.
Table 7 summarizes the per-task average score
for the best β value of each method across the
five datasets.

We observe three interesting patterns. First,
MT-AL is very effective in this setup for the de-
pendent task (RE), while for the independent task
(NER), random selection does not fall too far be-
hind. Second, all MT-AL methods achieve better
performance for higher βββ values by giving more
weight to the RE confidence scores during the
selection process. This is an indication that indeed
the selection method should reflect the asymmet-
ric nature of the tasks. Third, overall, MT-IND
is the best performing method, averaging first in
NER and in RE, while MT-AVG, MT-RRF and
MT-PAR achieve similar results in both tasks.

Scaling Configuration (Q2.2) Figure 6 pre-
sents the average F1 scores of the four joint-
selection methods, as well as the random selection
method MT-R, as a function of β (the relative
weight of the RE confidence). First, we notice that
joint selection outperforms random selection in

9https://github.com/JiachengLi1995
/JointIE.

Figure 6: Average F1 scores over four joint-selection
methods as a function of β (the relative weight of the
RE confidence).

the WebNLG domain only for RE (the dependent
task) but not for NER (except when β approaches
1). Second, and more importantly, β = 1, that is,
selecting examples only according to the confi-
dence score of the RE (dependent) task, is most
beneficial for both tasks (Q2.1). We hypothesize
that this stems from the fact that the RE confi-
dence score conveys information about both tasks
and that this combined information provides a
stronger signal with respect to the NER (indepen-
dent) task, compared to the NER confidence score.
Interestingly, the positive impact of higher values
of β is more prominent for NER, even though this
means that the role of the NER confidence score
is downplayed in the sample selection process.

For the individual selection methods, we report
that MT-AVG and MT-IND achieve higher results
as β increases, while MT-PAR and MT-RRF peak
at β = 0.7 and β = 0.8, respectively, and then
drop by 0.2 F1 points for NER and 0.9 F1 points
for RE on average.
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7 MT-AL for Tasks with Different
Annotation Granularity

NLP tasks are defined on different textual units,
with the most common examples of sentence-level
and token-level tasks. Our last investigation
considers the scenario of two closely related
tasks that are of different granularity: Slot fill-
ing (SF, token-level) and intent detection (ID,
sentence-level).

Due to the different annotation nature of the
two tasks, we have to define the cost of example
annotation with respect to each. Naturally, there is
no correct way to quantify these costs, but we aim
to propose a realistic model. We denote the cost
of annotating a sample for SF with CostSF =
m + tp · nt, where m is the number of tokens
in the sentence, tp is a fixed token annotation
cost (we set tp = 1) and nt is the number of
entities. The cost of annotating a sample for ID
is next denoted with CostID = m + ts, where
ts is a fixed sentence cost (we set ts = 3).
Our solution (see below) allows some examples
to be annotated only with respect to one of the
tasks. For examples that are annotated with respect
to both tasks we consider an additive joint cost
where the token-level term m is considered only
once: JCost = CostSF + CostID − m. In our
experiments, we allow a fixed annotation budget
of B = 500 per AL iteration.

7.1 Methods

We consider three types of decision methods:
Greedy Active Learning (GRD AL): AL meth-
ods that at each iteration greedily choose the least
confident samples until the budget limitation is
reached; Binary Linear Programming Active
Learning (BLP AL): AL methods that at each
iteration opt to minimize the sum of confidence
scores of the chosen samples given the budget con-
straints. The optimization problem (see below) is
solved using a BLP solver;10 and Binary Lin-
ear Programming (BLP): an algorithm that after
training on the initial training set chooses all the
samples at once, by solving the same constrained
optimization problem as in BLP AL.

For each of these categories, we experiment
with four families of AL methods: a) Unre-

10https://www.python-mip.com/.

stricted Disjoint Sets (UDJS): This selection
method is based on the non-aggregated multi-
task confidence scores, where each sample can
be chosen to be annotated on either task or both.
The UDJS optimization problem aims to maxi-
mize the uncertainty scores (1 − Conft(x)) of
the selected samples given the budget and selec-
tion constraints:

max
∑

x∈U

∑

t∈T

(1− Conft(x)) ·Xt(x)

s.t.
∑

x∈U

∑

t∈T

Costt(x) · (Xt(x)− Y (x))

+JCost(x) · Y (x) ≤ B,

1

|T|
∑

t∈T

Xt(x) ≥ Y (x) ∀x ∈ U,

Xt(x), Y (x) ∈ {0, 1} ∀x ∈ U, t ∈ T,

where U is the unlabeled set, T is the set of
tasks, Conft is the MT-EC-t confidence score,
Xt(x) is a binary indicator indicating the anno-
tation of sample x on task t, and Y (x) is a bi-
nary indicator indicating the annotation of x on
all tasks.

Notice that this formulation may yield annotated
examples for only one of the tasks, although this
is unlikely, particularly under an iterative protocol
when the confidence scores of the models are
updated after each iteration.

b) Equal Budget Disjoint Sets (EQB-DJS):
This strategy is similar to the above UDJS ex-
cept that the budget is equally divided between
the two tasks and the optimization problem is
solved for each of them separately. If a sample is
chosen to be annotated for both tasks, we update
its cost according to the joint cost and re-solve
the optimization problems until the entire budget
is used.

c-f) Joint-task Selection: A sample could only
be chosen to be annotated on both tasks, where
confidence scores are calculated using a multi-
task aggregation. The BLP optimization problem
is formulated as follows:

max
∑

x∈U

(1− Conf(x)) · Y (x)

s.t.
∑

x∈U

JCost(x) · Y (x) ≤ B,

Y (x) ∈ {0, 1} ∀x ∈ U,
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ATIS SNIPS

BERT Roberta BERT Roberta

SF ID SF ID SF ID SF ID

MT-MINBLP AL 84.53 92.27 87.94 92.05 77.90 97.00 71.35 95.29
MT-RRFGRD AL 82.11 91.38 87.57 89.81 71.78 95.71 69.06 92.14
MT-AVGBLP 85.78 89.92 86.38 90.03 73.46 96.57 69.73 95.57

Table 8: Comparison of decision categories (Q3.1
and Q3.2).

where Conf is calculated by c) MT-AVG, d)
MT-MAX, e) MT-MIN, or f) MT-RRF.11

g-j) Single-task Confidence Selection
(STCS): A sample could only be chosen to be
annotated on both tasks, where the selection
process aims to maximize the uncertainty scores
of only one of the tasks: g) STCS-SF or j)
STCS-ID. Similarly to Joint-task Selection, the
budget constraints are applied to the joint costs.

7.2 Research Questions

We focus on three research questions: Q3.1: Does
BLP optimization improve upon greedy selection?
Q3.2: Do optimization selection and active learn-
ing have a complementary effect? and Q3.3: Is it
better to annotate all samples on both tasks or to
construct a disjoint annotated training set?

7.3 Experimental Setup

We conduct experiments on two prominent
datasets: ATIS (Price, 1990) and SNIPS (Coucke
et al., 2018), and consider two Transformer-based
encoders: BERT-base (Devlin et al., 2019) and
Roberta-base (Liu et al., 2019b). Our code is
largely based on the implementation of Zhu and
Yu (2017).12 We run the AL process for 5 iter-
ations with an initial training set of 50 random
samples and a fixed-size development set of 100
random samples. We train all models for 30
epochs per iteration, with an early stopping crite-
rion and with label smoothing (α = 0.1). Other
hyper-parameters were set to their default values.

7.4 Results

Optimization-based Selection and AL (Q3.1
and Q3.2) To answer the first two questions,
we show in Table 8 the final sample F1 per-

11Since MT-PAR and MT-IND do not score the examples,
they can only be applied with the greedy decision method. A
discussion on their results is provided in §8.

12https://github.com/sz128/slot filling and
intent detection of SLU.

ATIS SNIPS

BERT Roberta BERT Roberta

SF ID SF ID SF ID SF ID

MT-MINBLP AL 84.53 92.27 87.94 92.05 77.90 97.00 71.35 95.29
UDJSBLP AL 87.46 90.48 85.05 91.71 73.56 96.71 70.72 95.14
EQB-DJSBLP AL 86.59 88.02 85.25 89.14 69.92 91.43 63.58 95.00

Table 9: Comparison of joint-task selection
methods (Q3.3).

formance for both tasks, when selection is done
with the best selection method of each decision
category: MT-RRFGRD AL, MT-MINBLP AL, and
MT-AVGBLP . The results confirm that the BLP
optimization (with AL) is indeed superior to
greedy AL selection, surpassing it in all setups
(two tasks, two datasets, and two pre-trained
language encoders, 5 of the comparisons are
statistically significant).

The answer to Q3.2 is also mostly positive.
BLP optimization and iterative AL have a comple-
mentary effect, as MT-MINBLP AL in most cases
achieves higher performance than MT-AVGBLP

(50% of the results are statistically significant).
In fact, the answer for the two questions holds

true for all selection methods, as all perform best
using our novel BLP AL decision method. Sec-
ond is BLP, indicating that the BLP formulation
is highly effective for MT setups under different
budget constraints. Finally, last is the standard
greedy procedure (GRD AL) which is commonly
used in the AL literature.

Joint-task Selection (Q3.3) To answer Q3.3,
we perform a similar comparison in Table 9, but
now for the most prominent methods for each
joint-task selection method. The results indicate
that MT-MINBLP AL that enforces joint annota-
tion is better than allowing for non-restricted
disjoint annotation (UDJSBLP AL) and than
equally splitting the budget between the two
tasks (EQB-DJSBLP AL), where 9 of the 16
comparisons are statistically significant. We hy-
pothesize that the superiority of MT-MINBLP AL

stems from two main reasons: 1. Integrating the
joint aggregation confidence score into the op-
timization function provides a better signal than
the single-task confidence scores; 2. Having a
joint dataset where all samples are annotated
on both tasks rather than a disjointly anno-
tated (and larger) dataset allows the model to
achieve better performance since the two tasks are
closely related.
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DP + NER NER + RE SF + ID

DP NER NER RE SF ID Average

MT-R 86.40 70.78 81.96 52.47 76.94 91.95 76.75
MT-AVG 89.03 74.44 80.23 55.97 76.42 91.09 77.86
MT-MAX 88.64 75.90 81.50 57.74 76.64 89.17 78.27
MT-MIN 88.73 74.77 81.32 54.76 73.75 91.74 77.51
MT-PAR 88.31 75.86 81.47 56.92 77.72 90.28 78.43
MT-RRF 88.31 75.89 81.78 54.29 77.63 92.26 78.36
MT-IND 87.54 74.83 82.13 54.85 76.67 91.44 77.91

Table 10: Average results of the joint multi-task selection methods across all three setups.

Finally, we also report that ST-AL experiments
have led to poor performance. The ST-AL meth-
ods trail by 8.8 (SF) and 4.7 (ID) F1 points from
the best MT-AL method MT-MINBLP AL on av-
erage. Interestingly, we also observe that selection
according to ID (STCS-IDBLP AL) has led to bet-
ter average results on both tasks than selection
according to SF (STCS-SFBLP AL), suggesting
that similarly to §6, selection according to the
higher-level task often yields better results.

8 Overall Comparison

As a final evaluation, we turn to compare the per-
formance of our proposed joint-selection MT-AL
methods in all setups. In our first setup (§5) we
implemented all MT-AL selection methods with
greedy selection, considering uniform task impor-
tance. Thereafter (§6 and §7), we showed how
these selection methods can be modified in the
next two setups by either integrating non-uniform
task weights or replacing the greedy selection
with a BLP loss function overconfidence scores.
However, not all of our MT-AL selection meth-
ods can be modified in such ways.13 We hence
report our final comparison given the conditions
applied in the first setup: Assuming uniform task
weights and selecting samples in a greedy manner.
Table 10 summarizes the average performance of
the MT-AL methods in our three proposed setups:
Complementing tasks (DP + NER), hierarchically
related tasks (NER + RE) and tasks of different
annotation granularity (SF + ID).

Each selection method has its cons and pros,
which we outline in our final discussion.

13See footnotes 7 and 11 for further details.

MT-R, not surprisingly, is the worst perform-
ing method on average, as it makes no use of
the model’s predictions. Nevertheless, the method
performs quite well on the third setup (SF + ID)
when compared to the other methods that were
trained with the greedy decision method, the least
successful decision method of this setup. Next,
MT-AVG performs well when the tasks are of
equal importance (DP + NER), but achieves only
moderate performance on the other setups.

Surprisingly, MT-MAX is highly effective de-
spite its simplicity. It is mostly beneficial for the
first two setups (DP + NER and NER + RE),
where the tasks are of the same annotation gran-
ularity. It is the third best method overall, and it
does not lag substantially behind the best method,
MT-PAR. Interestingly, MT-MIN, which offers a
complementary perspective to MT-MAX, is on
average the worst MT-AL method, excluding
MT-R, and is mainly beneficial for the first setup
(DP + NER).

The next MT-AL method, MT-PAR, seems to
capture well the joint confidence space of the task
pairs. It is the best method on average, achiev-
ing high average scores in all setups. However,
when incorporating it with other training tech-
niques, such as applying non-uniform weights
(for the second setup), it is outperformed by the
other MT-AL methods. MT-RRF does not lag
far behind MT-PAR, achieving similar results on
most tasks, excluding the RE and ID tasks, which
are the higher-level tasks of their setups. Finally,
MT-IND does not excel in three of the four tasks
of the first two setups, while achieving the best
average results on NER, when jointly trained with
RE. Furthermore, the method demonstrates strong
performance on the third setup, when the tasks are
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of different annotation granularity, justifying the
independent annotation selection in this case.

9 Conclusions

We considered the problem of multi-task ac-
tive learning for pre-trained Transformer-based
models. We posed multiple research questions
concerning the impact of multi-task model-
ing, multi-task selection criteria, overconfidence
reduction, the relationships between the partici-
pating tasks, as well as budget constraints, and
presented a systematic algorithmic and exper-
imental investigation in order to answer these
questions. Our results demonstrate the importance
of MT-AL modeling in three challenging real-life
scenarios, corresponding to diverse relations be-
tween the participating tasks. In future work, we
plan to research setups with more than two tasks
and consider language generation and multilingual
modeling.
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