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Abstract

Knowledge-grounded dialogue systems pow-
ered by large language models often generate
responses that, while fluent, are not attribut-
able to a relevant source of information. Pro-
gress towards models that do not exhibit this
issue requires evaluation metrics that can quan-
tify its prevalence. To this end, we introduce
the Benchmark for Evaluation of Grounded
INteraction (BEGIN), comprising 12k dialogue
turns generated by neural dialogue systems
trained on three knowledge-grounded dialogue
corpora. We collect human annotations assess-
ing the extent to which the models’ responses
can be attributed to the given background in-
formation. We then use BEGIN to analyze eight
evaluation metrics. We find that these metrics
rely on spurious correlations, do not reliably
distinguish attributable abstractive responses
from unattributable ones, and perform sub-
stantially worse when the knowledge source
is longer. Our findings underscore the need
for more sophisticated and robust evaluation
metrics for knowledge-grounded dialogue. We
make BEGIN publicly available at https://
github.com/google/BEGIN-dataset.

1 Introduction

Neural language models (Bengio et al., 2000;
Vaswani et al., 2017; Radford et al., 2019, inter
alia) often form the backbone of open-ended dia-
logue systems (Wolf et al., 2019; Zhang et al.,
2020b; Roller et al., 2021; Adiwardana et al.,
2020). Utterances sampled from such language
models sound natural, as reflected in these
systems’ high scores in human evaluations fo-
cused on measures such as ‘‘engagingness’’ or
‘‘human-likeness’’ (See et al., 2019). While fluent,
however, the responses generated by these systems
often contain statements that are not supported by

∗Equal contribution.
†Work done while at Google Research.

the evidence available to the system; such state-
ments are sometimes referred to informally as
‘‘hallucinations’’ (Tian et al., 2019; Maynez et al.,
2020a; Dziri et al., 2021; Shuster et al., 2021; see
Figure 1 for an example). This issue is particularly
salient for knowledge-grounded dialogue systems,
which are expected to interact with a user in an
open-ended fashion while conveying information
that is attributable to external identifiable sources.
In this work, we develop a benchmark that can be
used to assess attribution in knowledge-based dia-
log systems; following Rashkin et al. (2021a), we
define an attributable response1 as one connected
to textual evidence that supports the entirety of
the response.

A number of modeling approaches have recently
been proposed to increase attribution in knowledge-
grounded dialog systems (Rashkin et al., 2021b;
Shuster et al., 2021; Dziri et al., 2021, 2022a).
Progress in this area crucially relies on metrics
that can measure the attribution of the text gen-
erated by the system; and indeed, recent work
has developed automated metrics with relatively
high correlations with human annotations, poten-
tially paving the way for alternatives to expen-
sive human evaluations (Honovich et al., 2021;
Dziri et al., 2021, 2022a). Yet our understand-
ing of these recently proposed metrics, as well as
more established ones, remains limited, for two
reasons. First, comparisons between automated
metrics and human judgments rely on small-scale
datasets with a few hundred examples. This re-
sults in high variance in our estimate of the
correlation coefficient and a limited ability to
measure performance on infrequent example types
(Gehrmann et al., 2021).

Second, the correlation with human scores
does not sufficiently determine the efficacy and

1Attribution is sometimes referred to as faithfulness
(Cao et al., 2018; Durmus et al., 2020, inter alia).
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Figure 1: An example of a response generated by
the GPT2 language model fine-tuned on the Wizard
of Wikipedia dataset (Dinan et al., 2019). The phrases
in red are ‘‘hallucinations’’ unsupported by the back-
ground document.

robustness of automatic metrics produced by neu-
ral networks: such learned metrics—like other
properties learned by neural networks—can be
susceptible to spurious correlations that fail to gen-
eralize to more challenging cases. To address these
limitations, we introduce a large-scale resource,
the Benchmark for Evaluation of Grounded IN-
teraction (BEGIN), for meta-evaluation of metrics
designed to evaluate grounded dialogue. In other
words, the goal of this benchmark is to determine
to what extent current evaluation metrics fulfill
their purpose.

We define a taxonomy dividing knowledge-
grounded dialogue responses into three broad
categories—fully attributable, not fully attributable,
and generic—and ask humans to classify a large
set of utterances produced by dialogue systems
with this taxonomy. The motivation for the generic
category we introduce—which is assigned to ut-
terances such as ‘‘Sorry, I’m not sure about
this topic’’—is the intuition that evaluation met-
rics should not treat the basic elements of a
natural-sounding conversation, such as backchan-
neling or acknowledgment (Grice, 1989; Stiles,
1992; Bunt et al., 2020), as equally undesir-
able as a misleading unattributable statement. In
real-world scenarios, it is preferable for a model
to acknowledge its ignorance instead of producing
hallucinated content which may lead to the spread
of disinformation.

Using this taxonomy, we then collect high-
quality human annotations for 12k examples
generated by four language-model-based dia-
logue systems, each trained on three different
knowledge-grounded dialogue corpora. Examples
of machine-generated responses along with la-
bels are presented in Table 1. We use this

benchmark to evaluate multiple existing auto-
matic metrics including word-overlap measures,
embedding-based measures, metrics based on
Question Answering (QA) systems, and ones
based on Natural Language Inference (NLI). We
also propose a classifier trained on an adversar-
ially generated dataset we create. We find that
all metrics inadequately measure attribution and
all rely on spurious correlations to a large ex-
tent. In particular, the metrics tend to misidentify
cases that are attributable but highly abstractive,
as well as cases that are not fully attributable but
use multiple words from the evidence document
(i.e., unattributable but extractive). We also find
that the metrics fail to measure attribution under
distribution shift, scoring responses that pertain
to relatively long knowledge sources the lowest.
These results are in line with the robustness issues
reported for other natural language generation
metrics, despite the high correlation of those met-
rics with human judgments (Durmus et al., 2022;
Gehrmann et al., 2021; Gabriel et al., 2021; Yeh
et al., 2021). We hope that BEGIN will facilitate
progress toward more robust metrics for grounded
dialogue response generation.

2 Task, Datasets, and Models

In knowledge-grounded response generation, the
system is given a dialogue history H = (u1, . . . ,
un−1), and knowledge Kn = (k1, . . . , kj) at turn
n, and is expected to generate a response ūn that is
coherent with H and attributable to a non-empty
subset Mn ⊂ Kn. Similar to the conversational
QA task (Choi et al., 2018; Reddy et al., 2019), the
system is expected to use knowledge to respond
to the user query. However, since the previous
utterance may be an open-ended statement rather
than a direct question (see the second and third
examples in Table 1), there is a wider range of
possible types of informative replies compared to
the conversational QA task.

BEGIN consists of responses generated by
language-model-based systems trained to perform
this task. This section describes the models we
train on this task and the corpora we use to train
them.

2.1 Dialogue Datasets

For all three datasets, we use the training portion
to train the model, the development set to tune
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Category Frequency Example
W
o
W

Fully Attributable 23.5% Knowledge: Raised in Compton, California, Lamar em-
barked on his musical career as a teenager
under the stage name k-dot, releasing a mix-tape
that garnered local attention and led to his signing
with indie record label top dawg entertainment.

History: oh, yeah. I believe I’ve heard about that. The
album has to be good then for sure. Do you know
anything else about him or rap?

T5 Response: Oh yes, I know that the singer was raised in
Compton, California and started on his musical
career as a teenager.

C
M
U
-
D
o
G

Generic 6.4% Knowledge: Throughout the film, the narrative is intercut with
scenes from depositions taken in the Winklevoss
twins’ and Saverin’s respective lawsuits against
Zuckerberg and Facebook. . . . After everyone
leaves, Zuckerberg is shown sending a friend re-
quest to Albright on Facebook and then refreshing
the webpage every few seconds as he waits for her
response. . .

History: The ending seems cools. Like after all of that
happens he just goes to hang out with his kids.

GPT2 Response: What else do you know about Zuckerberg?

T
o
p
i
c
a
l
C
h
a
t

Not Attributable 70.1% Knowledge: Television (TV) is a telecommunication medium
used for transmitting moving images in
monochrome (black and white) .. . . Ringo Starr,
George Carlin, and Alec Baldwin have all narrated
Thomas the Tank Engine for at least 52 episodes
each. There are over 750 episodes of ‘‘Pokémon’’:
That’s about 50 a year for 16 years straight.

History: no, I haven’t watched Pokemon. My sons use
to play with when they were little. Now, they
use their phones looking for Pokemon in the
neighborhood. It is funny.

DoHA Response: Pokemon appeared in TV in 1952 and it was
created by Ringo Starr and directed by George
Carlin. In total, there were 100 episodes.

Table 1: Examples of each of the three categories of responses included in BEGIN. For each category,
we provide an example drawn from one of the four models trained on one of the three corpora (of
course, all 12 models generated all three types of responses). The dialogue corpus used to train the
model and generate the response is listed vertically. Text highlighted in green indicates information
that is attributable to the knowledge; text in blue does not convey any information; and text in red is
hallucinated and cannot be attributed to the knowledge.

hyperparameters, and the test set to generate the
responses that are then annotated and included in
the final BEGIN benchmark.

Wizard of Wikipedia (WoW) WOW dialogue
(Dinan et al., 2019) takes place between a Wizard
and an Apprentice. The Wizard is tasked with
providing information about a particular topic and
the Apprentice, in turn, is expected to seek more

information. At each turn of the conversation, the
Wizard is presented with passages from Wikipedia
and chooses a span from the document—typically
one or two sentences—that serves as evidence
supporting their response. We omitted examples
where the Wizard did not explicitly select a pas-
sage as evidence for the response or where there
was no dialogue history. We also use the ‘‘un-
seen’’ topic portion of the test data. Overall, we
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used 82722 training examples, 8800 development
examples, and 3902 test examples.

CMU-DoG The CMU-DoG dataset (Zhou et al.,
2018) consists of conversations about films. Each
response is expected to be grounded in a sec-
tion from Wikipedia. Workers can have either
asymmetric or symmetric roles. In the asymmetric
setting, one worker is asked to persuade the inter-
locutor to watch the movie using arguments from
the document where only the persuader has access
to the document. In the symmetric role, workers
discuss together the content of the document. In
total, there are 78136, 13800, and 13796 grounded
responses (training/dev/test).

TopicalChat TopicalChat (Gopalakrishnan et al.,
2019) consists of dialogues about a variety of
topics. Workers are provided relevant facts from
Reddit, Wikipedia, and news articles. Analogous
to CMU-DOG, the data collection protocol consists
of two scenarios. In the symmetric scenario, work-
ers have access to the same knowledge source;
in the asymmetric scenario, they have access
to different sources. They are asked to use the
information from the documents to chat knowl-
edgeably about the topic. In total, the dataset
has 134572, 8790, and 8081 grounded responses
(training/dev/test).

2.2 Dialogue Models

We consider the outputs of four different dialogue
systems; by selecting a relatively wide range of
systems, we hope to encounter a range of attri-
bution errors. Two of the systems are based on
plain language models, GPT2-base (Radford et al.,
2019) and T5-base (Raffel et al., 2020). The re-
maining two systems, DoHA (Prabhumoye et al.,
2021) and CTRL-DIALOG (Rashkin et al., 2021b),
are specifically designed as knowledge-grounded
dialogue systems. DoHA augments a BART-based
conversational model (Lewis et al., 2020) with a
two-view attention mechanism that handles the
encoded document and the dilaogue history sepa-
rately during generation. CTRL-DIALOG augments
T5-base with control tokens (Keskar et al., 2019)
that guide the generation towards less subjective
and more grounded content. We trained these
models to generate responses based on a con-
catenation of two inputs: an evidence span (the
knowledge snippet) and the dialogue history (we
only use the previous turn un−1).

3 Annotations

We next describe the human annotations we col-
lected for the utterances generated by the models
described in Section 2.

3.1 Taxonomy of Response Types

We classify responses into three broad categories:

Fully Attributable These are responses that
convey information that can be completely sup-
ported by the provided document; this property
has been referred in the literature to as faithful-
ness (Rashkin et al., 2021b; Maynez et al., 2020b;
Dziri et al., 2021; Durmus et al., 2020) and attri-
bution (Rashkin et al., 2021a). In our annotation
set-up, we use similar definitions to the At-
tributable to Identifiable Source (AIS) framework
of Rashkin et al. (2021a). The full framework in
that paper consists of a two-stage annotation pro-
cess in which annotators first filter out responses
that are deemed to be too vague or ill-formed to
be evaluated for attribution. Since Rashkin et al.
(2021a) found that more than 90% of the conversa-
tional responses in their study were interpretable,
we have our annotators focus solely on attribution.

Not Attributable These are responses that con-
tain at least some information that cannot be
verified given the evidence, regardless of whether
that information is factually true in the real world.
This includes statements that are relevant but not
fully supported by the background information
(hallucinations), statements that explicitly contra-
dict the background information, and off-topic
responses about information completely external
to the evidence sources. In a pilot study we at-
tempted to separate these three subcategories, but
the boundaries between them turned out to be
difficult to define and annotate.

Generic Responses that fall into this category
are general enough to fit into a large number
of possible contexts (Li et al., 2016). Examples
include ‘‘I don’t know about that’’ and ‘‘Hello
there!’’. Even when the responses are ostensibly
about the same topic as the document, they are
vague and do not provide new information. Nev-
ertheless, such responses may be useful for var-
ious conversational purposes: back-channeling,
expressing uncertainty, or diverting the conversa-
tion from ambiguous or controversial topics.
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Figure 2: Breakdown of BEGIN response categories across models (left) and training corpora (right).

3.2 Collecting Prompt-Query-Reply Triples

As described in Section 2, we collect data using
outputs from four models—T5, GPT2, DoHA, and
CTRL-DIALOG. We train a version of each model
on each of the three datasets (WOW, TOPICALCHAT,
and CMU-DOG) and generate responses using
the test portion of the dataset. For more details
on training and hyperparameters, refer to Ap-
pendix B. We select at least 1000 examples from
each dataset-model pair. We filter and remove
toxic responses using the Google Perspective API.
This yields 12288 examples in total.

3.3 Annotating Prompt-Query-Reply Triples

We present annotators with a knowledge snippet
K, the previous turn un−1 and a generated re-
sponse ūn, and ask them to select which of the
three categories fits ūn best. For the exact annota-
tion instructions, see Appendix A. To obtain high
quality data, we assign three annotators to each ex-
ample and report results based on majority vote.
We exclude examples where each of the three
annotators assigned a different category, making
it impossible to compute a majority vote.

Annotation Quality To ensure that the anno-
tators understood the task, we use the following
manual quality control procedure. In the first stage,
we train the annotators by running two pilot an-
notation batches (∼100 examples each). After
each batch, we manually grade the answers for
compliance with instructions, and provide feed-
back explaining any misconceptions. After the
training stage, we launch the main annotation
round for the full set of 12k examples. During
this round, we intermittently check responses af-
ter every 3k completed annotations to examine
the annotation quality. This procedure resulted in

high inter-annotator agreement (a Krippendorff’s
alpha of 0.7).

3.4 Dataset Analysis

BEGIN is intended as a test benchmark; as such, it
does not have a training portion: We only create
development (10%) and test (90%) partitions. We
include examples from BEGIN in Table 1 along
with the label breakdown. Overall, the models
generated a substantial number of unattributable
responses (70%). As Figure 2(a) shows, this pro-
portion was higher for GPT2, DOHA, and T5,
whereas CTRL-DIALOG generated the lowest pro-
portion of unattributable responses (30.8%). This
indicates that CTRL-DIALOG, which is explicitly
designed to discourage unattributable responses,
is moderately successful at its goal. Figure 2(b),
which breaks the results down by training cor-
pus, shows that models trained on TOPICALCHAT

produce the highest amount of unattributable
responses followed by CMU-DOG and WOW.
This is consistent with recent analyses on WOW,
CMU-DOG, and TOPICALCHAT which revealed that
more than 60% of the ground-truth responses
are unattributable to the knowledge (Dziri et al.,
2022b; Rashkin et al., 2021a).

3.5 The Need to Measure Attribution

Our analysis of the responses produced by the
systems we trained highlights the potential pit-
falls of language-model-based dialogue systems,
especially when deployed in real-world scenarios
across a broad range of domains where hallucina-
tions pertaining to vital information may produce
undesirable user experiences—e.g., healthcare
(Laranjo et al., 2018; Jovanović et al., 2021) and
education (Yang and Evans, 2019; Kochmar et al.,
2021)—and underscores the need for progress on
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both the modeling and the evaluation side. Neu-
ral dialogue systems are optimized to mimic the
distributional properties of the human-generated
dialogue corpus used to train them. Because hu-
mans often include unattributable information in
their utterances, language models trained on those
corpora can replicate and perhaps even amplify the
prevalence of unattributable responses at test time
(Kang and Hashimoto, 2020; Dziri et al., 2022b).
These findings call for robust evaluation metrics to
uncover actionable insights about best practices of
using such models and benchmarks. We hope that
BEGIN will, as an evaluation benchmark, promote
a strict standard for evaluation metrics, laying the
ground for trustworthy dialogue systems.

4 Evaluating Evaluation Metrics

We next use BEGIN to evaluate a range of evalua-
tion metrics. In §4.1 we list the untrained metrics
we use as well as metrics trained on existing re-
sources, and in §4.2 we describe a training set
that we designed to train a classifier for the three
response categories. We then describe the ex-
tent to which these metrics align with the BEGIN

categories and analyze the metrics’ robustness.

4.1 Metrics

Lexical Overlap Metrics This category in-
cludes n-gram-based metrics that compare the
lexical similarity between the response ūn and
the knowledge K.2 We consider BLEU-43

(Papineni et al., 2002), ROUGE-L4 (Lin, 2004),
and F1, which measures the word-level lexical
overlap between ūn and K.

Semantic Similarity Metrics These metrics
compare the semantic similarity between ūn and
K. We consider BERTScore (Zhang et al., 2020a),
which computes the similarity between ūn and K
based on the cosine similarity of the sentence
embeddings, as well as BARTScore (Yuan et al.,
2021) and BLEURT (Sellam et al., 2020); for
implementation details, see Appendix C.

Question-Based Metrics We use Q2 (Honovich
et al., 2021), which computes a factuality score

2Note that we do not compare the generated responses to
the gold responses as they may be unattributable (Sec 3.4).

3https://github.com/mjpost/sacrebleu.
4https://github.com/google-research

/google-research/tree/master/rouge.

through asking and answering questions. Given
a candidate response as input, Q2 generates a
corresponding question and identifies potential
answer spans in the knowledge source K that can
justify the question–answer pair (Durmus et al.,
2020; Wang et al., 2020). It also computes an
NLI-inspired similarity score between a candi-
date response and a predicted answer span in the
knowledge source.

Inference-Based Metrics Finally, we study
the performance of NLI-based models, trained
either on gold NLI benchmarks or on adver-
sarially augmented silver data that we generate.
We first describe the metrics trained on gold
NLI datasets; we discuss our adversarially aug-
mented dataset (BEGIN-ADVERSARIAL) in §4.2. We
use two transformer-based classifiers: T5-base
(Raffel et al., 2020) and RoBERTa-large (Liu
et al., 2019). We fine-tune them on MNLI
(Williams et al., 2018) and the dialogue infer-
ence dataset DNLI (Welleck et al., 2019a). For
both datasets, we map the labels (entailment,
contradiction, neutral) to the labels (attributable,
unattributable, generic) in BEGIN.

We also train classifiers on AugWow
(Gupta et al., 2022), a synthetic dataset designed
to evaluate factuality in dialogue systems. This
dataset includes three categories: Supported
responses that are fully verified by K, Refuted re-
sponses that explicitly contradictK, and responses
with Not Enough Information (NEI), which do
not contain enough information to be verified or
refuted by K. We map the labels (supported,
refuted, NEI) to the labels (attributable, unattrib-
utable, generic) in BEGIN.

4.2 Adversarially Augmented Training Set

This section describes our curated silver training
set (BEGIN-ADVERSARIAL) for NLI-based attri-
bution classifiers. This dataset includes 8k (K,
H, up) triples that fit into the three categories:
attributable, generic, and unattributable.

Attributable Here we use the original human
generated responses ug from WOW. To avoid
human responses that contain opinions or generic
chit-chat, we only use response that do not use
first-person pronouns and where at least 25% of
the words in the response are contained in the
evidence.
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Figure 3: The distribution of scores assigned by semantic similarity metrics (upper row) and lexical overlap scores
metrics (lower row) to the BEGIN test set.

Unattributable To generate examples that are
likely to be unattributable, but are sufficiently
challenging to distinguish from attributable ones
as to be useful in training a classifier, we use
multiple perturbation strategies. First, we directly
perturb the knowledge spans K from the WOW
test set and then feed them to GPT2 trained on
WOW. We use three perturbation methods, each
applied to a different K. First, we swap the subject
and the object of K. Second, we replace up to
two verbs with verbs of the same tense. Finally,
we extract all mentioned entities from different
dialogue examples using the SpaCy NER tagger
(Honnibal et al., 2020), and replace up to two
randomly chosen entities in the original K with
entities of the same type. Manual inspection re-
veals that this usually results in responses that are
hallucinations with respect to the original K.

We also generate responses designed to specif-
ically contradict K, using two techniques. First,
we directly negate the human response ug from
WOW using the English Resource Grammar parser
(ERG; Flickinger et al., 2014). Second, we replace
adjectives in ug with their WordNet antonyms
(Miller, 1994).

Lastly, we gather responses that are off-topic
with respect to the information in the K. For
a given context, we randomly select a WOW

gold response that was based on different K. To
avoid easy-to-detect off-topic responses, we sam-
ple from conversations that were prompted by the
same initial topic word as the target conversation.

Generic Generic responses are generated from
the GPT2 model we trained on WOW, using a low
softmax temperature of 0.4.

4.3 Results

In this section, we report the performance of
automatic metrics on the BEGIN test set.

Lexical and Semantic Metrics The distribution
of scores is shown in Figure 3. For all metrics,
the median score of fully attributable responses
is higher than that of generic and unattributable
responses, as expected. In many individual cases,
however, unattributable responses are scored quite
highly, and there is some overlap in the distribu-
tion of scores across all three labels, particularly
between generic and unattributable responses, in-
dicating that it would be impossible to map these
score ranges directly to the BEGIN label taxon-
omy. Higher scores do not always translate into
more desirable response types: Even though a
generic response would typically be preferable to
an unattributable one in a knowledge-grounded
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Figure 4: The distribution of Q2 scores for each of the
three example categories in the BEGIN test set.

Test set Dev set

Finetuning data P R F1 P R F1

T5
MNLI 48.6 47.9 34.6 52.1 50.7 37.4
DNLI 40.8 56.5 25.6 41.6 59.2 28.6
AugWow 36.8 39.8 37.8 36.7 39.9 38.1
BEGIN-Adv. 46.7 47.4 45.9 47.2 47.1 46.3

+MNLI 46.9 49.3 45.3 47.6 49.4 46.1

ROBERTA

MNLI 50.5 51.1 36.4 52.3 53.8 38.5
DNLI 40.2 46.6 27.2 34.9 46.1 29.2
AugWow 41.2 39.2 29.7 29.4 41.4 29.1
BEGIN-Adv. 42.6 46.1 41.1 49.2 45.8 41.1

+MNLI 44.8 45.9 45.2 44.9 45.6 45.1

Human 96.4 – – 97.2 – –

Table 2: Precision, recall, and F1 of the
classifier-based metrics created by fine-tuning
T5 and ROBERTA on NLI datasets, AugWow
and our adversarial training set. Scores are
macro-averaged across labels on the BEGIN test
and dev sets.

dialogue system, the median scores are lower for
generic responses than unattributable ones.

Q2 Figure 4 shows a box plot for each BEGIN

class using the Q2 metric. As in the case of the
lexical and semantic metrics, Q2 scores are typi-
cally higher for attributable responses but indistin-
guishable between generic and unattributable
responses.

Inference-Based Classifiers Table 2 reports
the performance of the NLI-based classifiers on

BEGIN. BEGIN-ADVERSARIAL substantially outper-
forms the classifiers trained on the gold datasets
MNLI, DNLI, and AugWoW even though it
is a significantly smaller resource than those
datasets. We also use MNLI as an intermediate
fine-tuning dataset before fine-tuning on BEGIN-
ADVERSARIAL.5 We find that intermediate task
fine-tuning can be beneficial when RoBERTa is
used as the pretrained model (↑ 4.1 on F1).

Overall, our adversarially generated dataset
provides better supervision for detecting our
taxonomy than NLI-style datasets. This can be
attributed to the fact that NLI-style datasets are
designed with a focus on detecting direct contra-
dictions. By contrast, identifying unattributable
responses requires detecting multiple types of
unverifiable information including, but not lim-
ited to, contradictions. At the same time, none
of the models exceed 46% F1 score, showing
that there is still room for improvement com-
pared to human performance (over 95% precision
when comparing human annotations to the major-
ity vote). Finally, T5 and RoBERTa have similar
F1 scores despite differences in model size and
pretraining corpora, suggesting that simply scal-
ing up the pretrained model may not be sufficient
to make progress on this problem.

4.4 Are Metrics Measuring Attribution or
Extractivity?

Do the metrics perform similarly on both chal-
lenging and easier examples? We adopt a density
metric from Grusky et al. (2018) to split the
data into three groups—low, medium, and high
density—based on the extent to which they reuse
language from the knowledge sources. Density
represents the average length of the text spans
in the responses that are copied from the knowl-
edge. Extractive (high density) responses reuse the
same phrases as the knowledge source, whereas
abstractive (low density) responses may express
the same meaning using a paraphrase.

Results Figures 5 and 6 show the distributions
across different levels of extractivity of the lexical
and semantic metrics and the Q2 score. We observe
a common pattern across all metrics: high density
responses for all categories (except generic on
BLEURT) score the highest, followed by medium
density and low density responses. The differences

5We did not observe a similar improvement when using
DNLI as an intermediate task.
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Figure 5: Scores assigned to each of the three BEGIN categories by semantic similarity metrics (upper row) and
lexical overlap metrics (lower row), broken down by extractivity of the response (the extent to which it copies
verbatim from the knowledge).

Figure 6: Q2 scores across extractive and abstractive
responses on BEGIN test.

between the scores of the attributable, generic and
unattributable categories are more pronounced in
the more extractive responses, and less in the ab-
stractive cases. Only Q2, though generally unable
to separate generic examples, maintains a clear
separation between attributable and unattributable
examples in the abstractive cases. Moreover, ex-
tractivity strongly influences the score assigned
to attributable examples; an attributable response

is likely to be scored much lower by all of these
metrics if it is abstractive. Even more strikingly,
unattributable extractive responses score higher
on average than attributable abstractive responses
in all metrics.

We observe similar trends for the classifiers
(Figure 7). The performance on classifying at-
tributable responses is much higher in extractive
cases than in abstractive ones. In contrast, the per-
formance on unattributable responses is typically
worse in the extractive cases. This pattern of re-
sults suggests that a response that is unattributable
but has a high word overlap with the knowledge
is very likely to be misclassified as attributable.
In summary, we find that current metrics are
relying on the spurious correlation between at-
tribution and word overlap, and do not capture
a deep understanding of the notion of attribution
(cf. McCoy et al., 2019).

4.5 Robustness to Distribution Shift

We further investigate the robustness of the met-
rics under distribution shift. Figure 8 shows the
distributions of both semantic and Q2 scores
across the data broken down by source. All
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Figure 7: Comparison of F1 scores of ROBERTA-based classifiers on BEGIN categories with examples split by
density (the extent to which the response copies verbatim from the knowledge).

Figure 8: Scores of the semantic and Q2 metrics across the three dialogue corpora we used to train our models.

Figure 9: Comparison of F1 scores of RoBERTa classifiers on BEGIN categories with examples split by benchmark.

metrics6 rate responses from WOW in all cate-
gories significantly higher than responses derived
from CMU-DOG and TOPICALCHAT. Concern-
ingly, attributable responses generated based on
CMU-DOG and TOPICALCHAT receive nearly iden-
tical scores to unattributable responses. Likewise,
the F1 scores of all the classifiers (Figure 9) are
higher on the responses from WOW compared
to the ones from CMU-DOG and TOPICALCHAT.
Specifically, classifiers tested on TOPICALCHAT

examples yield the worst F1 scores. For exam-
ple, RoBERTA-MNLI’s F1 score decreases by
10 points when tested on attributable responses

6We observe similar results for lexical metrics.

from TOPICALCHAT compared to WOW. In general,
the metrics appear to perform poorly on datasets
that have longer knowledge sources. TOPICALCHAT

has on average 271 words in K, followed by
CMU-DOG and WOW which have 215 words and
27 words, respectively. This shows that shorter
knowledge spans correlates with higher metrics
performance, pointing to the limited robustness
of the metrics.

5 Related Work

Analysis of Evaluation Metrics in Natural
Language Generation There is extensive in-
terest in analyzing and meta-evaluating neural
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language generation (NLG) evaluation metrics
(Gehrmann et al., 2022, 2021), for various tasks
including machine translation (Freitag et al.,
2021; Mathur et al., 2020), data-to-text generation
(Dhingra et al., 2019), summarization (Bhandari
et al., 2020; Pagnoni et al., 2021; Durmus et al.,
2020; Gabriel et al., 2021; Fabbri et al., 2021;
Durmus et al., 2022), and dialogue generation
(Yeh et al., 2021; Durmus et al., 2022). Most
of these studies have compared reference-free
and reference-based evaluation metrics to human
evaluation. For example, Gabriel et al. (2021)
measured the performance of automated metrics
on summaries and compared certain dimensions
such as sensitivity and high correlation with hu-
man scores. Fabbri et al. (2021) analyzed metrics
in summarization and released human-annotated
data for faithfulness across 16 summarization
models. We perform a similar meta-evaluation of
existing automatic metrics in the context attribu-
tion in knowledge-grounded responses. Closest
to our work is Durmus et al. (2022), who
found that reference-free evaluation metrics of
summarization and dialogue generation rely heav-
ily on spurious correlations such as perplexity
and length.

Metrics in Knowledge-Grounded Response
Generation In contrast to the significant
progress achieved in evaluating many NLG
tasks, the evaluation of grounded response gene-
ration is a nascent research area (Shuster et al.,
2021; Rashkin et al., 2021a; Dziri et al., 2021).
Yeh et al. (2021) conducted a comprehensive
study of existing dialog evaluation metrics. They
measured properties such as engagingness and
relevance but did not investigate the faithfulness
of responses. While hallucination is well studied
in the context of summarization (Durmus et al.,
2020; Maynez et al., 2020b; Nan et al., 2021;
Falke et al., 2019), fewer researchers have looked
into the problem of assessing hallucination in
dialogue systems. Dziri et al. (2021) introduced
a token-level critic that leverages a knowledge
graph to identify hallucinated dialogue responses.
Rashkin et al. (2021a) proposed a human eval-
uation framework to assess output of dialogue
models that pertains to the external world and
utilized their evaluation framework for conversa-
tional QA tasks. Dziri et al. (2022a) introduced
a faithful benchmark for information-seeking
dialogues and demonstrated that it can serve as

training signal for a hallucination critic, which
discriminates whether an utterance is faithful
or not. An alternative approach for assessing
faithfulness uses an auxiliary language under-
standing task, which measures whether a question
answering system produces the same responses
for the source document (Honovich et al., 2021).
BEGIN as a testing benchmark should be useful in
developing similar metrics further.

NLI and Adversarial Data for Grounded
Dialogue Evaluation In this work, we also
investigate the performance of classifiers trained
on NLI data, extending prior work that has pro-
posed using NLI as a framework for evaluating
conversational consistency (Welleck et al.,
2019b). Dziri et al. (2019) also used NLI to
evaluate dialogue consistency. They generated a
large-scale, noisy synthetic dataset of (premise,
hypothesis) pairs tailored for dialogue, based on
Zhang et al. (2018). We also explore training clas-
sifiers on adversarially augmented training data
similar to concurrent work from Gupta et al.
(2022) and Kryscinski et al. (2020), which
proposed a synthetic dataset for determining
whether a summary or response is consistent with
the source document; this dataset was constructed
by applying a number of syntactic transformations
to reference documents (for a similar approach
applied to NLI, see Min et al., 2020).

6 Conclusion

Contemporary knowledge-based dialogue systems
that rely on language models often generate re-
sponses that are not attributable to the background
knowledge they are expected to convey. We
present BEGIN, a new benchmark to advance re-
search toward robust metrics that can assess this
issue. We use BEGIN to comprehensively evalu-
ate a broad set of existing automatic metrics. We
show that these metrics rely substantially on word
overlap and fail to properly rank abstractive at-
tributable responses as well as generic responses.
They also struggle under distribution shift, assign-
ing low scores to attributable responses grounded
on long knowledge sources. We hope that this
work will spur future research on building robust
evaluation metrics for grounded dialogue systems.
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A BEGIN Annotation Protocol

Each worker was given a document, previous
turn in a conversation, and a generated response
(either by T5, GPT2, DOHA, or CTRL-DIALOG).
They were asked to evaluate the response as
either fully attributable, not attributable, or too
generic to be informative. They also were pro-
vided with multiple examples with explanations
for each category. The exact instructions were as
follows:

Which of these best describes the highlighted
utterance?

◦ Generic: This utterance is uninformative
(too bland or not specific enough to be
sharing any new information)

◦ Contains any unsupported Information: This
utterance is sharing information that can-
not be fully verified by the document. It
may include false information, unverifiable
information, and personal stories/opinions.

◦ All information is fully supported by the
document: This utterance contains only in-
formation that is fully supported by the
document.

B Implementations

GPT2, T5 We implement these models using
the TensorFlow Huggingface Transformers li-
brary (Wolf et al., 2020). During training, we
use the Adam optimizer (Kingma and Ba, 2015)
with Dropout (Srivastava et al., 2014) on a batch
size of 32 with a learning rate of 6.25 × 10−5

that is linearly decayed. The maximum dialogue
history length is set to 3 utterances. The model
early-stops at epoch {6, 10, 10} respectively for
WOW, CMU-DOG, and TOPICALCHAT.

CTRL-DIALOG We reproduce the results from
(Rashkin et al., 2021b), following the training
details in that paper.

DoHA We use the code and the pre-trained
model on CMU-DOG that are publicly available
by the authors at their Github account.7 For WOW
and TOPICALCHAT, we follow closely the authors’

7https://bit.ly/3bBup2M.

training procedure described in Prabhumoye et al.
(2021) and we train two models on both datasets.

For each dataset, we save the best model based
on the validation set. We use nucleus sampling
with p = 0.9.

C Model-Based Metrics

Semantic Similarity Models We use BERT-
Score version 0.3.11. with the DeBERTa-xl-MNLI
model (He et al., 2021), which is the recom-
mended model as of the time of investigation. For
BLEURT, we use the recommended BLEURT-20
checkpoint (Pu et al., 2021). For BARTScore, we
use the latest publicly available checkpoint (ac-
cessed March 2022) from https://github
.com/neulab/BARTScore.
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