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Abstract

We investigate the extent to which modern
neural language models are susceptible to
structural priming, the phenomenon whereby
the structure of a sentence makes the same
structure more probable in a follow-up sen-
tence. We explore how priming can be used to
study the potential of these models to learn
abstract structural information, which is a
prerequisite for good performance on tasks
that require natural language understanding
skills. We introduce a novel metric and re-
lease PRIME-LM, a large corpus where we
control for various linguistic factors that in-
teract with priming strength. We find that
Transformer models indeed show evidence
of structural priming, but also that the gen-
eralizations they learned are to some extent
modulated by semantic information. Our ex-
periments also show that the representations
acquired by the models may not only en-
code abstract sequential structure but involve
certain level of hierarchical syntactic infor-
mation. More generally, our study shows that
the priming paradigm is a useful, additional
tool for gaining insights into the capacities of
language models and opens the door to fu-
ture priming-based investigations that probe
the model’s internal states.1

1 Introduction

It has become increasingly clear that modern,
neural language models (LMs) are capable of rep-
resenting and learning a broad range of linguistic
phenomena (Gulordava et al., 2018; Hewitt and
Manning, 2019; Tenney et al., 2019a; Rogers
et al., 2020; Warstadt et al., 2020). However,
many open questions remain about the extent to
which specific LMs have indeed acquired specific

∗Equal contribution.
1Our code and data can be found at https://github

.com/dmg-illc/prime-lm.

linguistic constructions, about whether these mod-
els encode an abstract notion of structure in their
representations, and about the best ways to even
assess the syntactic abilities of these models. A
rich literature has emerged in the last few years ad-
dressing these questions, often taking inspiration
from methodologies developed in theoretical lin-
guistics, psycholinguistics, neurolinguistics, and
language acquisition research (Futrell et al., 2019;
Ettinger, 2020; Boleda, 2020; Gauthier et al.,
2020; Baroni, 2022), where the same questions
have been asked about the human mind/brain for
centuries.

Building on this tradition, this paper turns to
structural priming to investigate the degree to
which LMs encode abstract structural information
independent from the concrete words that make
up sentences. This phenomenon refers to the fact
that humans are more likely to produce—or to
more easily comprehend—a sentence of a certain
structure X (the target) when they have been
exposed before to a sentence of a similar structure
X (the prime), than if they had been prompted
with a sentence of a different structure Y . For
example, a native speaker of English will be more
inclined to produce the target sentence with a
prepositional object in (2-a) after having read
sentence (1-a) instead of (1-a), and, vice versa, be
more inclined to produce the double-object target
sentence (2-b) after having read (1-b) instead of
(1-a). Similar effects are also observed in lan-
guage comprehension.

(1) a. A teacher cooked a chicken for a worker

b. A teacher cooked a worker a chicken

(2) a. The guest threw the pot to the lady

b. The guest threw the lady the pot
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Evidence for structural priming—to the extent
that it can be shown to be independent from lex-
ical overlap and other confounds—is taken as
evidence for a linguistic structural level of rep-
resentation that abstracts away from the surface
form of sentences. Thus whether or not language
models display structural priming can provide in-
sights as to their structural awareness, which is
necessary for downstream tasks requiring natural
language understanding skills. Previous experi-
ments designed to test structural encoding in LMs
are inconclusive. On the one hand, studies on
structural probing (Hewitt and Manning, 2019)
and on syntactic evaluation tasks (Warstadt et al.,
2020) have yielded evidence for its presence. On
the other hand, other sets of experiments have
indicated that current LMs are surprisingly indif-
ferent to word order (Hessel and Schofield, 2021;
Pham et al., 2021; Sinha et al., 2021a) and rely on
superficial heuristics when resolving downstream
tasks (McCoy et al., 2019; Sinha et al., 2021b).
Such unresolved tensions between results—and
the active debate about them—highlights the need
for developing additional methodologies that iso-
late structure from the lexico-semantic cues given
to the model. In this paper, we leverage findings
from structural priming in human language pro-
cessing to develop a systematic experimental pipe-
line with the aim of assessing the extent to which
pre-trained neural language models learn repre-
sentations that encode structural information—a
prerequisite for their good performance on natural
language understanding tasks.

We use the term ‘structural priming’ (Pickering
and Ferreira, 2008) rather than ‘syntactic priming’
(first described in Katryn Bock’s Syntactic Persis-
tence in Language Production, 1986) because it
comprises priming of abstract structural informa-
tion that is not restricted to syntactic hierarchical
rules, such as the linear positions of semantic roles
or the sequential order of parts of speech. In this
paper, we focus mostly on the latter and touch
upon syntactic rules in Section 7.4.

In Section 3, we define an efficient novel met-
ric for measuring the effect of priming. For our
experiments, we create PRIME-LM, a large-scale
corpus for examining structural priming consist-
ing of ∼1.3M prime-target sentence pairs, as we
describe in Section 4. Earlier work on priming in
LMs by Prasad et al. (2019) operationalized prim-
ing as adaptation or implicit learning and thus
fine-tuned the model weights in between prime

and target. While our priming effect metric is
compatible with priming as adaptation, our exper-
iments in this paper concentrate on priming after
recent exposure to linguistic context without up-
dating the model weights. This allows us to assess
the structural representational abilities acquired
by the models during training and investigate to
what extent such structural information remains
active at inference time.

In Section 6 and 7 we use our corpus and
priming paradigm to answer three main research
questions: (1) Are modern neural language models
susceptible to structural priming? (2) Which fac-
tors influence the strength of the priming effect?
(3) What is the nature of the structural repre-
sentations acquired by those models? Our results
show that Transformer language models do exhibit
structural priming. This finding provides evidence
that abstract structural information is encoded by
the models to some degree and persists as a model
makes predictions about upcoming sentences. The
strength of the priming effect is influenced by sev-
eral factors, including the semantic similarity and
the proximity between prime and target, as well as
the amount of exposure to a given structure during
prompting. Our final experiment moreover reveals
that the structural representations encoded by the
model may not only be sequential but involve a
certain level of hierarchical syntactic structure.

2 Background

2.1 Structural Priming in Humans
Priming is the dominant paradigm in psycholin-
guistics for investigating the extent to which
human language processing involves a level of
structural representation independent from other
types of linguistic knowledge. The rationale be-
hind this paradigm is that if speakers are sensitive
to sentence structure independently from sentence
content, then it is reasonable to assume that such
structural information is an integral part of the
representations built during processing.

In human language processing, structural prim-
ing effects are well attested both in compre-
hension and production (Bock, 1986; Pickering
and Branigan, 1998; Bock and Griffin, 2000;
Pickering and Ferreira, 2008; Goldwater et al.,
2011; Pickering et al., 2013; Reitter and Moore,
2014; Tooley and Bock, 2014, among others). Sev-
eral studies have shown that the strength of the
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priming effect increases after repeated exposure
to a given structure (Kaschak et al., 2011; Jaeger
and Snider, 2013) and tends to decay if material
intervenes between prime and target (Reitter et al.,
2011). Other experiments have shown that un-
grammatical and semantically incongruent sen-
tences (e.g., the waitress brunks the book to the
monk) lead to similar priming effects as well-
formed sentences (Ivanova et al., 2012, 2017),
which suggests that structural persistence effects
are robust enough in the absence of semantic
and lexical cues.

Yet, structural priming has been found to be
affected by various aspects. For example, prim-
ing effects are stronger with lower-frequency than
higher-frequency constructions (e.g., Scheepers,
2003; Bernolet and Hartsuiker, 2010; Pickering
et al., 2013). Similarly, some types of lexical rep-
etition between prime and target have been shown
to enhance structural priming, suggesting that
there is a lexical component involved (Pickering
and Branigan, 1998; Cleland and Pickering,
2003). Semantic relatedness between prime and
target also has a boosting effect, albeit smaller
than the lexical repetition boost (Cleland and
Pickering, 2003; Mahowald et al., 2016).

In the present study, we take inspiration from
this tradition to investigate the priming behaviour
of neural language models, which in turn depends
on them encoding structural information. Two (not
necessarily exclusive) mechanisms have been pro-
posed to account for structural priming in humans:
short-term residual activation of structural infor-
mation across utterances (e.g., Branigan et al.,
1999; Wheeldon and Smith, 2003) and long-term
adaptation or implicit learning involving changes
in the probability of a given structure (Bock et al.,
2007; Kaschak et al., 2011; Fine and Jaeger, 2013).
Here we focus on the ability of large pre-trained
LMs to encode structural information given in the
preceding context, similarly to residual activation
in humans.

2.2 Structural Sensitivity of Neural LMs

The increasing capacities of neural language
models in recent years have led to a surge in
research into their representation of language on a
fine-grained linguistic level (Alishahi et al., 2019;
Tenney et al., 2019a; Rogers et al., 2020, inter
alia). A common approach to examining language
models is to consider them as ‘psycholinguistic

subjects’; by testing hypotheses derived from psy-
cholinguistics we are able to determine to what
extent language models process language simi-
larly to humans (Futrell et al., 2019; Ettinger,
2020; Davis and van Schijndel, 2020; Lakretz
et al., 2021).

To assess the linguistic knowledge of LMs, a
range of tools have been deployed. For instance,
by training auxiliary diagnostic classifiers on top
of a model’s internal states (Hupkes et al., 2018),
we can probe whether these states encode certain
linguistic properties such as POS tags (Tenney
et al., 2019b), syntactic dependencies (Hewitt and
Manning, 2019; White et al., 2021), or construc-
tional information (Madabushi et al., 2020; Li
et al., 2022). Another common approach is the
usage of Targeted Syntactic Evaluations, in which
the LM’s output probabilities are compared on a
minimally different pair of a grammatical and un-
grammatical sentence (Linzen et al., 2016; Marvin
and Linzen, 2018; Gauthier et al., 2020; Hu
et al., 2020). This procedure makes it possible to
investigate a model’s knowledge of specific lin-
guistic phenomena without probing the model’s
internal representations, such as negative polar-
ity items (Warstadt et al., 2019; Jumelet et al.,
2021), subject-verb agreement (Gulordava et al.,
2018; Lakretz et al., 2019), and argument binding
(Warstadt et al., 2020).

Taken together, results from probing, Targeted
Syntactic Evaluations, and other existing evalu-
ation paradigms can certainly be viewed as pro-
viding converging evidence that modern neural
LMs learn non-trivial structural, linguistic knowl-
edge, and do not just memorize fragments of texts
from the data and simple sequential dependen-
cies. However, although converging, the evidence
is not yet conclusive: Each of these evaluation
paradigms has also been found to occasionally
produce false positives. In probing, for instance,
a well-known risk is that probes pick up infor-
mation represented in the internal states of the
language model, but not causally involved in the
predictions of the model (Voita and Titov, 2020).
In Targeted Syntactic Evaluations, the strength of
the evidence depends on the quality of the set of
alternative explanations that is considered, which
ultimately is a matter of judgements and differs
for different linguistic constructions (Vamvas and
Sennrich, 2021). Recent studies have provided
new challenges, including studies pointing out the
indifference of LMs towards word order (Sinha
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et al., 2021a, inter alia), their reliance on spurious
heuristics (Lovering et al., 2021), and their dif-
ficulty in dealing with negation (Ettinger, 2020;
Kassner and Schütze, 2020).

Hence, the debate about the abilities of language
models to learn structural information in general,
as well as their success in learning certain linguis-
tic constructions specifically, is far from over. The
research we present in this paper starts from the
observation that structural priming may provide a
much needed, complementary methodology that,
like Targeted Syntactic Evaluations, examines the
behavior of a model, but also, like probing, informs
us about the nature of the internal states. We will
assess a model’s representation of a sentence by
measuring its consequences in processing the next
sentence. Instead of examining how the model
deals with specific syntactic properties within a
sentence, such as number agreement, we measure
its encoding of abstract structure at the over-
all sentence level and the consequences this has
for upcoming sentences. In the next section we
explain our approach in detail.

3 Measuring Priming

We capture the effects of priming by measuring
the difference in log probability of a target sen-
tence TX given a prime sentence PX of the same
syntactic structure X, vs. TX given PY, a sentence
of the exact same semantic and lexical content as
PX but differing in syntactic structure Y. We call
this metric the Priming Effect (PE):

logP (TX|PX)− logP (TX|PY) (1)

By measuring priming based on a fixed
prime-target pair our method is akin to structural
priming in comprehension. We condition a target
sentence on a prime sentence by concatenating
them, separated by a period. The log probability
is computed as the sum of token log probabilities
of the LM:

logP (TX|PX) =
∑

i

logPLM(TXi |PX, TX<i) (2)

For example, the PE of the example in the intro-
duction would be computed as follows:

PEPO = logP (TPO|PPO)− logP (TPO|PDO)

PEDO = logP (TDO|PDO)− logP (TDO|PPO)

(where PPO, PDO, TPO, TDO denote sentences
1a, 1b, 2a, 2b). To ensure our estimates of the
priming effect are robust, we incorporate the
procedure of Newman et al. (2021) by pairing
each target sentence in a corpus with 10 different
prime sentences.

Definition 3.1 (Priming Effect (PE)). Measures
the effect of priming as the difference in log
probabilities:

1

|P|
∑

PX∈P(TX)

[logP (TX|PX)− logP (TX|PY)]

where P(TX) denotes the set of prime sentences
that can be matched with target TX. In our exper-
iments, we report the mean of this metric, taken
over large-scale corpora of semantically diverse
sentences.

Our PE method is related to various other met-
rics that are used in the context of priming and
statistics in general. When the conditional prob-
abilities are close to 0—as is the case for our
corpora with a mean sentence probability around
10−18—this metric approaches the log odds ra-
tio that is used by Mahowald et al. (2016). This
allows our scores to be directly comparable to
their results on human priming. A more general
connection can be made between our metric and
Bayes factors (Jeffreys, 1961; Kass and Raftery,
1995), which determine the strength of evidence
and are, similar to our metric, also defined as a
log probability ratio.

Prasad et al. (2019) model priming as an implicit
learning procedure (Chang et al., 2000), instan-
tiated as a fine-tuning-based adaptation process
(van Schijndel and Linzen, 2018). The adaptation
effect is then obtained by comparing the impact
of a single prime structure on two target sentences
of opposing structure, comparing their perplexity
before and after fine-tuning:

PP(TX)− PP(TX|PX) > PP(TY)− PP(TY|PX)

The authors also identify a problem: This metric
is proportional to the prior perplexities PP(TX)
and PP(TY). They resolve the issue by regressing
out this relationship. This procedure, however, is
based on assumptions that do not always hold,
namely, that the relationship between the priming
metric and the prior perplexities of the two targets
is linear and homoscedastic. In our experiments
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Figure 1: Our Priming Effect metric compares the
impact of two prime sentences with different structures
on a single target exhibiting one of the structures.
Prasad et al. (2019) examine the impact of a single
prime structure on two target sentences.

we found neither assumption to hold empirically,
and hence we opted to directly compare the impact
of two prime sentences on a single target sentence.
This way we do not need to regress out confound-
ing effects of prior probabilities, since we are
comparing the same quantity (the target sentence)
to two primes. The contrast between these metrics
is illustrated by the diagrams in Figure 1.

Note that our PE metric could be applied to
the priming-as-adaptation paradigm as well, by
comparing the target sentence probabilities of two
fine-tuned models. In the experiments presented
in this paper, we focus on priming as residual acti-
vation and thus do not update the model weights,
which makes the approach more computationally
efficient.

4 The PRIME-LM Corpus

We create a large-scale set of corpora designed to
examine the priming behavior of LMs.

4.1 Syntactic Alternations
In the current experiments, we focus on two types
of syntactic alternations, dative and transitive,
which allow for the same content to be expressed
by two different structures. The dative alternation
includes ditransitive verbs whose complements
can be expressed by a double-object (DO) structure
or a prepositional-object (PO) structure (e.g., the
boss gave the dog a bone vs. gave a bone to the
dog). The transitive alternation includes transitive
verbs within an active (ACT) or a passive (PASS)
structure (e.g., the actor followed the student vs.
the student was followed by the actor).

(3) Dative
DO: Dt Nagent V Dt Nrecipient Dt Npatient

PO: Dt Nagent V Dt Npatient Pr DtNrecipient

(4) Transitive
ACT: Dt Nagent V Dt Npatient

PASS: Dt Npatient Aux V by Dt Nagent

In the transitive case, the active structure is dom-
inant in English (Bock, 1986; Merriam-Webster,
1989). The proportion of use between structures
for the dative alternation is less marked, with
different studies showing a preference for the
direct-object structure (e.g., Bock, 1986; Bresnan
et al., 2007).

4.2 Corpus Construction

We construct a set of corpora by filling in the tem-
plates in (3) and (4) above. For the content words
(nouns and verbs), we exploit the vocabulary pre-
sent in the University of South Florida (USF) free
association norms dataset (Nelson et al., 2004),
which contains pairs of cue-target words with
their association strength.1 This allows us to con-
trol for the degree of semantic association be-
tween prime and target sentences. To minimize
any effects stemming from word frequency fac-
tors, we only include USF content words that
appear in the top 5000 most common words
according to the COCA corpus (Davies, 2009).

We identify transitive and ditransitive verbs
using vocabulary lists targeted at English lan-
guage learners,2 keeping those that are present in
USF and meet the frequency constraints (around
80 verbs in total). The ditransitive verbs were
manually labeled for the preposition to be used
in the PO structure (to/for) and the transitive
verbs were annotated with their past participle
form to be used in the passive construction. In
addition, all verbs were manually labeled for
some of the noun categories they can take as
arguments (e.g., the transitive verb wash was an-
notated as accepting agents of category person
and patients of category person or object).
Following the same frequency constraints, a set
of nouns fulfilling these categories was selected
from USF using the WordNet closure categories
of person, social group, social control, institu-
tion, physical entity, and object, which we further
hand split into non-edible, edible, and drinkable.3

This yielded 119 nouns in total.

1Corresponding to the percentage of human participants
who produced the target word when asked to come up
with words related to the cue (http://w3.usf.edu
/FreeAssociation/).

2http://www.aprendeinglesenleganes
.com/resources, https://englishpost.org
/transitive-verbs-list, and https://www.cse
.unsw.edu.au/∼billw/ditransitive.html.

3To ensure compatibility with the indefinite article a/an
(see Section 4.3), uncountable nouns were discarded.
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From this vocabulary, we are able to gener-
ate many realizations of our sentence templates
through sampling, respecting the grammaticality
of the sentences produced. Three native speak-
ers of English manually examined a subset of
sentences for each verb and syntactic alternation
to confirm that the sentences produced are well
formed. This resulted in the elimination of a few
ditransitive verbs for which the DO structure was
considered awkward. The final corpus contains
48 transitive and 16 ditransitive verbs.

Using this template-based method, we create a
series of corpora that satisfy various semantic and
lexical constraints. For each of these corpora we
specify a corpus size of 15,000 prime-target pairs
per syntactic target structure (DO, PO, ACT, PASS),
which are obtained by pairing 1,500 different
target sentences with 10 semantically differ-
ent primes.4 Overall, PRIME-LM contains ∼1.3M
prime-target pairs.

4.3 The Core Corpus
PRIME-LM consists of a core corpus and a set of
variants over this core. In the core corpus, we
ensure that prime and target sentences (1) include
different determiners, either a/an or the, (2) do not
share any nouns nor verbs, and (3) only contain
nouns and verbs that are not semantically asso-
ciated across prime and target according to the
USF free association norms dataset.5 For the PO

structure, we additionally make sure that prime
and target differ in preposition (to vs. for), which
makes all the prime and target sentences in the
dative alternation lexically fully disjoint. For the
transitive alternation, this is not possible because
the preposition by must appear in the PASS struc-
ture. Other than that, we completely limit lexical
overlap for transitive constructions by using al-
ternate auxiliary verb forms (is vs. was) for the
passive prime and target, and create their active
counterparts by using the corresponding tense of
the auxiliary to maintain semantic equivalence.
All sentences in the dative alternation are in the
past simple tense.

As an illustration, below we show two examples
from the core corpus following the scheme in

4The corpus size of 15,000 was determined based on
Cochran’s Formula for sample size determination (Cochran,
1977), with a p-value and margin of error of 0.01.

5The average cosine similarity across pairs of words in
prime and target computed with word2vec embeddings by
Fares et al. (2017) is 0.2 for both nouns and verbs.

Figure 1, where P are the prime sentences and T
the target:

(5) PPO: A pilot bought a pie for an attorney
PDO: A pilot bought an attorney a pie
TPO: The professor sent the tea to the band

(6) PACT: The nurse purchased the beer
PPASS: The beer was purchased by the nurse
TPASS: An engine is wrapped by a colonel

We create different variants of the core corpus
that isolate specific aspects shown to influence
structural priming in human sentence processing.
They are described in Section 7 together with the
corresponding experiments. Example sentences
for each of our corpora can be found in Table 1.

5 Language Models

We focus our experiments on the class of
auto-regressive LMs,6 which are trained to pre-
dict the next token, in line with human incremental
language processing. Our methodology can be ap-
plied to masked LMs as well; we briefly reflect
on this in the discussion (§8). The main focus of
our analysis is directed on Transformer models
(Vaswani et al., 2017), which constitute the cur-
rent state of the art in language modeling, and have
been shown to produce representations that corre-
late strongly with human brain signals (Schrimpf
et al., 2020).

This is the set of models we consider:

• GPT2, in its four sizes (SMALL, MEDIUM,
LARGE, XL; Radford et al., 2019), and its
distilled version (Sanh et al., 2019);

• DialoGPT, three GPT2 models of increasing
size that have been fine-tuned on dialogue
data (Zhang et al., 2020);

• GPT-Neo in three sizes (125M, 1.3B, 2.7B;
Black et al., 2021), which is based on GPT3
(Brown et al., 2020).

All Transformer LMs are imported with the
transformers library (Wolf et al., 2020).
The extraction of the model probabilities is done
using the diagNNose library (Jumelet, 2020),

6Also known as causal or left-to-right language models,
predicting the probability of the next token solely on prior
context.
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which provides support for efficient activation ex-
traction. Our implementation allows our priming
procedure to be efficiently tested on any kind of
language model and to be easily reproducible. All
our code and corpora are available at https://
github.com/dmg-illc/prime-lm.

Why Should LMs Exhibit Structural Priming?
Since structural repetition is present in human lan-
guage use and common in corpora (Dubey et al.,
2008), LMs have, in theory, the potential to learn
such structural dependencies during training. It is
not reasonable to expect that models which have
been trained on shuffled sentences will exhibit
priming, however, because such models will not
be able to adequately carry over a linguistic signal
(structural or otherwise) from the prime sentence
to the target.7 As mentioned in the Introduction
and in Section 2.2, several studies have suggested
that structural information is being encoded by
large language models; yet, other studies showing
that LMs are often insensitive to permutations in
word order (e.g., Kodner and Gupta, 2020; Sinha
et al., 2021b) cast doubt on these results. Thus,
while there is potential for LMs pre-trained on
unshuffled data to encode structural dependencies
that are detectable with our priming paradigm,
whether they will in fact do so remains an open
question, since the language modeling objective
(next word prediction) contains no explicit cues
for structural information. This is precisely the
question we address in this work.

Priming Behavior To interpret our results we
distinguish between three types of behaviour:
(i) symmetrical priming occurs when a model
obtains positive PEs for both constructions within
an alternation: The model has fully picked up
on the structural congruence between prime and
target; (ii) asymmetrical priming occurs when a
model obtains a positive PE for one construction,
and a PE close to zero for its counterpart;8 and
(iii) biased priming occurs when a model obtains a
positive PE for one construction, but a negative PE
for its counterpart. A priming bias indicates that
a prime of the preferred structure is more likely

7In our experiments we had initially incorporated two
LSTM LMs (Józefowicz et al., 2016; Gulordava et al., 2018),
and indeed due to their shuffled training corpus we did not
observe any notable PE. We are not aware of any available
LSTM LM trained on unshuffled data.

8Such asymmetries are common in humans (Bock, 1986;
Gries, 2005; Segaert et al., 2016).

Figure 2: Priming Effect results of all models on the
core corpus, across the four syntactic structures. Error
bars denote 99% confidence intervals of the mean. The
GPT2-LARGE model that will be explored in more detail
in §7 has been highlighted.

to boost any subsequent target that we consider,
regardless of its structural congruence with the
prime. Hence, we take symmetrical and, to some
extent, asymmetrical priming behavior to repre-
sent evidence for the structural priming effect we
are interested in.9

6 Core Priming Results across LMs

We initially test all LMs described in the previous
section on our core corpus, designed to control
for lexical overlap and semantic similarity. This
provides a clean experimental setup, where the
only element shared between prime and target is
the abstract sequential structure. The results are
reported in Figure 2, split by the structure type
of the target sentence. It can be seen that across
many models a positive PE is present. We will
now discuss these results in more detail.

There are two models that exhibit symmetrical
priming for both transitive and dative alternations:
GPT2-LARGE and GPT2-XL. The other GPT2 mod-
els exhibit symmetrical priming for transitive as
well, but exhibit moderate asymmetrical priming

9This is analogical to, for example, subject-verb agree-
ment: A model that always prefers a plural verb, regardless
of the subject number, can’t be said to understand the task.
A model that scores 100% on plural verb prediction, but ran-
domly for singular verbs, has an asymmetric understanding
of the task.
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Corpus Condition Prime (ACT) Target (PASS)

Core — The boy judged the adult. A cousin is forgotten by a secretary.

Semantic
Similarity

Verb Only The chief struck the mayor. A bishop was beaten by a hero.
All Nouns An actor broke a glass. The bottle was wrapped by the actress.
All Words The student drank the wine. A beer was prepared by a professor.

Lexical
Overlap

Random Noun The girl smelled the chicken. A chicken was prepared by a pilot.
Main Verb A woman used a computer. The iron was used by the father.
Function Words The soldier wanted the pie. The book was carried by the manager.
All Nouns The king smelled the wine. A wine was drunk by a king.

Implausible
Prime

— The newspaper grabbed the pot. A key is removed by an attorney.

Prime Complex A lady with a red bag chased a minister. The juice was purchased by the child.
Target Complex The physician judged the leader. A rich school was embraced by a business.

Structural
Complexity

Both Complex The bad adult with the hat raised the knife. A son was helped by an author from Cuba.

Table 1: Example sentences for the core corpus and each condition described in §7.1, §7.2, and §7.4.
The same manipulations illustrated here for the ACT and PASS also hold for the dative alternation.

behavior for dative, with priming occurring only
for double-object structure. DialoGPT-SMALL ex-
hibits biased priming for transitive constructions:
a negative PE on active constructions, but a large
positive PE for passive constructions. This shows
that for this particular model a passive prime
boosts the probability of an active target more
than an active prime does, resulting in a negative
effect.

Model Size We can investigate the impact of
model size by comparing the results of the dif-
ferent sizes of the models we consider.10 Larger
models may have more potential for encoding
finer-grained structural information (see, e.g.,
Hu et al., 2020). If model size were to have a
positive effect on structural priming this might
manifest itself in two ways: either (1) the PE in-
creases for both structural alternatives, or (2) the
priming bias towards one structure decreases. We
do not see evidence of (1). As for (2) regarding
bias, results differ between transitive and dative.
For the GPT2 models the asymmetrical priming
towards double objects is decreased, resulting in
symmetrical priming for both GPT2-LARGE and
GPT2-XL. For the DialoGPT results on transi-
tive we can see that the severe bias towards
passive decreases as model size is increased,
resulting in symmetrical priming behaviour for
DialoGPT-LARGE. For dative constructions, how-
ever, the larger model size gives rise to a priming

10Note that the different sizes of a model are trained on
the same amount of data; only the number of parameters is
affected.

bias towards double objects: in this case increas-
ing model size actually has a detrimental effect on
the model’s priming behaviour. From this we con-
clude that sensitivity to structural priming is partly
driven by model size, but is likely to depend on
a more intricate combination of factors related to
model architecture and training data, which needs
to be investigated further in future work.

Best Model The models that exhibit more sus-
ceptibility to structural priming across all four
construction types are GPT2-LARGE and GPT-2-XL.
For GPT2-LARGE the congruent conditional prob-
ability P (TX|PX) was larger than the incongruent
one P (TX|PY) 60.5% of the time for active, 81.0%
for passive, 65.4% for prepositional object, and
72.1% for double object. In the subsequent exper-
iments we will focus our analysis on GPT2-LARGE

and use more specialized experimental conditions
within the priming paradigm to dig deeper into
the potential of the model for encoding structural
information.

7 Impact of Specific Factors

The next battery of experiments isolates various
factors that have been shown to be of influence
to priming in human language processing. For
each experimental condition, we present a spe-
cialized corpus followed by an analysis of the
priming effects exhibited by GPT2-LARGE on this
data, comparing them to the model’s behavior
on the core corpus. Examples from the core and
specialized conditions can be found in Table 1.
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Figure 3: Results for GPT2-LARGE on the experiments described in and §7.1 and §7.2: A. measures the impact of
semantic similarity between prime and target, B. the impact of lexical overlap between prime and target, and C.
whether priming is affected by the semantic implausibility of the prime.

7.1 Lexical Dependence

In the core corpus, prime and target sentences are
semantically unrelated, which ensures that prim-
ing effects cannot stem from the model assigning
higher probabilities to words that are similar or
identical to those present in the prime sentence. In
the following two experiments we relax this con-
straint to investigate the extent to which lexical
semantic similarity and lexical repetition across
prime and target have an impact on structural
priming effects.

7.1.1 Semantic Similarity

We create versions of the core corpus where
prime and target sentences have different degrees
of lexical semantic similarity. Concretely, a pair
of words sharing the same semantic role in the
prime and target is considered semantically similar
if they (a) are associated according to the USF
norms, and (b) have a cosine similarity (computed
with embeddings from Fares et al., 2017) equal or
higher than the 90%-percentile of the distribution
of similarities in the core corpus.11

In human experiments, semantic similarity has
been found to boost priming (Goldwater et al.,
2011), both in nouns (Cleland and Pickering,
2003) and in verbs (Pickering and Branigan,
1998). We isolate the effects of verb and noun
similarity by creating conditions where (1) only
the verb, (2) all nouns, or (3) all content words
are semantically similar across prime and target
sentences. These additional constraints result in
a more limited set of possible sentence pairs for
condition (3), and thus in a reduced corpus of 228

11This results in a cosine similarity threshold of ∼0.4.

(transitive) and 1648 (dative) prime-target pairs
rather then 15,000.12

Results We find greater PE across constructions
in this setup compared to the core corpus, although
this is less pronounced for the PO structure. As can
be seen in Figure 3A, a semantically similar verb
in prime and target leads to an increase of the
PE, comparable to the condition where all nouns
are similar. With the exception of DO, we do not
observe an additive effect: When all content words
are similar, the PE is not substantially higher than
when only the verb is similar.

7.1.2 Lexical Overlap
Lexical overlap between prime and target in the
core corpus was avoided in both content and
function words. Here we systematically introduce
lexical repetition across prime and target sen-
tences. We create versions of the core corpus
where lexical overlap takes place with respect to
only (1) one of the nouns at random but with
the same semantic role across prime and target
(agent, patient, recipient, see §4.1), (2) all nouns,
(3) the verb, and (4) all function words (i.e., any
determiners, prepositions, and auxiliary verbs are
shared across prime and target, without content
words being shared).

Results As can be seen in Figure 3B, overall
the presence of lexical overlap greatly boosts
structural priming effects. For all constructions,
verb overlap leads to higher priming effects than
repeating one noun or even all nouns. Surprisingly,

12In this case, to maximize the number of unique pairs,
we allow a varying number of primes to target, rather than
observing the 10-to-1 prime-target setup of the other corpora.
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overlap of function words has the highest boosting
effect for ACT and DO.13 To place these results into
context, we calculate the PE when prime and
target are identical sentences. Language models
are known to fall prone to repeatedly generating
the same sentence (Foster and White, 2007; Fu
et al., 2021); hence this value can be considered a
ceiling. We obtain a PE of 2.5 for ACT, 7.2 for PASS,
9.2 for PO, and 10.1 for DO constructions. None of
the lexical overlap conditions we consider reaches
the corresponding ceiling.

7.2 Semantic Implausibility

In this experiment, we test whether the effects
found in the core corpus are robust to manipu-
lations concerned with the semantic plausibility
of the sentences used as stimuli. This helps to
diagnose to what extent any structural informa-
tion encoded by the model is autonomous from
semantics. To this end, we construct a version of
the corpus where the prime sentences are specif-
ically designed to be semantically implausible.
Gulordava et al. (2018) used a similar method
in their study of long-distance agreement depen-
dencies, finding that RNN’s ability to predict
number agreement was robust to nonsensical sen-
tences. The authors interpret this result as evidence
that the networks track abstract structure, in line
with Chomsky’s (1957) proposal that grammat-
icality is distinct from meaningfulness in the
human language faculty. Here we further test
this hypothesis by analyzing whether the LM is
susceptible to structural priming effects when the
prime sentence is nonsensical. As mentioned in
§2.1, humans do exhibit structural priming ef-
fects when prompted with incongruent sentences
(Ivanova et al., 2012, 2017). We construct seman-
tically implausible primes via sampling nouns at
random among noun categories that do not respect
the verb selectional restrictions. This results in
grammatically correct, yet nonsensical sentences
such as ‘the iron threw the hero to the chocolate’.
The same constraints regarding absence of seman-
tic similarity and lexical overlap between prime
and target present in the core corpus apply here
as well.

Results The results of this experiment are shown
in Figure 3C. We find here that the PE exhibits

13This contrasts with psycholinguistic evidence suggesting
that structural priming is not led by function-word priming in
humans (Bock, 1989; Tree and Meijer, 1999).

asymmetrical priming behavior, indicating that
the prime structure itself is more likely to boost
any subsequent target regardless of shared struc-
tural properties. The PE disappears and becomes
negative for the ACT and PO constructions, while
for PASS and DO it decreases when compared to the
results on the core corpus, but remains positive.
While some degree of abstract structural infor-
mation present in the nonsensical sentences may
be exploited to predict the target construction, the
asymmetrical behaviour suggests that structural
encoding is not fully independent from seman-
tic plausibility.

7.3 Activation Strength
In the following two experiments, we test whether
structural priming effects are affected by the prox-
imity of prime to target and by increased exposure
to the priming structure. We maintain the strict
setting of our core corpus, where prime and tar-
get are semantically and lexically unrelated, thus
testing to what extent the activation of abstract
structural information across sentences is affected
by recency and cumulativity factors.

7.3.1 Recency
To vary the proximity of prime to target, we cre-
ate a set of padding sentences, using intransitive
verbs, personal pronouns, and different auxiliary
verbs to those used in our core corpus, including
modal auxiliary verbs (e.g., you might come, he
did remain, they should appear). These sentences
were designed to contain frequent vocabulary with
no lexical overlap nor semantic similarity to the
prime and target sentences in the core corpus. A
context in this setting consists of a sequence of 4
sentences, within which the priming sentence will
vary in position relative to the target. This setup
ensures that any priming observed is not influ-
enced by the total length of the context, but solely
by the position of the prime. In this condition, the
PE is computed as follows:

logP (TX|P ∗
Z PX P

∗
Z )− logP (TX|PY) (3)

where PZ denotes the sequence of intransitive
padding sentences.

Results The results of this experiment are shown
in Figure 4A, which shows that increasing the
proximity between prime and target has a highly
positive impact on the strength of priming. In-
terestingly, the PE for the transitive cases is still
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Figure 4: Results for GPT2-LARGE on the experiments
described in §7.3: A. recency effect on priming, by
increasing the distance between prime and target with
additional intransitive sentences: each bar denotes a
different position of the prime (PX), surrounded by
intervening sentences (PZ); B. cumulative effects on
priming, by increasing the number of prime sentences
before a target.

relatively high even when the distance between
prime and target is at its largest, whereas for the
dative cases the PE has dropped drastically. This
may indicate that the syntactic configuration of
a transitive sentence is not corrupted as much
by the intermediate intransitive sentence as the
configuration of a dative sentence.

7.3.2 Cumulativity
To investigate the effect of cumulativity, we cre-
ate a version of the core corpus where for each
target sentence we sample multiple primes and
concatenate them, resulting in priming contexts
that vary between 1 and 5 sentences in length. All
prime sentences in the prompt satisfy the semantic
constraints with respect to the target that were
outlined in §4. In this case, the PE is measured as
follows:

logP (TX|P+
X )− logP (TX|PY) (4)

in other words, the PE of a sequence of congruent
primes P+

X is expressed with relation to the log
probability of a single incongruent prime sen-
tence PY.

Results As shown in Figure 4B, for all con-
structions the PE increases monotonically as the
number of congruent prime sentences increases.
This resonates with the potential of large LMs

for few-shot learning: The multiple priming sen-
tences appear to act as ‘‘demonstrations’’ (in the
sense of Brown et al., 2020) of a given structure,
which presumably increases the activation of that
type of structural information. This result is a yet
another indication of structural information being
encoded by the model and remaining active across
sentences, as the main feature that is repeated
across the multiple primes is the shared abstract
structure.

7.4 Structural Complexity

Finally, we test whether the priming effects
present in the core corpus are robust to different
degrees of structural complexity between prime
and target. In our core corpus, congruent prime
and target sentences are constructed from the same
sequence of parts of speech (see §4.1). Results by
Reitter and Keller (2007) suggest that, for hu-
mans, short-term priming via residual activation
is better explained by assuming hierarchical rep-
resentations. In this experiment, we test whether
the structural information encoded by the model
is limited to sequential abstract structure or rather
involves hierarchical syntactic representations.

To gain more insight on the nature of the struc-
tural information represented by the model, we
construct a version of the corpus where some of
the noun phrases are more complex than simply
‘‘Dt N’’ (e.g., the awful tea from Spain). The ra-
tionale behind this manipulation is the following:
If the structure of a sentence is represented in
terms of something akin to a hierarchical phrase-
structure rule such as VP → NP NP or VP → NP
PP rather than as a sequence of part-of-speech
categories, then it should not matter whether
prime and target differ with respect to the inter-
nal structure of the sub-constituents—we should
observe a similar degree of priming whether the
noun phrases are complex or not. Evidence sug-
gests that this is indeed the case for humans
(Tree and Meijer, 1999; Pickering and Branigan,
1998; Branigan et al., 2006).

We create a version of the core corpus where the
noun phrases may contain a prenominal adjective,
a prepositional phrase, neither or both in order to
introduce varying degrees of complexity. We use
a total of 164 adjectives manually labeled for com-
patibility with the different noun categories. The
prepositional phrases are constructed with either
with or from. For the with case, we select a set of
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Figure 5: Results for GPT2-LARGE on the experiment
described in §7.4, measuring the impact of increasing
the complexity of one noun phrase per sentence in
prime and target.

27 suitable nouns within the WordNet categories
of clothing, device, or container. This results in
noun phrases such as ‘‘Dt(A)N with Dt(A)N’’.
For the from case, we use 23 country names, re-
sulting in noun phrases such ‘‘Dt(A)N from N’’.
All the additional vocabulary adheres to the same
selection procedure as in §4, with prime and target
being semantically unrelated. We test three condi-
tions: (1) only the prime sentence has a complex
NP, (2) only the target sentence does, (3) both
prime and target have a complex NP—ensuring
different NP structures across prime and target.
In all three settings, any semantic role (agent,
patient, or recipient) can be modified to become
complex and there is at most one complex NP
per sentence.

Results The results are shown in Figure 5. The
first thing to note is that the presence of noun
phrases of varying complexity across prime and
target does not cancel out the PE: In all cases,
the effect remains positive, although there is a
decrease for several conditions. We also observe
asymmetrical priming effects, for example, for
transitive with complex prime (e.g., active is un-
affected, whereas the PE for passive is clearly
reduced). This suggests that some of the effects
observed on the core corpus may be driven by the
consistently simple sequential structures present
in that data. Yet, the fact that the priming effect re-
mains positive suggests that there is some degree

of hierarchical structural information commonly
encoded for both simple and complex NPs, which
is carried over to influence the prediction of the
target.

8 Discussion and Conclusions

In this paper, we investigated three main ques-
tions: (1) Are modern neural LMs susceptible to
structural priming? (2) Which factors influence
the strength of the priming effect? (3) What is the
nature of the structural representations acquired
by those models? To answer these questions, we
designed a series of carefully curated large-scale
corpora, proposed a metric to measure the degree
to which a model is susceptible to priming, and
ran a series of experiments on several Transformer
LMs. This methodology constitutes a new way of
assessing the representational abilities of LMs
via examining their behavior in controlled setups,
which complements tools like Targeted Syntac-
tic Evaluations and the adaptation-based priming
measure by Prasad et al. (2019).

Our results in Section 6 showed that on our
core corpus, where we control for lexical overlap
and semantic similarity between prime and target,
most of the language models we test exhibit some
degree of priming for most of the constructions
we study. This is important, as it opens up the
possibility of using priming to investigate what
influences the learned representations of these
language models.

In Section 7, we focused on GPT2-LARGE to
conduct a series of subsequent experiments to dig
deeper into the impact of different factors on the
model’s susceptibility to priming. In line with psy-
cholinguistic accounts of residual activation, we
found that the effects of priming decrease with the
distance between prime and target and increase
with the amount of exposure to a given structure.
Our results indicate that the structural informa-
tion being encoded is not fully autonomous from
semantics: The Priming Effect is highly boosted
by semantic similarity and lexical overlap be-
tween the words used in prime and target. Such
boosting effects are well known to be present in
human language processing as well. Furthermore,
the Priming Effect partly disappears with semanti-
cally implausible prime sentences, suggesting that
semantic plausibility is an important cue for the
encoding of structure, arguably more so than in
human language processing. Finally, we showed
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that priming effects remain positive in the presence
of phrases with differing degrees of complexity
across prime and target. This offers some insight
into the nature of the representations learned by
the model: It suggests that, in addition to abstract
sequential structure, some degree of hierarchical
syntactic information is being represented.

The current work does not reveal, for the vari-
ous conditions tested, what the mechanics of the
boosting or suppressing effects are. For example,
we do not know whether the boosts from lexi-
cal overlap or semantic similarity are the result
of an improved match with the same structural
representations, or of independent factors that
influence priming behaviour. Similarly, the pre-
cise interplay between semantic plausibility and
structural encoding remains unclear. Overall, the
pattern of results calls for further investigation us-
ing interpretability methods, such as probing and
feature attributions, which we plan to pursue in
future work.

An additional aspect that requires further study
is the role of the training data and its statistics, for
example, regarding the frequency of the different
constructions under investigation and the impact
this may have on priming asymmetries within an
alternation, and on priming behaviour more gen-
erally. An important future step to disentangle the
factors that may give rise to priming behavior
would involve training a range of different model
types on the same data. This way it becomes pos-
sible to interpret the role that model architecture,
model size, training objective, and corpus statis-
tics play in shaping the behavior of the model. An
important class of models to include in such stud-
ies are Masked Language Models. We conducted
a preliminary experiment on three such models,
which resulted in biased priming behavior for all
(see Figure 6). We postulate that these models
may rely less on the structure of a prime because
their bi-directional nature allows them to take the
entire target sentence into account. However, in
order to adequately determine that this is entirely
due to their training objective, and not due to
external factors stemming from corpus statistics,
future work could control for this with newly
trained models.

Our study reveals novel details about the poten-
tial of LMs to represent structural information
and the persistence of this information when
making predictions about upcoming sentences.
But more generally, we believe our findings also

Figure 6: Priming Effects for three masked language
models on the core corpus: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and ALBERT (Lan et al.,
2020). To compute sentence probabilities we utilize the
pseudo-log-likelihood of Salazar et al. (2020), masking
out one token at a time. Results for dative yield a
similar pattern.

demonstrate the usefulness of the priming para-
digm for investigating such questions. Even more
generally, they illustrate the benefits of repurposing
experimental paradigms from psycholinguistics to
investigate the knowledge acquired by large neural
language models. In that sense, the current paper
complements exciting recent work that borrows
other paradigms from linguistics and psycholin-
guistics, including grammaticality judgments, few
shot learning, and cloze tests (Gauthier et al., 2020;
Brown et al., 2020; Baroni, 2022; Lovering et al.,
2021). That is, while syntactic priming offers one
window into abstract language representations in
neural language models, linguistics offers a whole
row of windows that are starting to reveal an
exciting vista.
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