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Abstract
Majority voting and averaging are common
approaches used to resolve annotator dis-
agreements and derive single ground truth
labels from multiple annotations. However,
annotators may systematically disagree with
one another, often reflecting their individ-
ual biases and values, especially in the case
of subjective tasks such as detecting affect,
aggression, and hate speech. Annotator dis-
agreements may capture important nuances in
such tasks that are often ignored while aggre-
gating annotations to a single ground truth. In
order to address this, we investigate the effi-
cacy of multi-annotator models. In particular,
our multi-task based approach treats predict-
ing each annotators’ judgements as separate
subtasks, while sharing a common learned
representation of the task. We show that this
approach yields same or better performance
than aggregating labels in the data prior to
training across seven different binary classifi-
cation tasks. Our approach also provides a way
to estimate uncertainty in predictions, which
we demonstrate better correlate with annota-
tion disagreements than traditional methods.
Being able to model uncertainty is especially
useful in deployment scenarios where knowing
when not to make a prediction is important.

1 Introduction

Obtaining multiple annotator judgements on the
same data instances is a common practice in NLP
in order to improve the quality of final labels
(Snow et al., 2008; Nowak and Rüger, 2010).
In case of disagreements between annotations,
they are often aggregated by majority voting,
averaging (Sabou et al., 2014), or adjudicating
by an ‘‘expert’’ (Waseem and Hovy, 2016), to
derive a singular ground truth or gold label that is
later used for training supervised machine learn-
ing models. However, in many subjective tasks,
there often exists no such single ‘‘right’’ answer

(Alm, 2011) and enforcing a single ground truth
sacrifices the valuable nuances embedded in an-
notator’s assessments of the stimuli and their dis-
agreements (Aroyo and Welty, 2013; Cheplygina
and Pluim, 2018).

Annotators’ sociodemographic factors, moral
values, and lived experiences often influence their
interpretations, especially in subjective tasks such
as identifying political stances (Luo et al., 2020),
sentiment (Dı́az et al., 2018), and online abuse and
hate speech (Cowan and Khatchadourian, 2003;
Waseem, 2016; Patton et al., 2019). For instance,
Waseem (2016) found that feminist and anti-racist
activists systematically disagree with crowd work-
ers on their hate speech annotations. Similarly,
annotators’ political affiliation affects how they
annotate the neutrality of political stances (Luo
et al., 2020). An adverse effect of majority vote
in such cases is limiting representation of mi-
nority perspectives in data (Prabhakaran et al.,
2021), potentially reinforcing societal disparities
and harms.

Another consequence of majority voting, when
applied to subjective annotations, is that the re-
sulting labels may not be internally consistent. For
example, consider a scenario where a sentence in
a hate-speech dataset is annotated by a set of an-
notators, the majority of whom consider a phrase
in it to be offensive, yet another sentence with
the same phrase is annotated by a different set of
annotators, the majority of whom do not find the
phrase to be offensive. Upon majority vote, the
first sentence would be labeled as hate speech and
the second sentence would not, despite containing
similar content. Such inconsistencies in the major-
ity label will add noise to the learning step, while
the systematicity in the individual annotations
is lost.

Finally, majority vote and similar aggregation
approaches assume that an annotator’s judgements
about different instances are independent from one
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another. However, as outlined above, annota-
tors’ decisions are often correlated, reflecting
their subjective biases. Prior work has inves-
tigated Bayesian methods to account for such
systematic differences between annotators (Paun
et al., 2018), however, they approach this as an
alternate means to derive a single ground truth la-
bel, thereby masking the degree to which annota-
tors disagreed.

Our proposed solution is simple: We intro-
duce multi-annotator architectures to preserve and
model the internal consistency in each annotators’
labels as well as their systematic disagreements
with other annotators. We show that the multi-task
framework (Liu et al., 2019) provides an efficient
way to implement a multi-annotator architecture
that captures the differences between individual
annotators’ perspectives using the subset of data
instances they labeled, while also benefiting from
the shared underlying layers fine-tuned for the
task using the entire dataset. Preserving differ-
ent annotators’ perspectives until the prediction
step provides better flexibility for downstream ap-
plications. In particular, we demonstrate that it
provides better estimates for uncertainty in pre-
dictions. This will improve decision making in
practice—for instance, to determine when not
to make a prediction or when to recommend a
manual review.

Our contributions in this paper are three-fold:
(1) We develop an efficient multi-annotator strat-
egy that matches or outperforms baseline models
on seven different subjective tasks by preserving
annotators’ individual and collective perspectives
throughout the training process. (2) We obtain an
interpretable way to estimate model uncertainty
that better correlates with annotator disagree-
ments than traditional uncertainty estimates across
all seven tasks. (3) We demonstrate that model
uncertainty correlates with certain types of er-
ror, providing a useful signal to avoid erroneous
predictions in real-world deployments.

2 Literature Review

Learning to recognize and interpret subjective lan-
guage has a long history in NLP (Wiebe et al.,
2004; Alm, 2011). While all human judgements
embed some degree of subjectivity, it is com-
monly agreed that certain NLP tasks tend to be
more subjective in nature. Examples of such rela-
tively subjective tasks include sentiment analysis

(Pang and Lee, 2004; Liu et al., 2010), affect
modeling (Alm, 2008; Liu et al., 2003), emotion
detection (Hirschberg et al., 2003; Mihalcea and
Liu, 2006), and hate speech detection (Warner
and Hirschberg, 2012). Alm (2011) argues that
achieving a single real ‘‘ground truth’’ is not pos-
sible, nor essential, in subjective tasks, and calls for
finding ways to model subjective interpretations
of annotators, rather than seeking to reduce the
variability in annotations. While which NLP tasks
count as subjective may be contested, we focus on
two tasks that are markedly subjective in nature.

2.1 Detecting Online Abuse

NLP-aided approaches to detect abusive behavior
online is an active research area (Schmidt and
Wiegand, 2017; Mishra et al., 2019; Corazza
et al., 2020). Researchers have developed ty-
pologies of online abuse (Waseem et al., 2017),
constructed datasets annotated with different types
of abusive language (Warner and Hirschberg,
2012; Price et al., 2020; Vidgen et al., 2021),
and built NLP models to detect them efficiently
(Davidson et al., 2017; Mozafari et al., 2019).
Researchers have also expanded the focus to more
subtle forms of abuse such as condescension and
microaggressions (Breitfeller et al., 2019; Jurgens
et al., 2019).

However, recent research has demonstrated that
these models tend to reflect and propagate vari-
ous societal biases, causing disparate harms to
marginalized groups. For instance, toxicity pre-
diction models were shown to have biases towards
mentions of certain identity terms (Dixon et al.,
2018), specific named entities (Prabhakaran et al.,
2019), and disabilities (Hutchinson et al., 2020).
Similarly these models are shown to overestimate
the prevalence of toxicity in African American
Vernacular English (Sap et al., 2019; Davidson
et al., 2019; Zhou et al., 2021). Most of these stud-
ies demonstrate association biases present in data;
for instance, Hutchinson et al. (2020) show that
discussions about mental illness are often asso-
ciated with topics such as gun violence, homeless-
ness, and drugs, likely the reason for the learned
association of mental illness related terms with
toxicity. While whether a piece of text is hateful
or not depends also on the context (Prabhakaran
et al., 2020), not much work has investigated the
human annotator biases present in the training labels,
and how they impact downstream predictions.
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2.2 Detecting Emotions

Detecting emotions from language has been a
significant area of research in NLP for the past
two decades (Liscombe et al., 2003; Aman and
Szpakowicz, 2007; Desmet and Hoste, 2013;
Hirschberg and Manning, 2015; Poria et al.,
2019). Annotated datasets used for training emo-
tion detection models vary across domains, and
use different taxonomies of emotions. While sev-
eral datasets (Strapparava and Mihalcea, 2007;
Buechel and Hahn, 2017) include a small set
of labels representing the six Ekman emotions
(Ekman, 1992—anger, disgust, fear, joy, sadness,
and surprise), or bipolar dimensions of affect
(arousal and valence; Russell, 2003), others such
as Demszky et al. (2020) and Crowdflower (2016)
include a wider range of emotion labels according
to the Plutchik emotion wheel (Plutchik, 1980) or
the complex semantic space of emotions (Cowen
et al., 2019). Perceiving emotions is a subjec-
tive task affected by various contextual factors,
such as time, speaker, mood, personality, and
culture (Mower et al., 2009). Since aggregating
annotations of emotion expressions loses such
contextual nuances, some researchers provide a
distributional representation of emotions (Fayek
et al., 2016; Ando et al., 2018). Here, we use
annotations for the six Ekman emotions present
in the dataset released by Demszky et al. (2020)
to demonstrate how our multi-annotator approach
can capture emotions in a disaggregated fashion.

2.3 Annotation Disagreement

Researchers have studied different sources of
annotator disagreements. Krippendorff (2011)
argued that there are at least two types of dis-
agreement in content coding: random variation,
which comes as an unavoidable by-product of hu-
man coding, and systematic disagreement, which
is influenced by features of the data or annotators.
Dumitrache (2015) identifies different sources of
disagreement as (a) the clarity of an annotation
label (i.e., task descriptions), (b) the ambiguity of
the text, and (c) differences in workers. Aroyo
and Welty (2013) also studied inter-annotator
disagreement in association with features of the
input, showing that it reflects semantic ambi-
guity of the training instances. Textual features
have been shown to predict annotators’ disagree-
ment in determining the meaning of ambiguous

words (Alonso et al., 2015). Acknowledging
inter-annotator disagreement as an indicator of
annotator differences, Kairam and Heer (2016)
clustered crowd-workers based on their annotation
behaviors, and proposed a method for interpreting
annotation disagreements and its sources.

For highly subjective tasks such as hate speech
and emotions detection, annotation disagreements
can be rooted in the differing subjectivities and
value systems of annotators. In these cases, anno-
tators build a subjective social reality as a basis
for social judgements and behaviors (Greifeneder
et al., 2017), which explains their labeling proce-
dure. For example, in interviews with annotators
in an aggression labeling task, Patton et al.
(2019) found that expert annotators from com-
munities discussed in gang-related tweets drew on
their lived experience to produce different label
judgements compared with graduate student re-
searchers. Such annotators whose lived experi-
ences bring important perspectives to the task
would be dramatically underrepresented on generic
crowd work platforms and, by definition, would
be outvoted in disagreements subject to majority vote.
Majority vote also necessarily obfuscates differ-
ences among groups underrepresented in anno-
tator pools, such as older adults who can exhibit
views on aging distinct from crowd workers (Dı́az,
2020), the majority of whom tend to be younger
(Ross et al., 2010).

Some studies have proposed alternatives to
majority voting when aggregating multiple an-
notations. In early work, Dawid and Skene (1979)
used the EM algorithm to obtain maximum
likelihood estimates of the ‘‘true’’ label to ac-
count for annotator errors. De Marneffe et al.
(2012) used the individual annotation distribu-
tions to predict areas of uncertainty in veridicality
assessment. Hovy et al. (2013) proposed an ap-
proach based on item-response model that uses
posterior entropy to choose which annotators
are trustworthy. Waterhouse (2013) developed
a pointwise mutual information metric to quan-
tify the amount of information in an annotator’s
judgement that can be used to estimate the
‘‘correct’’ label of an instance. Gordon et al.
(2021) explore multiple annotators judgements to
disentangle stable opinions from noise by es-
timating intra-annotator consistency. All these
approaches aim to obtain the ‘‘correct’’ label,
accounting for erroneous or non-trustworthy an-
notators, whereas we focus on retaining the
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annotator disagreements through the model-
ing process.

A few studies have explored approaches for
utilizing annotation disagreement during model
training. Prabhakaran et al. (2012) explored ap-
plying higher cost for errors made on unanimous
annotations to decrease the penalty of mis-labeling
inputs with higher disagreement. Similarly, (Plank
et al., 2014) incorporated annotator disagreement
into the loss function of a structured perceptron
model for better predicting part-of-speech tags.
Our work also utilizes annotator disagreements
rather than resolving them in the data stage;
however, we use a multi-task architecture us-
ing a shared representation to model annotator
disagreements, rather than using it in loss func-
tion. Cohn and Specia (2013) use a multi-task
approach to model annotator differences in ma-
chine translation annotations. While they use a
Gaussian Process approach, we use the multi-task
approach on top of pre-trained language models
(Liu et al., 2019). Chou and Lee (2019) pro-
posed an approach where they model individual
annotators separately in an inner layer to improve
the final prediction. In contrast, our method uses
the multi-task architecture, and provides the addi-
tional ability to utilize multiple predictions during
deployment, for instance, to measure uncertainty.
Fornaciari et al. (2021) also leveraged annotator
disagreement using a multi-task model that adds
an auxiliary task to predict the soft label distri-
bution over annotator labels, which improves the
performance even in less subjective tasks such as
part-of-speech tagging. In contrast, our approach
models several annotators’ labels as multiple tasks
and obtains their disagreement.

2.4 Prediction Uncertainty

Model uncertainty denotes the confidence of
model predictions, which has specific applications
in non-deterministic machine learning tasks. For
instance, interpreting model outputs and its con-
fidence is critical in autonomous vehicle driving,
where wrong predictions are costly or harm-
ful (Schwab and Karlen, 2019). In subjective
tasks, uncertainty embeds additional information
that supports result interpretation (Ghandeharioun
et al., 2019). For example, the level of un-
certainty could help determine when and how
moderators take part in a human-in-the-loop con-
tent moderation (Chandrasekharan et al., 2019;
Liu, 2020).

The simplest approach for uncertainty esti-
mation is through prediction probability from
a Softmax distribution (Hendrycks and Gimpel,
2017). However, as the input data gets farther from
the training data, this probability estimation natu-
rally yields extrapolations with unsupported high
confidence (Gal and Ghahramani, 2016). Instead,
Gal and Ghahramani (2016) proposed the Monte
Carlo dropout approach to estimate uncertainty by
iteratively applying dropouts to all layers of the
model and calculating the variance of generated
outputs. Such estimations based on the probabil-
ity of a single ground truth label overlooks the
many factors that contribute to uncertainty (Kläs
and Vollmer, 2018). In contrast, Passonneau and
Carpenter (2014) demonstrate the benefits of mea-
suring uncertainty for the ground truth label by
fitting a probabilistic model to individual annota-
tors’ observed labels. Similarly, we demonstrate
that calculating annotation disagreement by pre-
dicting a set of annotations for the input yields a
better estimation of uncertainty than estimations
based on the probability of the majority label.

3 Methodology

We define the classification task on an anno-
tated dataset D = (X,A, Y ), in which X is a
set of text instances, A is the set of annotators
and Y is the annotation matrix, in which each
entry yij ∈ {0, 1} represents the label assigned to
xi ∈ X by aj ∈ A. In most annotated datasets
Y includes many missing values, because each
annotator only labels a subset of all instances. We
use ȳi, to refer to the annotations present for item
xi. Similarly, we use ȳ,j to refer to the annotations
made by annotator aj . The classification task aims
to predict maj(ȳi,) ∈ {0, 1}, which is the label
assigned to xi based on the majority vote over ȳi,.
We use majority vote, the most commonly used
aggregation method; however, our proposed ap-
proach leaves open the choice of the aggregation
method depending on deployment contexts.

We consider three different multi-annotator ar-
chitectures: ensemble, multi-label, and multi-task.
Figure 1 shows the schematic differences be-
tween these three variations. All variations
use Bidirectional Encoder Representations from
Transformers (BERT-base; Devlin et al., 2019).
For each instance xi, a generic representa-
tion hi ∈ R

d is generated by the pre-trained
BERT-base, and then fine-tuned along with other
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Figure 1: Comparison between approaches for multi-annotator model (ensemble, multi-label, and multi-task) and
majority label prediction (baseline). Annotation prediction models are trained based on all annotations and apply
majority voting to predict the final label.

components of the classifier during training. The
size of the representation vector, d, is defined by
the BERT configuration and is set to 768 for the
pre-trained BERT-base. While our experiments
are all performed with BERT-base, our methods
are not restricted to BERT in their nature, and can
be implemented with other pre-trained language
models, for example, RoBERTa (Zhu et al., 2020).

3.1 Baseline Model Using Majority Labels

The baseline model captures the most common ap-
proach: a single-task classifier trained to predict
the aggregated label for each instance (i.e., major-
ity vote, in our case). It is built by adding a fully
connected layer to BERT-base outputs (hi). The
fully connected layer applies a linear transforma-
tion followed by Softmax function to generate the
probability of the majority label, P (maj(ȳi,)|hi).
Compared to the other models described in this
section, the baseline model does not make use of
annotation matrix Y , as it directly predicts the
aggregated label maj(ȳi,).

3.2 Ensemble Approach

An intuitive approach towards multi-annotator
models might be to train an ensemble of models,
each trained on different annotators’ labels. This
approach is not always practical, as it may increase

the training time prohibitively. The ensemble ap-
proach applies |A| single-task classifiers, each for
training and predicting the annotations generated
by one annotator. During training, the j-th clas-
sifier is independently fine-tuned to predict ȳ,j ,
which includes all annotations provided by the
j-th annotator. During test time, we aggregate the
outputs by the majority vote of all |A| models to
predict P (maj(ȳi,)|xi).1

3.3 Multi-label Approach
A more practical approach for multi-annotator
modeling is to consider the problem as a
multi-label problem where each label denotes
individual annotators’ labels. More specifically,
the multi-label approach attempts to learn to pre-
dict |A| labels for each input using a multi-label
classification framework. The model first adds
a fully connected layer to transform each hi
to a |A|-dimensional vector, and then applies a
Sigmoid function to the j-th dimension to gener-
ate yij . Since Y includes many missing values,
the classification loss is calculated based on the
available labels yij ∈ ȳi,. However, during test
time, all |A| outputs are aggregated to predict
P (maj(ȳi,)|xi).

1During prediction, multi-annotator models do not have
access to the list of annotators who originally provided the
labels for each instance. Therefore, the original majority vote
is predicted as the majority vote among all annotators.
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3.4 Multi-task Approach

The multi-task based multi-annotator approach
attempts to learn multiple annotators’ perspec-
tives (labels) as separate classification tasks, all
of which share encoder layers to generate the
same representation of the input sentence hi, each
with its separate fully connected layer and soft-
max activation. Compared with the multi-label
approach, the multi-task model includes a fully
connected layer explicitly fine-tuned for each an-
notator. However, compared with the ensemble
approach, the representation layers which gener-
ate hi are fine-tuned based on the outputs of all
annotation tasks. The loss function is created as
the summation of all available labels ȳi, for each
instance xi. During test time, the model considers
the outputs of all annotation tasks to predict the
majority label P (maj(ȳi,)|xi).

4 Experiments

4.1 Data

For this study, we perform experiments on two
datasets annotated for subjective tasks: Gab Hate
Corpus (GHC; Kennedy et al., 2020) and GoEmo-
tions dataset (Demszky et al., 2020). Both datasets
capture per-annotator labels for instances along
with corresponding annotators’ anonymous ID,
allowing us to model each annotator separately.

4.1.1 Gab Hate Corpus (GHC)
GHC (Kennedy et al., 2020), includes |X| =
27,665 social-media posts collected from a public
corpus of Gab.com (Gaffney, 2018), each anno-
tated for whether or not they contain hate speech.
Kennedy et al. (2020) define hate speech as lan-
guage that dehumanizes, attacks human dignity,
derogates, incites violence, or supports hateful
ideology, such as white supremacy. Each in-
stance in GHC is annotated by at least three
annotators from a set of |A| = 18 annotators.
The number of annotations varies for each in-
stance (M(|ȳi,|) = 3.13, SD(|ȳi,|) = 0.39),
and in total, there are 86,529 annotations. The
number of annotated instances per annotator
also varies significantly (M(ȳ,j) = 4807.17,
SD(ȳ,j) = 3184.89).

4.1.2 GoEmotions
We use a subset of the GoEmotions dataset
(Demszky et al., 2020) which contains Reddit

posts annotated for 28 emotions, split across pre-
defined train (|X|train = 43,410), test (|X|test =
5,427), and validation (|X|val = 5,426) subsets.
Our experiments focus on the emotion annotations
for the six Ekman (Ekman, 1992) emotions:anger,
disgust, fear, joy, sadness, and surprise. Each in-
stance in GoEmotions is annotated by three to
five annotators from a set of |A| = 82 annota-
tors. The number of annotations varies for each
instance (M(|ȳi,|) = 3.58, SD(|ȳi,|) = 0.91),
and in total, there are 194,412 annotations. The
number of annotated instances varies signifi-
cantly across annotators (M(ȳ,j) = 2370.88,
SD(ȳ,j) = 2180.02).

4.2 Experimental Setup

We implemented the classification models using
the transformers (v3.1) library from Hug-
gingFace (Wolf et al., 2020). The training steps
employ the Adam optimizer (Kingma and Ba,
2015). Our experiment settings are configured
similar to Kennedy et al. (2020) and Demszky
et al. (2020), GHC experiments are conducted
with a learning rates of e − 7 and are trained for
three epochs, whereas experiments on GoEmo-
tions apply early stopping with a learning rate of
5e − 6. Since GHC does not have specific train
and test subsets, we conducted 5 iterations of
stratified 5-fold cross-validations for evaluation,
changing only the random state for each iteration.
GoEmotions experiments are performed as six
different binary classification tasks, also repeated
for 5 iterations, using the pre-defined train and
test sets.

4.3 Results on GHC

4.3.1 Prediction Results

Table 1 reports the average and standard deviation
of the precision, recall, and F1-scores for vari-
ous models, across the 5 iterations. The baseline
model, which is trained using the majority vote
as ground truth, is also tested against the ma-
jority vote labels. For the ensemble, multi-label,
and multi-task models, we conduct two types of
evaluation: First, we test how well the majority
vote of predicted labels match the majority vote
of annotations (columns 2-4 in Table 1); second,
we report how well the individual predicted labels

97



Majority Vote Individual Labels
Model Precision Recall F1 Precision Recall F1

Baseline 49.53±3.8 68.78±4.4 57.32±1.2 – – –
Ensemble 63.98±1.1 46.09±1.9 53.54±1.0 60.92±0.7 60.97±0.8 60.94±0.3
Multi-label 66.02±2.2 50.16±2.0 56.94±1.0 67.22±1.4 55.33±2.0 60.65±0.7
Multi-task 59.03±0.9 59.98±0.6 59.49±0.2 63.71±1.3 62.76±1.5 63.20±0.3

Table 1: The average and standard deviation of precision, recall, and F-score of model predictions
on the GHC dataset, evaluated during 5 iterations of 5-fold stratified cross validation. Majority Vote
section represent models’ performance on predicting the majority vote, while Individual Labels
section reports performance on predicting each raw annotation.

for each instance match the annotations (where
available) by annotators (columns 5-7 in Table 1).

We observe that the ensemble model performs
significantly worse (F1 = 53.54) than the base-
line single-task model (F1 = 57.32) in predicting
majority label. This is presumably due to the
fact that each base model in the ensemble is
trained using only the examples labeled by the
corresponding annotator. Since the number of
annotations varies significantly for different anno-
tators (see Section 4.1), many base models end up
with lower performance, resulting in lower over-
all performance.

Multi-label and multi-task models share most
layers across different annotator heads. Thus,
each annotator head benefits from the updates
to the shared layers owing to all instances, re-
gardless of whether they annotated it or not.
The multi-label model performs slightly worse
(F1 = 56.94) than the baseline model. In contrast,
the multi-task model, which has a fully connected
layer fine-tuned for each annotator, posted a sig-
nificantly higher F-score (F1 = 59.49) than the
baseline model. In other words, fine-tuning each
annotator head separately and then taking the ma-
jority vote performs better than taking the majority
vote first and then training on that noisier label.

Moreover, the baseline model yields higher
performance variance among different iterations,
such that its standard deviations of precision, re-
call, and F1 exceeds those of the other three
methods. One possible explanation is that ag-
gregating annotations based on majority votes
disposes of information about each annotator and
inserts noise into the labels. In other words, mod-
eling each annotator, and their presumable internal
consistency, could lead to more stable prediction

results. However, this hypothesis requires further
investigation.

We now evaluate the individual predictions
made by the multi-annotator model (prior to ma-
jority vote) on how well they match individual
annotators’ labels (Table 1). All three multi-
annotator approaches obtain higher F1-scores than
how the baseline model does in predicting major-
ity labels (note that these are different tasks, and
not directly comparable). The multi-task model
achieved the highest F1-score of 63.20. The result
suggests that the multi-task model benefits from
fine-tuning annotators separately (thereby avoid-
ing inconsistencies due to majority votes) as well
as learning from all instances in a shared fashion.

4.3.2 Modeling Uncertainty
Next, we study how well we can model uncertainty
in predictions. We compare uncertainty in predic-
tions with annotator disagreement, measured as
the variance of the annotations.

σ2(ȳi,) =

∑
[yij = 1]

∑
[yij = 0]

|ȳi,|2
(1)

Since the ensemble, multi-label, and multi-task
models all make separate predictions correspond-
ing to each annotator, we can calculate the
uncertainty in predictions to be the variance of the
predicted annotations for each instance xi. How-
ever, modeling prediction uncertainty in the case
of single predictions is an open question. We com-
pare our results with other common approaches for
estimating uncertainty in single-task predictions
such as Softmax probability of the final out-
put for predicting majority vote (Hendrycks and
Gimpel, 2017), and Monte Carlo dropouts (Gal
and Ghahramani, 2016), or MC dropout, which
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Figure 2: Correlation of different approaches for
estimating prediction uncertainty with annotation
disagreement on the GHC. Annotation modeling
approaches better correlate with disagreement.

Figure 3: Correlation matrix of approaches for esti-
mating uncertainty. MC dropout and Softmax have
high correlation. Our multi-annotator models also have
higher internal correlations.

iteratively applies dropouts to all layers of the
model and calculates the variance in predictions.

Figure 2 shows the correlations of uncertainty
estimation using each method with the annota-
tion disagreement calculated as σ2(ȳi,). While
traditional estimations such as Softmax and MC
dropout have a moderate correlation with an-
notator disagreements, the uncertainty measured
by our three multi-annotator methods show sig-
nificantly better correlation, with the ensemble
method posting a slightly higher correlation than
the other two methods. In other words, in addi-
tion to performing better on predicting majority
votes, multi-annotator models also predict model
uncertainty better than traditional approaches.

We further analyze the pair-wise correlation
between estimations of uncertainty by different
approaches (Figure 3). As expected, the Softmax
and MC dropout methods are highly correlated,
and similarly, our methods show high correlation
among themselves. It is also interesting to note that
the uncertainty estimated by our methods also cor-
relate significantly with traditional methods (i.e.,

Models Training Time (in mins)

Baseline 20.5
Ensemble 158.4
Multi-label 22.8
Multi-task 22.3

Table 2: Training time (in minutes); the
time it takes to train each model on 80%
of the GHC.

between 0.6 and 0.7), except for the multi-task
method and MC Dropout method, which have a
lower correlation of 0.53.

The fact that the uncertainty scores for
multi-task and multi-label models are highly cor-
related with each other (0.86) suggests that they
both identify textual features that cause disagree-
ment. We verified this by training a separate
model using the same BERT-based setup using
Sigmoid activation to directly predict the anno-
tator disagreement. The predicted uncertainty by
this model obtained similar correlation with the
annotator uncertainty (0.47) as the multi-task and
multi-label models.

4.3.3 Computation Time
We now assess the computation cost associated
with the different approaches. Table 2 shows the
time it took to train a single cross-validation fold
(i.e., 80% of the dataset). As expected, the en-
semble approach takes the longest to train, as it
require training |A| different models (each with
varying training set sizes), and the baseline takes
the shortest time. Impressively, multi-label and
multi-task models do not take significantly more
time to train. In other words, while the multi-task
model trains additional layers for annotators, it
adds only a marginal computation cost to the
baseline model.

4.4 Results on GoEmotions

In this section, we describe results obtained on
the six binary classification tasks performed us-
ing the GoEmotions dataset. Since the multi-task
approach obtained better performance overall on
GHC, we report the results on only the multi-task
approach here. We start by assessing how well
the multi-annotator model matches the single-task
performance of predicting the majority label.
Table 3 reports the average and standard devi-
ation of F1-scores over 5 iterations of training and

99



Full Dataset (|A| = 82) Subset (|A| = 53)

Emotion Baseline Multi-task Baseline Multi-task
Anger 40.38±4.4 39.01±6.4 41.95±6.1 42.75±4.4
Disgust 38.79±3.9 38.31±1.9 37.72±2.0 35.77±2.0
Fear 58.96±5.0 54.97±6.1 57.68±3.7 58.58±2.3
Joy 47.80±2.2 49.53±3.6 47.45±3.1 46.26±1.2
Sadness 49.22±5.2 50.36±3.2 47.55±5.4 48.00±3.4
Surprise 40.96±2.9 38.97±3.6 39.44±5.7 40.22±2.2

Table 3: The average and standard deviation of
model prediction f-score on the GoEmotions
dataset, evaluated across 5 iterations using the
pre-defined train-test splits in the dataset.

testing. Unlike GHC where we used 5-fold cross
validation, for the GoEmotions dataset we use
the pre-defined train, validation, test splits in the
dataset. We verified that these splits are stratifed
with respect to annotators. As in GHC experi-
ments, while the baseline model is trained and
tested on the majority vote, the multi-task model
is trained on available annotator-level annotations
for each instance and the predictions from all clas-
sifier heads are aggregated to get the final label
during testing.

Results obtained on the full dataset are shown
in the second and third columns of Table 3. While
the multi-task model outperformed the baseline
in predicting two emotions—joy and sadness—it
underperformed the baseline for the other four
emotions, although the ranges of F1-scores largely
overlap. It is also observed that the standard
deviations of the multi-task model F1-scores
are significantly larger than what was observed
for GHC.

On further inspection, we found that many an-
notators contributed very few annotations in the
dataset. For instance, 29 annotators had fewer
than 1000 annotations in the training set, six of
them having fewer than 100. In addition, the la-
bel distribution is extremely skewed for all six
emotions—ranging from 1.6% positive labels for
fear on average across all annotators, to 4.0% posi-
tive labels on average for joy. Consequently, many
annotator heads have too few positive instances
to learn from; some had zero positive instances
in the training set. This makes the corresponding
learning tasks in the multi-task setting hard or
even impossible on this dataset, and might ex-
plain the lower performance and higher variance
in F1-scores.

Figure 4: Correlation of different approaches for
estimating prediction uncertainty with annotation
disagreement for the GoEmotions dataset.

In order to make a fairer comparison, we per-
formed our experiments on a subset of the dataset
that only includes the annotations by 53 annota-
tors who had more than 1000 annotations. Results
obtained on this subset are in the fourth and fifth
columns of Table 3. Our multi-annotator model
outperforms the baseline model on predicting the
majority label in four of the six tasks (anger, fear,
sadness, and surprise), while obtaining slightly
lower results on disgust and joy. While F1-score
ranges of baseline and multi-task models still
largely overlap, the multi-task model fares signif-
icantly better when there are enough instances for
each annotator head to learn from. The multi-task
model also reported lower standard deviation in
performance than the baseline model, suggesting
better robustness in the learned model.

The main advantage of our multi-annotator
model is the ability to capture multiple perspec-
tives efficiently. In that respect, our model fared
better at modeling annotator uncertainty across the
board. As shown in Figure 4, our multi-annotator
model obtained better correlation overall with
annotator disagreement than Softmax and MC
dropout approaches across all six emotions, both
in the full dataset as well as the subset (joy in the
full dataset being the only exception). This further
demonstrates the strength of our approach that
does not come at any significant cost of perfor-
mance or efficiency (training the multi-task model
on the full dataset takes 6.1 minutes per epoch,
comparing to 5.2 minutes for the baseline model).
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Annotation Multi-task Baseline
Text Label %Hate Label %Hate Label

Agreed. Traitors deserve to be shot. PERIOD. Not-Hate 0.33 Not-Hate 0.39 Hate
Are the democrats guilty of treason? Not-Hate 0.25 Not-Hate 0.39 Hate
I don’t know, you tell me ya prick. Not-Hate 0.33 Not-Hate 0.39 Hate
They should force the ‘refugees’ to wear this crap. Hate 0.67 Not-Hate 0.33 Hate
At this point, nobody gives a shit! Hate 0.67 Not-Hate 0.44 Hate
It’s OK to be a Nazi!! Hate 1.00 Not-Hate 0.44 Hate
Arise WHITE PEOPLE! We’re back. Not-Hate 0.33 Hate 0.56 Not-Hate
Shocking! A jew defending another jew! Who’d have thought? Not-Hate 0.33 Hate 0.56 Not-Hate
I am beginning to think being straight is misconduct. Not-Hate 0.0 Hate 0.56 Not-Hate
Armenia is a nation of mongrel bastards. Hate 1.0 Hate 0.78 Not-Hate
Hope they both get AIDS. Hate 1.0 Hate 0.72 Not-Hate
I am so NOT afraid of you gay boy. Hate 0.67 Hate 0.83 Not-Hate

Table 4: Examples from the GHC, for which the baseline differ from multi-task predictions’ majority
vote. (We acknowledge that individual readers may disagree with the annotation labels presented above.)

5 Analysis

In this section, we further analyze the multi-task
model and its outputs, as it posted the overall best
performance among the three approaches, con-
sidering the predictive performance, uncertainty
modeling correlation, and time efficiency. We
focus on the GHC model for this analysis.

5.1 Error Analysis
We first qualitatively analyze the mismatches
between the multi-task and baseline model
on their majority vote predictions. Among all
GHC instances (|X| = 27, 665), the multi-task
and baseline models disagreed on 1,945 labels.
Table 4 shows some examples of such instances
and the corresponding majority vote, and the per-
centage of annotators who labeled them as hate
speech. Table 4 also provides the baseline model’s
prediction (columns 6), the multi-task model’s ma-
jority label, and the percentage of prediction heads
labeling them as hate speech (columns 4 and 5).

The most common type of mismatch (57.94%
of mismatches) occurs when an instance deemed
non-hateful (by majority vote of annotations) is
correctly labeled by the multi-task model but
incorrectly labeled by the baseline (first set of
rows in Table 4). In other words, these sam-
ples represent the baseline model’s false-positive
predictions, most of which include specific to-
kens, such as slur words and social group tokens.
The next most common type of model mismatch
(22.31% of mismatches) occurred when an in-
stance that was deemed hateful (by majority vote)
is mislabeled by the multi-task model and labeled
correctly by the baseline model. In general, these

two types of mismatches correspond to the posi-
tive predictions of the baseline model. A possible
explanation for the frequency of such mismatches
is the high rate of positive predictions by the base-
line model, which is also supported by the higher
recall and lower precision scores of the baseline
model (Table 1).

The other two types of mismatches occurred
when the baseline and multi-task model respec-
tively predicted hateful and non-hateful labels.
When this mismatch is over an instance deemed
hateful by majority vote of annotations (12.19%
of mismatches) the multi-task model is making
a false-positive error and we observe mentions
of social group names in the text. A large num-
ber of such instances had even split (54%–44%)
between labels across individual predictions (see
Table 4), suggesting the model was unsure. The
least common type of disagreement is over in-
stances deemed as hateful by both majority vote
of annotations and our multi-task model, but
mis-classified by the baseline model (7.56% of
mismatches).

5.2 Uncertainty vs. Error

Now, we investigate whether the uncertainty
in predictions is correlated with whether the
multi-task model was able to correctly predict
the majority label. Note that the value of uncer-
tainty, based on Equation 1, falls between 0 and
0.25. We observe that the mean value for uncer-
tainty in correct predictions was 0.049 compared
to 0.170 when the model was incorrect. Figure 5a
shows the corresponding violin plots. While most
incorrect predictions had high uncertainty, a small
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Figure 5: Violin plots denoting distribution
across uncertainty for true-positive, false-positive,
false-negative, and true-negative predictions on GHC.

but significant number of errors were made with
certainty.

Separating this analysis across true positives,
false positives, false negatives, and true nega-
tives represents a more informative picture. For
instance, the model is almost always certain
about true negatives (M (uncertainty) = 0.040).
Similarly, the model is almost always uncertain
about false positives (M (uncertainty) = 0.199),
something we also observed in the error analy-
sis presented in Section 5.1. On the other hand,
both true positives and false negatives have a
bi-modal distribution of uncertainty, with similar
mean uncertainty values of 0.140 and 0.141, re-
spectively. In sum, a negative prediction with high
uncertainty is more likely to be a false negative, in
our case.

6 Discussion

We presented multi-annotator approaches that pre-
dict individual labels corresponding with each
annotator of a subjective task, as an alternative
to the more common practice of deriving (and
predicting) a single ‘‘ground-truth’’ label, such
as the majority vote or average of multiple an-
notations. We demonstrate that our method based
on multi-task architecture obtains better perfor-
mance for modeling each annotator (63.2 F1-score,
micro-averaged across annotators in GHC), and
even when aggregating annotators’ predictions,
our approach matches or outperforms the baseline
across seven tasks. Our study focuses on major-
ity vote as the baseline aggregation approach to
demonstrate how this commonly used approach
loses meaningful information. Other aggregation
strategies such as MACE (Hovy et al., 2013) and
Bayesian methods (Paun et al., 2018) could be

explored in future work as complementary ap-
proaches that can work with the multi-annotator
framework.

6.1 Advantages of Multi-Annotator
Modeling

One core advantage of our method, which can
further be leveraged in practice, is its ability to
provide multiple predictions for each instance. As
demonstrated in Figures 2 and 4, the multiple pre-
dictions can derive an uncertainty estimation that
better matches with the disagreement between an-
notators. The estimated uncertainty could be used
to determine when not to make a prediction or to
route the example to a manual content moderation
queue as it may be an example that annotators
likely disagreed on. One could also investigate
how to learn an uncertainty threshold to make
cleverer predictions. For instance, based on our
analysis in 5.2, a negative prediction with high un-
certainty is very likely to be a false negative. One
could use this knowledge in a deployment scenario
and predict a positive label in case of a negative
majority prediction with high uncertainty.

Predicting multiple annotations rather than a
ground truth is specifically essential in subjective
tasks. As Alm (2008) argues, in many subjective
tasks, the aim is not to find an accurate answer;
instead, a model can produce the most acceptable
answer based on responses from different judge-
ments. Accordingly, our method contrasts with
approaches for enhancing ground-truth generation
prior to modeling. Our approach aims to preserve
annotators’ consistency in labeling by delaying
the annotation aggregation until the final stage.
As a final step, if required, application-driven ap-
proaches can be employed to find the most proper
answer. For instance, an aggregation approach
based on MACE (Hovy et al., 2013; Paun et al.,
2018), could be applied to the predicted individ-
ual labels to find a final label that considers the
trustworthiness of individual annotators.

Researchers have pointed out that in more ob-
jective tasks, such as commonsense knowledge
or word sense disambiguation, training a model
on judgements of a specific set of annotators
lack generalizability to annotations generated by
new annotators (Geva et al., 2019). However, in
subjective tasks such as affect and online abuse de-
tection, different annotator perspectives, and their
contrasts, can be useful (Gordon et al., 2021).
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Another advantage of having multiple predic-
tion heads in a multi-task architecture is that we
could adapt the same model to different value sys-
tems. For instance, in cases where annotators with
different moral beliefs systemically produce dif-
ferent labels (Waseem, 2016; Dı́az, 2020; Patton
et al., 2019), one could use the multi-task ap-
proach to have a single global model that can
adjust predictions to be conditioned on different
value systems. This is valuable for international
media platforms to build and deploy global
models that attend to local cultures and values
without retraining entirely separate models for
each culture.

Multi-annotator modeling can also be applied in
scenarios that may benefit from obtaining several
perspectives for a single instance. For example, in
detecting affect in language, a range of subjective
human knowledge, interpretation, and experience
can be modeled through a multi-annotator archi-
tecture. This approach would generate a range
of affective states either along affect categories,
such as anger and happiness, or dimensions,
such as arousal and pleasantness (Alm, 2011,
2008), which correspond with different subjec-
tive perceptions of the text. Another example is
sarcasm detection, where an ambiguous sarcastic
text is labeled differently according to annotators’
thresholds for sarcasm (Rakov and Rosenberg,
2013). In a multi-annotator setting, internal con-
sistency of each annotators’ threshold for sarcasm
may be preserved in the training process.

6.2 Limitations and Challenges

Our approach is not without limitations. Our ex-
periments were computationally viable because
of the relatively small number of annotators in
our annotator pool (18 for GHC and 82 for the
GoEmotions dataset), which is not usually the
case with large crowd-sourced datasets. For in-
stance, the dataset by Dı́az (2020) has over 1.4K
individual annotators, and Jigsaw (2019) built a
dataset with over 8K annotators. Fine-tuning that
many separate annotator heads will be computa-
tionally expensive and may not be a viable option.
However, clustering annotators based on their
agreements and aggregating annotator labels into
cluster labels could address this issue. In that sce-
nario, the multi-task model would include separate
classifier heads for each cluster of annotators. The
number of clusters could be determined based on

availability of computational resources and data
factors to enhance the multi-task approach. This is
an important direction of research for future work.

The proposed approach along with other meth-
ods for incorporating individual annotators and
their disagreements are only viable when anno-
tated datasets include annotator-level labels for
each instance. However, most multiply annotated
datasets contain only per-instance majority la-
bels (Waseem and Hovy, 2016; Jigsaw, 2018),
or aggregate percentages (Davidson et al., 2017;
Jigsaw, 2019). Even in cases where the raw anno-
tations were released, the multi-annotator model
requires there being enough annotations from each
annotator to model them effectively. However, we
observed that the dataset designers may not have
envisioned such a utility of annotator-level la-
bels for downstream analysis. For instance, in
the GoEmotions dataset, many annotators labeled
fewer than 1000 instances, making it hard for
annotator-level modeling. Moreover, the high cost
of gathering large number of annotations per an-
notator in crowdsourcing platforms may limit the
data collection and call for post-hoc modeling so-
lutions. One way to tackle this issue is by choosing
a subset of top-performing annotator heads (during
the validation step) for the final prediction. Future
work should look into such post-processing steps
that could further improve the performance.

To enable further exploration into open ques-
tions in studying annotator disagreements and
efficient ways to model them, the main chal-
lenge is the lack of annotator-level labels. This
largely stems from the practice of considering
crowd annotators as interchangeable, and not ac-
counting for the differences in their perspectives.
We recommend data providers to consider releas-
ing individual annotation labels, when feasible to
do so, in an anonymized way and with appro-
priate consent. We also encourage researchers to
design data collection efforts in a way that in-
cludes a sufficient number of annotations by each
annotator, so that systematic differences in their
annotation behaviors could be better understood
and accounted for.

7 Conclusion

We present a multi-annotator approach that em-
ploys a different classifier head for each annotator
of a dataset as an alternate method to the
practice of predicting the aggregated majority

103



vote. We demonstrate that our method can ef-
ficiently obtain better performance in modeling
each annotator as well as match the majority
vote prediction performance. We present exper-
iments across different subjective classification
tasks, including hate speech detection and six
different emotion detection tasks. The model un-
certainty estimated based on our multi-annotator
model(s)’ predictions obtains a higher correla-
tion to the annotation disagreement than more
traditional methods. We expect future work to in-
vestigate our multi-annotator approach as a means
to detect and mitigate model biases. Moreover,
monitoring the performance of annotator heads
and model uncertainty in an active learning set-
ting has the potential to capture a more diverse
and comprehensive set of perspectives in data.

8 Ethical Considerations

Our paper discusses an approach for attending to
individual annotator’s judgements in training a su-
pervised model. In doing that, our multi-annotator
approach better preserves minority perspectives
that are usually sidelined by majority votes. Our
intended use case for this approach is in subjec-
tive NLP tasks, such as identifying affect, abusive
language, or hate speech, where generating a sin-
gle true answer does not capture the nuances.
While our method likely preserves minority per-
spectives, a misuse of this technique might happen
upon weighting individual annotator’s labels dur-
ing prediction. Such an alternation aimed solely to
improve the majority label prediction performance
may adversely impact the representation of dif-
ferent perspectives in the model. In fact, such an
optimization may cause further marginalization to
under-represented perspectives than the current
majority vote–based approaches. For instance,
identifying annotator heads that significantly dis-
agree with the majority vote might cause their
perspectives to be at higher risk of being excluded.

It is also important to consider the number
of annotators in the annotator pool when apply-
ing this method, in order to protect the privacy
and anonymity of annotators, since our approach
attempts to model their personal subjective pref-
erences and biases. This is especially critical in
the case of sensitive tasks such as hate speech an-
notations, where associating individual annotators
with such representations may be undesirable.
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