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Abstract
Keeping the performance of language tech-
nologies optimal as time passes is of great
practical interest. We study temporal effects on
model performance on downstream language
tasks, establishing a nuanced terminology for
such discussion and identifying factors essen-
tial to conduct a robust study. We present
experiments for several tasks in English where
the label correctness is not dependent on time
and demonstrate the importance of distinguish-
ing between temporal model deterioration and
temporal domain adaptation for systems us-
ing pre-trained representations. We find that,
depending on the task, temporal model deteri-
oration is not necessarily a concern. Temporal
domain adaptation, however, is beneficial in
all cases, with better performance for a given
time period possible when the system is trained
on temporally more recent data. Therefore, we
also examine the efficacy of two approaches
for temporal domain adaptation without hu-
man annotations on new data. Self-labeling
shows consistent improvement and notably,
for named entity recognition, leads to bet-
ter temporal adaptation than even human
annotations.

1 Introduction

Language models capture properties of language,
such as semantics of words and phrases and their
typical usage, as well as facts about the world
expressed in the language sample on which they
were trained. Effective solutions for many lan-
guage tasks depend, to a varying degree, on the
background knowledge encoded in language mod-
els. Performance may degrade as language and
world-related facts change. In some scenarios,
language will change as a result of deploying a
system that uses the language to make a predic-
tion, as in spam detection (Fawcett, 2003). But
most change is not driven by such adversarial
adaptations: the language expressing sentiment in
product reviews (Lukes and Søgaard, 2018), the
named entities and the contexts in which they

are discussed on social media (Fromreide et al.,
2014; Rijhwani and Preotiuc-Pietro, 2020), and
language markers of political ideology (Huang
and Paul, 2018) all change over time.

Whether and how this change impacts the per-
formance of different language technologies is a
question of great practical interest. Yet research on
quantifying how model performance changes with
time has been sporadic. Moreover, approaches to
solving language tasks have evolved rapidly, from
bag of words models that rely on a small num-
ber of fixed words represented as strings, without
underlying meaning, to fixed dense word repre-
sentations such as word2vec and GloVe (Mikolov
et al., 2013; Pennington et al., 2014) and large
contextualized representations of language (Peters
et al., 2018; Devlin et al., 2019) that are trained on
task-independent text to provide a backbone rep-
resentation for word meaning. The swift change
in approaches has made it hard to understand
how representations and the data used to train
them modulate the changes in system performance
over time.

We present experiments (§4 & §5) designed to
study temporal effects on downstream language
tasks, disentangling worsening model perfor-
mance due to temporal changes (temporal model
deterioration) and the benefit from retraining sys-
tems on temporally more recent data in order
to obtain optimal performance (temporal domain
adaptation). We present experiments on four tasks
for English—named entity recognition, truecas-
ing, and sentiment and domain classification. We
work only with tasks where the correctness of the
label is not influenced by time, unlike other tasks
such as open domain question answering where
the answer may depend on the time when the
question are posed (e.g., who is the CEO of X?).
For each task, we analyze how the performance
of approaches built on pre-trained representations
changes over time and how retraining on more
recent data influences it (§6). We find that mod-
els built on pre-trained representations do not
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experience temporal deterioration on all tasks.
However, temporal domain adaptation is still pos-
sible, that is, performance can be further improved
by retraining on more recent human labeled data.

We further find that neural models fine-tuned
on the same data but initialized with random
vectors for word representation exhibit dramatic
temporal deterioration on the same datasets (§7).
Models powered by pre-trained language models,
however, are not impacted in the same way. Unlike
in any prior work, we study several representations
(§8) including those built using the same archi-
tecture and data but different model sizes (§10).

Even though the pre-training data of several
representations overlaps in time with task-specific
data and some confounding is possible, two sets
of experiments show that it is unlikely (§9). These
results provide strong evidence for model deterio-
ration without pre-training; it also raises questions
for future work, on how the (mis)match between
task data and pre-training data influences perfor-
mance, with greater mismatch likely to be more
similar to random initialization, resulting in a
system more vulnerable to temporal deterioration.

The central insight from our work is that perfor-
mance of pre-trained models on downstream tasks
where answer correctness is time-independent
does not necessarily deteriorate over time but that
the best performance at a given time can be ob-
tained by retraining the system on more recent
data. Furthermore, based on the experiments to
assess the impact of different components of a
model, we provide recommendations for the de-
sign of future studies on temporal effects (§12).
This will make it both easier to conduct future
studies and have more robust findings by con-
trolling confounding factors and ignoring others.

Finally, we present two methods for temporal
adaptation that do not require manual labeling over
time (§11). One of the approaches is based on con-
tinual pre-training where we modify the typical
domain adaptative pre-training with an additional
step. The second method relies on self-labeling
and is highly effective with consistent improve-
ment across all settings. On one of the datasets,
self-labeling is even superior to fine-tuning on
new labeled human annotated data.

2 Background and Related Work

Language changes over time (Weinreich et al.,
1968; Eisenstein, 2019; McCulloch, 2020). For

longer time periods, a robust body of computa-
tional work has proposed methods for modeling
the changes in active vocabulary (Dury and Drouin,
2011; Danescu-Niculescu-Mizil et al., 2013) and
in meaning of words (Wijaya and Yeniterzi, 2011;
Hamilton et al., 2016; Rosenfeld and Erk, 2018;
Brandl and Lassner, 2019). Changes in vocab-
ulary and syntax, approximated by bi-grams in
Eisenstein (2013), also occur on smaller time
scales, such as days and weeks, and occur more in
certain domains—for example, change is faster in
social media than in printed news. Such language
changes over time can also be approximated by the
change in language model perplexity. Lazaridou
et al. (2021) find that language model perplexity
changes faster for politics and sports than for other
domains, suggesting that these domains evolve
faster than others. They also demonstrate that
language models do not represent well language
drawn from sources published after it was trained:
Perplexity for text samples drawn from increas-
ingly temporally distant sources increases steadily.
Their qualitative analysis shows that the changes
are not only a matter of new vocabulary: even the
context in which words are used changes.

The global changes captured with language
model perplexity and analysis of individual words
cannot indicate how these changes impact the per-
formance of a model for a given task. Röttger
and Pierrehumbert (2021) present a meticulously
executed study of how domain change (topic of
discussion) influences both language models and
a downstream classification task. They show that
even big changes in language model perplexity
may lead to small changes in downstream task
performance. They also show that domain adapta-
tion and temporal adaptation are both helpful for
the downstream classification task they study, with
domain adaptation providing the larger benefit.

Here, we also focus on the question of how
time impacts downstream tasks. Studying tempo-
ral change in model performance requires extra
care in experimental design to tease apart the
temporal aspect from all other changes that may
occur between two samples of testing data. Teas-
ing apart temporal change from domain change is
hardly possible. Even data drawn from the same
source may include different domains over time.1

Despite these difficulties, there are two clear and

1Huang and Paul (2018) find the topics in their data and
observe that the top 20 topics change over time.
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independent questions that we pursue, related to
system performance over time.

2.1 Does Performance Deteriorate over Time?

To study this question of temporal model dete-
rioration, we need to measure performance over
several time periods. Let ds, dt, and dn denote
respectively the first, tth (s ≤ t ≤ n), and last
temporal split in a dataset. To guard against spu-
rious conclusions that reflect specifics of data
collected in a time period, the starting point for
the analysis should also vary. Huang and Paul
(2018) use such a setup, performing an extensive
evaluation by training n models on ds to dn and
then evaluating them on all remaining n−1 splits,
both on past and future time periods. The result-
ing tables are cumbersome to analyze but give
a realistic impression of the trends. We adopt a
similar setup for our work, reporting results for a
number of tasks with models trained on data from
different time periods and tested on data from
all subsequent time periods available. In addi-
tion, we introduce summary statistics that capture
changes across all studied time periods to com-
pare the temporal trends easily and to compute
statistical significance for the observed changes in
performance (§4 & 5).

Most prior work, in contrast, uses a reduced
setup (Lukes and Søgaard, 2018; Rijhwani and
Preotiuc-Pietro, 2020; Søgaard et al., 2021) with
a fixed test time period and measures the perfor-
mance of models trained on different time periods
on this fixed test set. Such evaluation on one fu-
ture temporal split does not measure the change in
model performance over time and cannot support
any conclusions about temporal deterioration.2

This setup from prior work supports conclusions
only about temporal domain adaptation i.e.
whether retraining on temporally new data helps
improve performance on future data, with a single
point estimate for the improvement.

2.2 Can Performance at Time t Be
Improved?

As described above, most prior work chose dn,
the data from latest time period as the test data,

2Lazaridou et al. (2021) omit such an evaluation because
they measure language model perplexity, which is sensitive
to document length, and which they found differed across
months. Röttger and Pierrehumbert (2021) evaluate over
multiple test sets on a classification task but also omit such
an evaluation by reporting the change in the metrics of models
w.r.t. a control model without temporal adaptation.

to evaluate models trained on earlier data. Lukes
and Søgaard (2018) train a model for sentiment
analysis of product reviews in 2001–2004 and
2008–2011 and test them on reviews from
2012–2015. Rijhwani and Preotiuc-Pietro (2020)
train models for named entity recognition on
tweets from each year from 2014 to 2018 and test
them on tweets from 2019. Søgaard et al. (2021)
work with the tasks of headline generation and
emoji prediction. For headline generation, they
successively train models on data from 1993 to
2003 and test it on data from 2004. For emoji
prediction, the training data comes from differ-
ent days and the last one is used as the test set.
Lazaridou et al. (2021) train a language model on
various corpora with test data from 2018–2019
and train years that either overlap with the test
year or precede them.

Such results allow us to draw conclusions about
the potential for temporal domain adaptation, re-
vealing that models trained on data closer to the
test year perform better on that test year. The only
problem is that there is a single test year chosen
and any anomaly in that test year may lead to
misleading results. The temporal Twitter corpus
(Rijhwani and Preotiuc-Pietro, 2020), where 2019
is the dedicated test year, is an instructive case in
point. Twitter increased the character limit in late
2017. As a result, tweets from 2018 are longer
and contain more entities than these in prior years.
The potential for temporal adaptation measured
only on 2018 data contrasted with prior years
may give a highly optimistic view for how much
models can improve. An evaluation setup like the
one in Huang and Paul (2018) or the recent work
in Röttger and Pierrehumbert (2021) is needed
to draw robust conclusions. We adopt their setup
with some changes. We also introduce summary
statistics to easily interpret trends and a test for
significance to determine if the changes in perfor-
mance are compatible with random fluctuation of
performance across time periods.

Another line of work on temporal effects fo-
cuses on temporal adaptation by incorporating
time in the training process as opposed to retrain-
ing models on new human labeled data regularly.
Several approaches have been proposed such as
diachronic word embeddings, the ‘‘frustratingly
simple’’ domain adaptation, aligning represen-
tations of old and new data, time-aware self-
attention, and continual learning as new data is
available (He et al., 2018; Huang and Paul, 2019;
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Bjerva et al., 2020; Hofmann et al., 2021; Rosin
and Radinsky, 2022). An expanded evaluation
of these approaches to measure deterioration and
adaptation across several time periods with dif-
ferent representations will be useful, given our
findings.

3 Experimental Resources

Here we describe the datasets and the different
models used.

3.1 Tasks and Datasets

We use four English datasets, two for sequence
labeling and two for text classification.3

Named Entity Recognition with Temporal
Twitter Corpus TTC (Rijhwani and Preotiuc-
Pietro, 2020) consists of tweets annotated with
PER, LOC, and ORG entities. There are 2,000
tweets in each year from the period 2014–2019.
TTC is the only corpus with human annotations
specifically collected in order to study temporal
effects on performance. Other datasets, including
the three we describe next, are in fact derived
annotations that do not require manual annotation.

Truecasing with New York Times Truecasing
(Gale et al., 1995; Lita et al., 2003) is the task of
case restoration in text. We sample a dataset from
the NYT Annotated Corpus (Sandhaus, 2008)
which has sentences that follow English ortho-
graphic conventions. We perform a constrained
random sampling of 10,000 sentences per year
from 1987–2004 and organize the data with three
consecutive years per split. To maintain diversity
of text, we select an approximately equal number
of sentences from each domain (indicated by the
metadata) and only two sentences per article. Sen-
tences should have at least one capitalized word,
not including the first word and should not be
completely in uppercase (headlines appear in all
uppercase). We model the task as sequence la-
beling with binary word labels of fully lowercase
or not.

Sentiment Classification with Amazon Reviews
AR (Ni et al., 2019) consists of 233M product
reviews rated on a scale of 1 to 5. Following prior

3More dataset details and model hyperparameters can
be found in the appendix and at https://github.com
/oagarwal/temporal-effects.

work (Lukes and Søgaard, 2018), we model this
task as binary classification, treating ratings of
greater than 3 as positive and the remaining as
negative. We randomly sample 40,000 reviews
per year from the period 2001–2018 and organize
the data with three consecutive years per split.
The first 50 words of each review are used.

Domain Classification with New York Times
We select the first 40,000 articles from each year
in 1987–2004 from the NYT Annotated Corpus
and organize the data with three consecutive years
per split. The article domain is labeled using the ar-
ticle metadata. Certain domains are merged based
on the name overlap, resulting in eight domain—
Arts, Business, Editorial, Financial, Metropolitan,
National, Sports and Others. The first 50 words
(1–2 paragraphs) of each article are used.

3.2 Models

We use two architectures (biLSTM-CRF and
Transformers) and four representations (GloVe,
ELMo, BERT, RoBERTa) for the experiments.
Hyperparameters and other fine-tuning details are
noted in the appendix.

GloVe+char BiLSTM (Hochreiter and
Schmidhuber, 1997) with 840B-300d-cased GloVe
(Pennington et al., 2014) and character-based word
representation (Ma and Hovy, 2016) as input. For
sequence labeling, a CRF (Lafferty et al., 2001)
layer is added and prediction is made for each
word. For text classification, the representation of
the first word is used to make the prediction.

ELMo+GloVe+char4 Same as GloVe+char but
the Original ELMo (Peters et al., 2018) embed-
dings are concatenated to the input.

BERT (Devlin et al., 2019) We use the large
model for sequence labeling and the base model
for text classification, both cased. The number of
training examples was larger for text classifica-
tion resulting in a much faster base model with
minimally lower performance than the large one.

RoBERTa (Liu et al., 2019) We use the large
model for sequence labeling and the base model
for text classification.

4This combination yields better results than ELMo alone.
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4 Experimental Setup

We divide each dataset into n temporal splits with
equal number of sentences for sequence labeling
and equal number of documents for text classi-
fication to minimize any performance difference
due to the size of the split. We randomly down-
sample to the size of the smallest temporal split
whenever necessary. Let ds, dt, and dn denote
the first, tth, and last temporal split in the data-
set, respectively.

Train and Test Set We largely follow Huang
and Paul (2018), with minor clarifications on cer-
tain aspects as well as additional constraints due
to difference in dataset size across tasks, ensuring
consistency in setup. First, we vary both training
and test year but limit the evaluation to future
years since we want to mimic the practical setup
of model deployment. We train n − 1 models,
each on a specific temporal split, starting from a
model on ds to a model on dn−1, and evaluate the
model trained on dt on test sets starting from dt+1

to dn. Each temporal split has the same number
of sentences/documents and training/evaluation is
done only on data from a given split (not cu-
mulative data). Increase in training data size is
typically associated with increase in performance,
so cumulative expansion of the training set will
introduce a confound between the temporal ef-
fects and dataset size. With these results, a lower
triangular matrix can be created with the training
years as the columns and the test years as the rows.
A sample can be seen in Table 1.

Next, we need to further divide each temporal
split dt into three sub-splits for training, develop-
ment, and testing. We are limited by our smallest
dataset on NER, which is by far the hardest to
label and is the only task that requires manual data
annotation. It has 2,000 sentences in each year
and splitting it into three parts will not provide
us with enough data to train a large neural model
or reliably evaluate it. Hence, we do not evaluate
on the current year but only on the future ones.
When training a model on dt, it is split 80–20
into a training set traint and a development set
devt. Both these sets combined (i.e., the full dt,
serves as the test set testt when a past model is
evaluated on it.

Development Set The model checkpoint that
performs best on the development set is typi-

Train Year

Test Year 2014 2015 2016 2017 2018

GloVe+char biLSTM-CRF

2015 55.18 – – – –
2016 56.22 57.13 – – –
2017 55.09 53.95 59.43 – –
2018 51.06 53.12 57.75 57.82 –
2019 54.10 54.56 59.48 60.41 62.99

RoBERTa

2015 67.48 – – – –
2016 69.41 72.02 – – –
2017 68.30 70.53 70.29 – –
2018 67.82 68.33 69.29 68.60 –
2019 77.79 78.33 78.89 78.28 79.99

Table 1: F1 for NER on TTC. Training is on
gold-standard data.

cally chosen as the model to be tested. Yet prior
work (Fromreide et al., 2014; Lukes and Søgaard,
2018; Rijhwani and Preotiuc-Pietro, 2020; Chen
et al., 2021; Søgaard et al., 2021) either does not
report full details of the data used for choosing
hyperparameters, or uses default hyperparame-
ters, or draws the development set from the same
year as the test set year. We choose development
data from the time period of the training data,
reserving 20% of the data in each temporal split,
since data from a future time period will not be
available to use as the development set during
training. Beyond concerns about setup feasibil-
ity, through experiments not presented in detail
because of space constraints, we found that the
selection of development set from the test year
may affect performance trends and even lead to
exaggerated improvement for temporal domain
adaptation.

5 Evaluation Metrics

Task Metrics In the full matrix described above,
we report task-specific metrics, by averaging them
over three runs with different random seeds. For
NER, we report the span-level micro-F1 over all
entity classes; for truecasing, we report F1 for
the cased class. For sentiment classification, we
report F1 for the negative sentiment class; for
domain classification, we report the macro-F1
over all the domains. The positive sentiment and
uncased word account for about 80% of the data
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in their respective tasks and are largely (but not
completely) unaffected over time.

Temporal Summary Metrics For a compact
representation, we also report summary dete-
rioration score (DS) and summary adaptation
score (AS) in addition to the full matrix with
the task-specific evaluation results. Deterioration
score measures the average change in the perfor-
mance of a model over time. A negative score
indicates that the performance has deteriorated.
Similarly, the adaptation score measures the aver-
age improvement in performance by retraining on
recent data, labeled or unlabeled (§11). A positive
score means performance improves by retraining.

For each score, we report two versions, one that
measures the average change between immedi-
ately consecutive time periods and the other that
measures the change with respect to an anchor
(oldest) time period since retraining need not be
at regular intervals. The anchor-based scores are
also a more stable metric since the amount of
time passed between the values being compared is
longer and therefore we are more likely to observe
discernible temporal effects. For measuring dete-
rioration, the anchor is the oldest test time period
for the given model—that is, if a model is trained
on dt, then the task metric on dt+1 is the anchor
score (first available row in each column of the
full results matrix). For measuring adaptation, the
anchor is the oldest train time period so the an-
chor is always ds (first column in the full results
matrix). Let M j

i be the task metric measured on
dj when the model is trained on di. Let N be the
number of elements in the sum and da be the an-
chor time period. The summary scores are defined
as follows.

DSt−1
t =

1

N

∑

i∈train

∑

j∈test
M j+1

i −M j
i

DSa
t =

1

N

∑

i∈train

∑

j∈test
M j+1

i −Ma
i

ASt−1
t =

1

N

∑

i∈train

∑

j∈test
M j

i+1 −M j
i

ASa
t =

1

N

∑

i∈train

∑

j∈test
M j

i+1 −M j
a

To test if a given trend for deterioration or
adaptation is statistically significant, we consider
the vector of differences in each of the formulae
above, and run a two-sided Wilcoxon signed-rank
test to check if the median difference is signifi-
cantly different from zero. For our setup there are
10 differences total, corresponding to a sample
size of N = 10. When we report deterioration and
adaptation scores in tables with results, we indi-
cate with an asterisk (*) values corresponding to
a vector of differences with p-value smaller than
0.05. While this measures the fluctuations across
the average task-metrics over different training
and test years, it does not take into account the
variations across different runs of the same model
with random seeds. An ideal test would take into
account both the random seeds and the different
train/test years. However, this is not straightfor-
ward and we leave the design of such a test for
future work. Instead, in this paper, to ensure trends
are not affected by variations across seeds, we cal-
culate three values for each of the four scores,
corresponding to the three runs. For deterioration,
the performance of a model trained with a specific
seed is measured over time, but for adaptation,
the performance change may be measured w.r.t. a
model trained with a different seed, as will be the
case in practice. We then report the minimum and
maximum of this score for the significant sum-
mary metrics as measured above. If the sign of
the minimum and maximum of each score is the
same, the trend in the scores remains same across
runs, even if the magnitude varies.

Along with the summary scores, we also report
three salient values of the task metric from the
full results table (Table 1) in the summary (M s+1

s ,
Mn

s and Mn
n−1), necessary to compare the relative

performance across datasets and representations.
Remember that M j

i is the evaluation metric mea-
sured on dj when the model is trained on data split
di. M s+1

s , which is the value in the first row and
first column in the full results table, represents the
task metric when the model is trained on the first
temporal split and evaluated on the immediate next
one. It serves as the base value for comparison.
Mn

s , which is the value in the last row and first
column in the full results table, shows whether the
performance of the model deteriorated from Ms+1

s

over the longest time span available in the dataset,
by comparing the performance of the same model
on the last temporal split. Similarly, Mn

n−1, which
is the value in the last row and last column of the
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Ms+1
s Mn

s Mn
n−1 Da

t Aa
t Dt−1

t At−1
t

NER-TTC

GloVe 55.2 54.1 63.0 −1.3 4.1∗ −0.1 2.1∗

RoBERTa 67.5 77.8 80.0 3.2 1.4∗ 3.5 0.8

Truecasing-NYT

GloVe 93.8 93.0 94.6 −0.6∗ 0.3 −0.2∗ 0.3
RoBERTa 97.5 94.4 95.6 −1.1 0.4∗ −0.8 0.2∗

Sentiment-AR

GloVe 44.9 42.8 64.7 0.8 10.3∗ 0.4 4.9∗

RoBERTa 69.9 73.9 78.9 2.5∗ 2.5∗ 1.3∗ 1.1∗

Domain-NYT

GloVe 73.0 68.4 78.1 −2.7∗ 7.9∗ −0.5 3.6∗

RoBERTa 84.2 78.2 86.6 −3.7∗ 5.8∗ −1.1∗ 2.9∗

Table 2: Deterioration and Adaptation scores for
models fine-tuned on gold standard data. Positive
and negative scores denotes an increase and de-
crease in the task metric respectively. An asterisk
marks statistically significant scores.

full results table, shows if the performance can be
improved by retraining from Mn

s over the longest
time span available in the dataset, by retraining on
the latest available temporal split.

6 Main Results

Results are shown in Table 1 and Table 2. For
NER, we show the full matrix with the task met-
rics, but for all other tasks, we only report the
summary scores. Here, we only report results with
the oldest (GloVe) and latest (RoBERTa) rep-
resentation used in our experiments. For other
representations, we provide a detailed analysis in
later sections.

Temporal Model Deterioration can be tracked
over the columns in the full matrix and by com-
paring M s+1

s and Mn
s along with the deterioration

scores in the summary table. Each column in the
full matrix presents the performance of a fixed
model over time on future data. We do not ob-
serve temporal deterioration for all cases. For
NER, we observe deterioration with GloVe but
not with RoBERTa, for which performance im-
proves over time. However, neither of the dete-
rioration scores are statistically significant. For
sentiment, there is no deterioration; in fact model
performance improves over time (significant for
RoBERTa). For truecasing, there is some de-
terioration (significant for GloVe). For domain

classification, there is considerable deterioration
(significant for both representations). The differ-
ence between the two versions of the deterioration
scores is as expected, smaller for consecutive pe-
riods and larger when computed with respect to
the anchor.

Model deterioration appears to be both task
and representation dependent. This result offers a
contrast to the findings in Lazaridou et al. (2021)
that language models get increasingly worse at
predicting future utterances. We find that not all
tasks suffer from model deterioration. The tempo-
ral change in vocabulary and facts does not affect
all tasks as these changes and information might
not be necessary to solve all tasks. These results
do not depend on whether pre-training data and
task data overlap temporally (§9).

Temporal Domain Adaptation can be tracked
over the rows in the full matrix and by comparing
Mn

s and Mn
n−1 along with the adaptation scores in

the summary table. Each row in the full matrix rep-
resents performance on a fixed test set starting with
models trained on data farthest away to the tem-
porally nearest data. Performance improves with
statistical significance as the models are retrained
on data that is temporally closer to the test year.
The results are consistent with prior work that uses
non-neural models (Fromreide et al., 2014; Lukes
and Søgaard, 2018; Huang and Paul, 2018) or
evaluates on a single test set (Lukes and Søgaard,
2018; Rijhwani and Preotiuc-Pietro, 2020; Søgaard
et al., 2021). However, the extent of improve-
ment varies considerably by test year, task, and
representation. The largest improvement is for the
domain classification followed by the sentiment
classification. It is worth noting that both of these
datasets span 18 years, whereas the NER dataset
spans 6 years and more improvement may be ob-
served for NER for a similar larger time gap. The
change in performance on truecasing is almost
non-existent. The difference between the two ver-
sions of the adaptation scores is as expected given
the longer gap between retraining.

For all four summary scores, we also report the
minimum and maximum by calculating three val-
ues of each score corresponding to three different
runs (§5). The results are shown in the appendix.
While the extent of deterioration and adaptation
varies across runs, the sign of the scores is the
same for the maximum and minimum, i.e. the
trends are consistent across runs.
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Ms+1
s Mn

s Mn
n−1 Da

t Aa
t Dt−1

t At−1
t

NER 21.8 10.1 23.9 −6.6∗ 6.4∗ −2.7∗ 3.4∗

Truecasin 89.0 86.0 88.2 −1.5∗ 0.7 −0.7∗ 0.5
Sentiment 41.6 37.7 59.7 −0.2 9.0∗ −0.3 4.2∗

Domain 59.7 48.0 68.6 −5.7∗ 16.7∗ −2.1∗ 7.2∗

Table 3: Deterioration and Adaptation scores for
biLSTM with randomly initialized word repre-
sentations fine-tuned on gold standard data. An
asterisk marks statistically significant scores.

7 No Pre-training

Above, we found that models powered by
pre-trained representations do not necessarily
manifest temporal deterioration. At first glance,
our findings may appear to contradict findings
from prior work. They appear more compatible,
though, when we note that most of the early work
discussing temporal effects on model performance
studied bag of words models (Fromreide et al.,
2014; Lukes and Søgaard, 2018; Huang and Paul,
2018). Given that bag-of-word models are rarely
used now, we do not perform experiments with
them. Instead, we provide results with biLSTM
representations initialized with random vectors
for word representations. These learn only from
the training data and their performance mirrors
many of the trends reported in older work. The
results are shown in Table 3. Contrary to the
results with pre-trained representations, most de-
terioration scores are negative, large in magnitude,
and statistically significant. Adaptation scores are
consistent, that is, positive and statistically sig-
nificant but have larger magnitudes than those
with pre-trained representations. Pre-training on
unlabeled data injects background knowledge into
models beyond the training data and has led to
significant improvement on many NLP tasks. It
also helps avoid or reduce the extent of temporal
deterioration in models, making deployed models
more (though not completely) robust to changes
over time.

8 Different Pre-trained Representations

Given the variety of language representations, it
is tempting to choose one for experimentation and
assume that findings carry over to all. We present
results using four different representations and
find that this convenient assumption does not bear

Ms+1
s Mn

s Mn
n−1 Da

t Aa
t Dt−1

t At−1
t

NER-TTC

GloVe 55.2 54.1 63.0 −1.3 4.1∗ −0.1 2.1∗

Gl+ELMo 59.6 63.1 68.7 0.7 1.5∗ 1.0 1.0
BERT 64.7 71.7 76.2 2.7 1.1∗ 2.9 0.7∗

RoBERTa 67.5 77.8 80.0 3.2 1.4∗ 3.5 0.8

Truecasing-NYT

GloVe 93.8 93.0 94.6 −0.6∗ 0.3 −0.2∗ 0.3
Gl+ELMo 94.4 93.4 95.1 −0.6∗ 0.5∗ −0.3∗ 0.3∗

BERT 97.2 94.0 94.6 −1.1 0.3∗ −0.8 0.2∗

RoBERTa 97.5 94.4 95.6 −1.1 0.4∗ −0.8 0.2∗

Sentiment-AR

GloVe 44.9 42.8 64.7 0.8 10.3∗ 0.4 4.9∗

Gl+ELMo 55.3 57.5 69.1 2.6∗ 5.5∗ 1.2∗ 2.2∗

BERT 63.1 65.9 75.2 2.4∗ 4.7∗ 1.3∗ 2.0∗

RoBERTa 69.9 73.9 78.9 2.5∗ 2.5∗ 1.3∗ 1.1∗

Domain-NYT

GloVe 73.0 68.4 78.1 −2.7∗ 7.9∗ −0.5 3.6∗

Gl+ELMo 77.9 70.7 82.8 −3.9∗ 9.4∗ −1.0 4.3∗

BERT 82.7 74.3 86.2 −4.6∗ 9.4∗ −1.3∗ 4.2∗

RoBERTa 84.2 78.2 86.6 −3.7∗ 5.8∗ −1.1∗ 2.9∗

Table 4: Deterioration and Adaptation scores for
models fine-tuned on gold standard data with
various input representations. An asterisk marks
statistically significant scores.

out in practice. We use popular representations
that are likely to be used out-of-the-box.5

Both temporal model deterioration and tem-
poral domain adaptation vary vastly across rep-
resentations (Table 4). RoBERTa stands out as
the representation for which results deteriorate
least and for which the potential for temporal
adaptation is also small. RoBERTa exhibits sig-
nificant deterioration with respect to the anchor
only for domain prediction; it significantly im-
proves over time for sentiment prediction, and
changes are not significant for NER and truecas-
ing. The improvements from temporal adaptation
with respect to the anchor are statistically sig-
nificant for all tasks for RoBERTa, but smaller
in size compared to the improvements possible
for the other representations. GloVe, in contrast,
shows performance deterioration with respect to
the anchor for three tasks (NER, truecasing, and

5Admittedly, input representation is an overloaded term
that encompasses the model architecture, whether the rep-
resentation is contextual or not, what data is used for
pre-training, the overall model size, the length of the fi-
nal vector representation, etc. We discuss several of these
differentiating factors later.
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domain prediction), significant for the last two;
on sentiment analysis performance of the GloVe
model improves slightly, but not significantly,
while all other representations show significant
improvements over time.

The tables also allow us to assess the impact
of using a new (more recent state-of-the-art) pre-
trained representation vs. annotating new train-
ing data for the same pre-trained representation.
An approximate comparison can be made be-
tween two representations A and B where A is
the older representation, by comparing Mn−1

n of
A (i.e., training on n − 1 instead of s) to Mn

s

of B (i.e., still training on s but using represen-
tation B). For example, consider NER with Mn

s

using GloVe, with F1 at 54.1. By retraining the
model with new training data, the F1 obtained
is 63.0. However, by using newer representation
of GloVe+ELMO, BERT and RoBERTa with the
old training data, the F1 is 63.1, 71.7, and 77.8
respectively. The benefit of using new training
data vs. new pre-trained representations is again
highly dependent on the task and representation.

9 Pre-training Data Time Period

To perform clear experiments, one would need to
control the time period of not only the task dataset
but also the pre-training corpora. We report the
time span for each dataset and the pre-training
corpus of each model in Table 5. For several
corpora, the actual time span is unknown so we
report the time of dataset/paper publication in-
stead. This table makes it easy to spot where
cleaner experimental design may be needed for
future studies.

Most pre-training corpora overlap with the task
dataset time span, making it hard to isolate the
impact of temporal changes. BERT is trained on
Wikipedia containing data from its launch in 2001
till 2018, and 11k books, spanning an unknown
time period. RoBERTa uses all of the data used by
BERT, and several other corpora. The pre-training
data of both BERT and RoBERTa overlaps with
all training and test periods of the datasets used.

We also use GloVe and ELMo representa-
tions, which do not overlap with the TTC dataset
(2014–2019). GloVe was released in 2014, hence
is trained on data prior to 2014. ELMo uses the
1B benchmark for pre-training which has data
from WMT 2011. Yet for these two, change in
model performance over time is statistically in-

Model/Task Corpus Time Span

Task Dataset

NER TTC 2014–2019
Truecasing NYT 1987–2004
Sentiment Amazon Reviews 2001–2018
Domain NYT 1987–2004

Pretraining Data

GloVe Common Crawl till 2014∗

ELMo 1B Benchmark till 2011∗

Wikipedia Jan 2001–2018∗

BERT BookCorpus till 2015∗

Wikipedia Jan 2001–2018∗

BookCorpus till 2015∗

CC-News Sept 2016–Feb 2019
OpenWebText till 2019∗

RoBERTa Stories till 2018∗

Table 5: Time Span for all datasets and corpora.
All corpora only include English data. ∗ denotes
that the actual time span is unknown so we note
the publication date of the dataset/paper instead.

All splits Last split

GloVe 0.8 1.0
GloVe+ELMo 2.6 3.1

Table 6: Deterioration score with respect to the
anchor for Amazon Reviews averaged over all
temporal test splits compared to the last temporal
split which does not overlap with the pre-training
data time period. Scores are positive for both.

significant, consistent with the cases when there is
overlap. Adaptation scores are higher but cannot
be attributed to the lack of overlap since there
is high potential for adaptation even when there
is overlap for the other tasks. GloVe and ELMo
also do not overlap with a portion of the Ama-
zon Reviews dataset (2016–2018). This is the
last temporal split and is therefore used only for
evaluation. Because the pre-training data does not
overlap with this split, model deterioration might
be expected but results on this split follow the
same trend of increasing F1 with time. Table 6
shows the average deterioration score with respect
to the anchor for all splits and the 2016–2018 split,
both of which are positive. Therefore, we have at
least a subset of experiments free of confounds due
to pre-training time overlap. The observed trends
hold across both the set of experiments with and
without overlap.
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Size BERT RoBERTa

Large 340M 355M
Base 110M 125M
Distil-base 65M 82M

Table 7: Number of parameters in the models.

Additionally, for the domain classification task,
the pre-training time period overlaps with the
training and evaluation years, yet we still observe
considerable model deterioration. Both experiments
where we do not observe deterioration despite no
overlap and observe deterioration despite over-
lap point to the lower impact of pre-training time
period on the downstream task. Instead, these re-
sults suggest that changes in performance are task
dependent and performance is most impacted by
the size of the pre-training data or the differences
in model architecture.

Regardless, an important set of experiments
for future work would involve pre-training the
best performing model on different corpora con-
trolled for time and compare their performance.
Such an extensive set of experiments would re-
quire significant computational resources as well
as time. Because of this, prior work has, like
us, worked with off-the-shelf pre-trained models.
For instance, Röttger and Pierrehumbert (2021)
control the time period for the data used for in-
termediate pre-training in their experiments, but
they start their experiments with BERT, which
is pre-trained on corpora that overlap temporally
with their downstream task dataset. For future
work, we emphasize the need to report the time
period of any data used to support research on tem-
poral model deterioration and temporal domain
adaptation.

10 Model Size

Lastly, we assess the differences in temporal ef-
fects between models with the same architecture
and pre-training data6 but different sizes. We use
three versions for BERT and RoBERTa—large,
base, and distil-base. The distil-base models are
trained via knowledge distillation from the base
model (Sanh et al., 2019). The number of pa-
rameters in each are reported in Table 7. For
sequence labeling (named entity recognition and

6distil-RoBERTa uses less pre-training data than
RoBERTa.

truecasing), we compare all three versions. For text
classification, we do not train the large model.

Results are shown in Table 8. As expected,
the smaller model sizes have lower F1 across all
tasks, though the impact of the model size on
the amount of deterioration and possible adapta-
tion varies across task. In truecasing, there is no
or little difference between the deterioration and
adaptation scores across model sizes. For all other
tasks, there is generally more deterioration (or less
improvement for a positive score) and more scope
for adaptation via retraining for smaller models.
Nonetheless, the overall trend (i.e., the direction
of change in performance) is consistent across
model sizes.

Unlike language models that experience similar
change in perplexity over time for different model
sizes (Lazaridou et al., 2021), we find that larger
models show less deterioration (or more increase)
and allow for less room for adaptation by re-
training. Smaller models likely ‘‘memorize’’ less
data and therefore depend more on the training
data, thereby experiencing more deterioration and
higher improvement via retraining. This is further
substantiated by the largest change in adaptation
score with model size in the task of NER, where
entity memorization in pre-training may play a
larger role in task performance (Agarwal et al.,
2021).

11 Temporal Adaptation without New
Human Annotations

We found that model deterioration and the
possibility of temporal adaptation need to be dis-
tinguished and both need to be measured. Model
deterioration is task-dependent where some tasks
suffer from deterioration and others do not. Re-
gardless of whether model deterioration exists
or not, for all tasks, performance can be im-
proved by retraining on human-labeled data from
a more recent time period. For tasks such as NER,
where the collection of new data can involve
significant effort, this raises the question—how
can we perform temporal adaptation without col-
lecting new human annotations. Here, we ex-
plore methods for this. Given human annotations
for ds and a model trained on it, we want to
improve the performance of this model on dt
+ 1 and beyond without human annotations on
dt. For these experiments, we only use NER-
TTC, Sentiment-AR, and Domain-NYT since
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BERT RoBERTa

Ms+1
s Mn

s Mn
n−1 Da

t Aa
t Dt−1

t At−1
t Ms+1

s Mn
s Mn

n−1 Da
t Aa

t Dt−1
t At−1

t

NER-TTC

distil-base 59.3 60.0 69.0 −0.4 3.5∗ 0.9 1.8∗ 60.7 67.2 70.8 2.1 1.9∗ 2.7 0.9∗

base 64.1 65.6 72.1 0.9 2.2∗ 1.6 0.9∗ 66.8 73.6 76.0 2.3 0.3 2.8 0.4
large 64.7 71.7 76.2 2.7 1.1∗ 2.9 0.7∗ 67.5 77.8 80.0 3.2 1.4∗ 3.5 0.8

Truecasing-NYT

distil-base 96.9 93.7 95.1 −1.3∗ 0.4∗ −0.8 0.3∗ 96.4 93.0 94.4 −1.2 0.4∗ −0.8 0.3∗

base 97.1 93.8 95.2 −1.2 0.4∗ −0.8 0.3∗ 97.0 93.8 95.1 −1.2 0.4∗ −0.8 0.2∗

large 97.2 94.0 94.6 −1.1 0.3∗ −0.8 0.2∗ 97.5 94.4 95.6 −1.1 0.4∗ −0.8 0.2∗

Sentiment-AR

distil-base 59.9 62.9 73.7 2.9∗ 5.7∗ 1.6∗ 2.4∗ 65.8 70.1 76.4 2.8∗ 3.2∗ 1.4∗ 1.4∗

base 63.1 65.9 75.2 2.4∗ 4.7∗ 1.3∗ 2.0∗ 69.9 73.9 78.9 2.5∗ 2.5∗ 1.3∗ 1.1∗

Domain-NYT

distil-base 81.7 72.9 85.2 −4.9∗ 9.8∗ −1.4 4.4∗ 83.2 75.6 86.1 −4.2∗ 7.8∗ −1.2 3.6∗

base 82.7 74.3 86.2 −4.6∗ 9.4∗ −1.3∗ 4.2∗ 84.2 78.2 86.6 −3.7∗ 5.8∗ −1.1∗ 2.9∗

Table 8: Deterioration and Adaptation scores for different model sizes with same architecture and
pre-training data, fine-tuned on gold standard data. An asterisk marks statistically significant scores.

Truecasing-NYT showed little change in per-
formance even when retrained with even gold-
standard data.

11.1 Continual Pre-training

For the first experiment, we use domain adaptive
pre-training (Gururangan et al., 2020) on tempo-
ral splits. A pre-trained model undergoes a second
pre-training on domain-specific unlabeled data
before fine-tuning on task-specific labeled data.
In our case, the new unabeled data is a future
temporal split. However, unlike in typical do-
main adaptive pre-training, we only have a small
amount of in-domain data. In practice, the amount
of this data would depend upon how frequently
one wants to retrain the model. For the experi-
ments, we use the data from temporal split dt,
throwing away the gold-standard annotations. We
take a pre-trained model, continue pre-training it
on dt, then fine-tune it on ds. This is done with
three random seeds and the performance is aver-
aged over these runs. With this setup, we observe
a drastic drop in performance. We hypothesized
that this is because the amount of in-domain data
is insufficient for stable domain adaptation. How-
ever, recent work (Röttger and Pierrehumbert,
2021) has shown that temporal adaptation through
continual pre-training even on millions of ex-
amples has limited benefit. It should be noted
that Röttger and Pierrehumbert (2021) adapt a

NER Truecasing Sentiment Domain

BERT

Gold 1.14∗ 0.29∗ 4.70∗ 9.37∗
Pretrain 0.84∗ – 1.43∗ −0.01
Self-Label 2.27∗ – 1.56∗ 1.14∗

RoBERTa

Gold 1.39∗ 0.35∗ 2.49∗ 5.83∗
Pretrain −0.84∗ – 0.25∗ −1.34
Self-Label 1.79∗ – 1.40∗ 1.01∗

Table 9: Adaptation scores with respect to an-
chor time period for different adaptation methods.
Large model is used for sequence labeling and
base model for text classification.

pre-trained BERT that was pre-trained on recent
data overlapping temporally with the data used
for the continued pre-training. To completely dis-
entangle the temporal effects of pre-training and
assess the effective of continual pre-training, one
would also need to pre-train BERT from scratch
on older data.

Next, we modify the domain adaptive pre-
training by adding an extra fine-tuning step. This
method first performs task adaptation, followed by
temporal adaptation and then again task adapta-
tion. We start with a pre-trained model, fine-tune
it on ds, then pre-train it on dt and then fine-tune it
again on ds. While this method does not improve
performance consistently (Table 9), it leads to
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significant improvement for NER and sentiment
for the BERT representation, but makes no differ-
ence for domain adaptation. For RoBERTa, how-
ever, adaptation scores get worse, significantly
for NER and the improvement for sentiment anal-
ysis is smaller in absolute value than for BERT.

As highlighted in the evaluation setup, multi-
test set evaluation is essential for reliable results.
In this experiment, if we had evaluated only on
2019 for NER-TTC (numbers omitted here), we
would have concluded that this method works
well, but looking at the summary over different test
years, one can see that the change in performance
is inconsistent.

11.2 Self-labeling

Self-labeling has been shown to be an effective
technique to detect the need to retrain a model
(Elsahar and Gallé, 2019). Here, we explore its
use in temporal domain adaptation. We fine-tune
a model on ds, use this model to label the data
dt, and then use gold-standard ds and self-labeled
dt to fine-tune another model. The new model is
trained on trains and the full dt with devs as
the development set. dt is weakly labeled (with
model predictions) and thus noisy, hence we do
not extract a development set from dt for reliable
evaluation. Self-labeling works consistently well,
as seen in the results in Table 9, across test
years, representations, and tasks7. Though adding
self-labeled data dt does not give the highest
reported performance on dt+1 it improves perfor-
mance over using just the gold-standard data ds.
For NER, F1 improves over using even the dt
gold-standard data8 (but not over ds + dt gold-
standard data). For sentiment, F1 improves over
using just gold-standard ds but not to the
same level as using new gold-standard data for
fine-tuning.

Lastly, we explore if continuously adding new
self-labeled data further improves performance.
All of ds+1 to dt is self-labeled and added to the
gold-standard ds. We were able to perform this

7Adding new data is computationally expensive. For NER,
since the amount of data is small because it required actual
annotation, we could continue using the same GPU, and just
the run time increased. With reviews, we had to upgrade our
usage from one to two GPUs in parallel.

8For NER using BERT, we vary the amount of self-labeled
new data added and observe that with 25% of new self labeled
data, adaptation score exceeds gold-standard fine-tuning
(Figure 1 in the appendix).

experiment only for NER because the cumula-
tive data for reviews and domains becomes too
large. Adding more data does not improve per-
formance but it does not decrease performance
either (numbers omitted), despite the fact that the
training data now comprises mainly noisy self-
labeled data. More research on optimal data selec-
tion with self-labeling is needed. The right data
selection may improve performance further.

12 Experimental Design
Recommendations

With this study on the impact of various factors in
model training and evaluation that may confound
the study of temporal effects, we recommend the
following setup for experiments. We highlight the
factors that can affect the findings of the study
considerably and others that are less important.

1. Evaluate performance on the full grid of
possible training and testing time periods.
Variation across time-periods is considerable
and choosing only one can lead to misleading
conclusions about changes in performance
and utility of methods.

2. Draw development data from the training
year and not from the test year to ensure fea-
sibility of the setup when used in practice.

3. Use multiple input representations since the
possibility of improvement via retraining
(with labeled or unlabeled data) is represen-
tation dependent and we would want an adap-
tation method that works consistently well.

4. Whenever possible, run experiments with-
out overlap of the time period between the
pre-training data and the task data. This will
be beneficial for clearing doubts about the
reason for performance change. However,
such experiments are not necessary since the
observed trends seem largely unaffected by
such overlap. At a minimum, report the time
period for all data used (pre-training, task,
external resources).

5. In case of computational constraints, use
smaller models. This should not affect trends
in the findings. Observed trends are simi-
lar across model sizes, even though larger
models have better absolute task metrics.

915



13 Limitations and Future Work

Work on temporal effects on a variety of tasks,
domains, and languages is limited by the need to
collect a large amount of labeled data. We pre-
sented experiments for a range of tasks but focus
only on tasks where the answer does not change
with time. Other tasks such as question answer-
ing and entity linking are time-dependent and are
likely to experience deterioration. Two such stud-
ies has been performed by Dhingra et al. (2021);
Lazaridou et al. (2021) for questions answering.

In addition, all of our experiments are on En-
glish data. Studying this for other languages, es-
pecially those with lower resources, which are
most likely to experience deterioration, is harder
again due to the need to collect large datasets.
Though for multilingual models, one might ob-
serve the same trends as English due to transfer
learning, experimental evidence will be needed
in future work. Additionally, to study adaptation
techniques with training on source language or
source domain and evaluation on target language
or target domain, one would need to match time,
domain and task for both, further making such a
study harder to execute. Temporal effects are hard
to study but future work on different domains and
languages will be beneficial, especially in light
of our finding that there is not always model
deterioration.

Another limitation of our work is due to
the need for large amount of computational re-
sources for pre-training from scratch. Röttger and
Pierrehumbert (2021) perform extensive exper-
iments on temporal adaptation with continual
pre-training but start with a pre-trained BERT
which overlaps with task data. Even with the right
resources, determining the timestamp for each
sentence in the pre-training data is challenging.
Wikipedia, a common source of pre-training data,
consists of edit histories but there are frequent
edits even in the same sentence. If one considers
the date when the article was first added, then
future data due to edits will get included. Though
our experiments hint that task-pre-training data
overlap may not impact the results on studies on
temporal effects, a clean set of experiments with
no and varying levels of overlap will be essential
to understand the effect of such an overlap and
motivate the selection of the pre-training data.

Finally, our analyses of statistical significance
of the performance deterioration and adaptation

improvement is based on the differences in perfor-
mance between time periods, for scores averaged
across three runs of the model. We report the min-
imum and maximum adaptation score across runs
to account for variation across seeds. However, a
single detailed test that takes in account both these
variations needs to be designed carefully (Reimers
and Gurevych, 2017; Dror et al., 2018). Such anal-
ysis will be able to better address questions related
to whether it will be more advantageous to up-
date the representations used for the task or to
do temporal adaptation. Nevertheless, our work
convincingly shows that for individual tasks and
representations, deterioration either with respect to
an anchor time period or for consecutive time peri-
ods is often not statistically significant. Adaptation
improvements however are typically significant.
This key finding will inform future work.

14 Conclusion
We presented exhaustive experiments to quan-
tify the temporal effects on model performance.
We outline an experimental design that allows
us to draw conclusions about both temporal de-
terioration and the potential for temporal do-
main adaptation. We find that with pre-trained
embeddings, temporal model deterioration is task-
dependent and a model need not necessarily ex-
perience deterioration for tasks where the label
correctness does not depend on time. This finding
holds true regardless of whether the pre-training
data time period overlaps with the task time pe-
riod or not. Despite this, temporal adaptation via
retraining on new gold-standard data is still ben-
eficial. Therefore, we implemented two methods
for temporal domain adaptation without labeling
new data. We find that intermediate pre-training is
not suitable for temporal adaptation. Self-labeling
works well across tasks and representations. This
finding motivates future work on how to select
data to be labeled and how to maintain a rea-
sonable size for the training data as the continual
learning progresses over time.
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A Sentiment Classification Evaluation

For sentiment classification, we noted the F1 for
the negative class above since the positive class
forms 80% of the data and is easier to learn. Here
we note the macro-F1 across both classes.

Ms+1
s Mn

s Mn
n−1 Da

t Aa
t Dt−1

t At−1
t

GloVe 66.6 67.4 79.2 1.5 5.5 0.7 2.6
Gl+ELMo 77.2 75.1 81.9 2.3 3.3 1.1 1.4
BERT 76.9 80.1 85.4 2.2 2.6 1.1 1.1
RoBERTa 81.0 84.7 87.5 2.2 1.4 1.1 0.6

Table 10: Deterioration and Adaptation scores for
sentiment classification using macro-F1.

B Hyperparameters and Design Details

Hyperparameters are optimized for each com-
bination of dataset and model using the oldest
temporal training and development set. The same
hyperparameters are then used for the remain-
ing temporal splits for the dataset and model
combination.

The biLSTM-CRF models are trained using
the code from Lample et al. (2016), modified to
add ELMo and to perform sentence classification.
BERT and RoBERTa are fine-tuned using the im-
plementation in HuggingFace (Wolf et al., 2019).
Remaining details of hyperparameters and de-
sign choices can be found at https://github
.com/oagarwal/temporal-effects.

C Summary Score Across Runs

Da
t Aa

t Dt−1
t At−1

t

NER-TTC

GloVe – [2.5, 7.0] – [1.4, 3.3]
RoBERTa – [0.7, 1.9] – –

Truecasing-NYT

GloVe [−0.6, −0.5] – [−0.2, −0.2] –
RoBERTa – [0.3, 0.4] – [0.2, 0.2]

Sentiment-AR

GloVe – [6.9, 14.0] – [3.7, 6.1]
RoBERTa [2.4, 2.5] [1.8, 3.0] [1.2, 1.4] [0.8, 1.3]

Domain-NYT

GloVe [−3.1, −2.1] [6.8, 8.7] – [3.3, 4.0]
RoBERTa [−3.9, −3.6] [5.4, 6.0], [−1.2, −1.1] [2.8, 3.0]

Table 11: Minimum and maximum of summary
scores across three runs for models fine-tuned
on gold-standard data, for statistically signifi-
cant summary metrics. Both have the same sign,
showing the trends remains the same across runs.

D Self-Labeling

For NER-TTC, self-labeling leads to better adap-
tation that new gold-standard data for training. For
BERT, we vary the amount of new self-labeled
data added to the old gold-standard data. With
just 25% of new self-labeled data added, adap-
tation score exceeds gold-standard fine-tuning.

Figure 1: Adaptation score with respect to the anchor
by varying the amount of self-labeled data for NER
using BERT. The dashed line shows the adaptation
score when just new gold-standard data is used.
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