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Abstract

The availability of large-scale datasets has
driven the development of neural models that
create generic summaries for single or multiple
documents. For query-focused summarization
(QFS), labeled training data in the form of
queries, documents, and summaries is not read-
ily available. We provide a unified modeling
framework for any kind of summarization,
under the assumption that all summaries are
a response to a query, which is observed in
the case of QFS and latent in the case of
generic summarization. We model queries as
discrete latent variables over document tokens,
and learn representations compatible with ob-
served and unobserved query verbalizations.
Our framework formulates summarization as
a generative process, and jointly optimizes
a latent query model and a conditional lan-
guage model. Despite learning from generic
summarization data only, our approach out-
performs strong comparison systems across
benchmarks, query types, document settings,
and target domains.1

1 Introduction

Recent years have witnessed substantial progress
in generic summarization (See et al., 2017;
Gehrmann et al., 2018; Liu and Lapata, 2019a, in-
ter alia) thanks to neural architectures based on the
encoder-decoder paradigm (Sutskever et al., 2014)
and the availability of large-scale datasets contain-
ing hundreds of thousands of document-summary
pairs. Unfortunately, training data of this mag-
nitude is not readily available for the related
task of query-focused summarization (QFS; Dang
2005) which aims to create a summary from one
or multiple document(s) that answers a specific
query. Existing QFS benchmarks (Dang, 2005;
Hoa, 2006; Nema et al., 2017; Baumel et al.,

1Our code and models can be found at https://
github.com/yumoxu/lqsum.

2016) have been constructively used for evalu-
ation but are relatively small for training large
neural models.

To make up for the absence of labeled QFS data,
recent work has resorted to distant supervision
provided by pretrained models, paraphrase identi-
fication, and question-answering datasets (Xu and
Lapata, 2020; Su et al., 2020; Laskar et al.,
2020b). Other work induces proxy queries (Xu
and Lapata, 2021) from generic summarization
datasets, without additional question-answering
resources that can be also extremely expen-
sive to acquire (Bajaj et al., 2016). Despite this
progress, building and scaling QFS systems re-
mains challenging due to the many different
ways natural language queries express users’ in-
formation needs. For instance, queries can have
one or multiple keyword(s) (Baumel et al., 2016;
Zhu et al., 2019), a simple question (Nema et al.,
2017), or a longer narrative composed of multi-
ple sub-queries (Dang, 2006) (see the examples
in Table 1). Although QFS systems can poten-
tially handle queries resembling those seen in
training, they are not expected to work well on
out-of-distribution queries (Xu and Lapata, 2021),
namely, queries with different surface forms from
those seen in training. In order to cover new types
of queries, it might be necessary to gather more
data, re-design proxy queries, and re-train one
or more system components that can be compu-
tationally inefficient and in some cases practi-
cally infeasible.

In this work, we provide a unified model-
ing framework for generic summarization and
QFS, under the assumption that only data for
the former is available. Specifically, we treat
generic summarization as a special case of QFS
where the query is latent. We model queries as
discrete latent variables over document tokens,
and learn representations compatible with ob-
served and unobserved query verbalizations. Our
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Dataset Task Domain Size D/Q/S Tokens Query Type Query Example

CNN/DM SDS News 11,490 760.5/0.0/45.7 Empty ∅
WikiCatSum MDS Wiki 8,494 800.0/0.0/105.6 Empty ∅
WikiRef SDS Wiki 12,000 398.7/6.7/36.2 Keywords Marina Beach, Incidents
Debatepedia SDS Debates 1,000 66.4/10.0/11.3 Question Is euthanasia better than withdrawing life support?
DUC 2006 MDS Newswire 1,250 (50) 699.3/32.8/250 Composite AMNESTY INTERNATIONAL – What is the scope
DUC 2007 MDS Newswire 1,125 (45) 540.3/30.5/250 Composite of operations of Amnesty International and what are

the international reactions to its activities?
TD-QFS MDS Medical 7,099 (50) 182.9/3.0/250 Title Alzheimer’s Disease

Table 1: Test data statistics. SDS/MDS stand for single-/multi-document summarization. Size refers
to number of test documents; for multi-document QFS, we specify the number of clusters in brackets.
D/Q/S are Document/Query/Summary tokens. Composite queries consist of a TOPIC and a narrative.

framework formulates abstractive summarization
as a generative process, and decomposes the learn-
ing objective into: (1) latent query modeling (i.e.,
generating latent query variables from document
observations) and (2) conditional language mod-
eling (i.e., generating summaries conditioned on
observed documents and latent queries). To fur-
ther handle user queries at test time, we propose
a non-parametric calibration of the latent query
distribution, which allows us to perform zero-shot
QFS without model re-training.

Our contributions in this work are threefold:
(a) we bring together generic summarization
and QFS under a unified modeling framework
that does not require query-related resources for
training or development; (b) we provide a deep
generative formulation for document summariza-
tion, where queries are represented directly from
input documents in latent space, that is, with-
out resorting to pipeline-style query extraction
or generation; and (c) experiments on a range
of summarization benchmarks show that across
query types, document settings, and target do-
mains, our model achieves better results than
strong comparison systems.

2 Related Work

Rush et al. (2015) and Nallapati et al. (2016)
were among the first to apply the neural
encoder-decoder architecture to abstractive sum-
marization. See et al. (2017) enhance their
approach with a pointer-generator model, essen-
tially a copy mechanism allowing words from
the source document to be copied directly in
the summary. Gehrmann et al. (2018) incorpo-
rate a content selection model that decides on
relevant aspects of the source document. They
frame this task as a word-level tagging problem,

with the objective of separately identifying tokens
from a document that should be part of its sum-
mary; at test time, they produce content selection
probabilities for each word, which are then used
to restrict the copy mechanism by performing
hard masking over the input document. Another
line of research controls summary generation via
topics (Perez-Beltrachini et al., 2019a; Wang
et al., 2020), retrieve-and-edit methods (Cao
et al., 2018), factual relations (Jin et al., 2020),
keywords, relational triples, or preselected source
sentences (Dou et al., 2021).

The majority of previous QFS approaches
have been extractive and compose summaries
by selecting central and query-relevant sentences
(Wan et al., 2007; Badrinath et al., 2011; Wan and
Zhang, 2014; Li et al., 2017b,a). More recently,
Xu and Lapata (2020) propose a coarse-to-fine
framework that leverages distant supervision from
question answering for summary sentence extrac-
tion. Abstractive QFS has received significantly
less attention in comparison, due to generation
models being particularly data-hungry (Lebanoff
et al., 2018; Liu and Lapata, 2019a). As a re-
sult, resources from a wider range of NLP tasks
have been used. Su et al. (2020) rank docu-
ment paragraphs against queries with the aid
of QA and machine reading datasets (Su et al.,
2019; Rajpurkar et al., 2016), and then iteratively
summarize selected paragraphs. Similarly, Laskar
et al. (2020b) jointly exploit supervision from
QFS data (typically reserved for evaluation) and
related QA and paraphrase identification tasks.

Because query-related resources can be also
costly to obtain (Bajaj et al., 2016; Kwiatkowski
et al., 2019), Xu and Lapata (2021) use none
whatsoever. Instead, they create proxy queries by
selectively masking information slots in generic
summaries. Despite promising system performance,
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their approach assumes prior knowledge of tar-
get queries (proxies are created to match their
length, and content), and a development set is used
(Xu and Lapata, 2021). Also, their system is
particularly tailored to multi-document QFS and
includes a sophisticated evidence selection com-
ponent. Our work is closely related to theirs in that
we also do not take advantage of query-related re-
sources. We go a step further and do not require a
development set either, allowing our model to be
independent of specific query verbalizations and
produce QFS summaries in zero-shot settings.

Our approach is generally applicable to single-
and multi-document QFS. For any summariza-
tion task we assume that queries are latent and
estimate these jointly via a summarization and
(weakly supervised) tagging task. The latter draws
inspiration from Gehrmann et al. (2018) under the
assumption that document tokens found in the
summary also provide evidence for the (latent)
query that gave rise to it. Finally, our model is
fundamentally different from approaches that rely
on document-based guidance to improve the in-
formativeness (Cao et al., 2018) or faithfulness
(Chen et al., 2021) of summaries. While these
models exploit guidance from supervision signals
in training data, we are faced with the problem of
estimating queries when there are none available
(at least during training).

3 Problem Formulation

Let {(D,Q,S)} denote a summarization dataset,
where document D is a sequence of tokens, and
S its corresponding summary; query Q addition-
ally specifies an information request. In generic
summarization, Q = ∅, whereas in QFS Q can
assume various formats, ranging from keywords
to composite questions (see Table 1 for examples).

Our model learns from generic summarization
data alone, while robustly generalizing to a range
of tasks at test time, including out-of-domain QFS.
A shared characteristic between generic summa-
rization and QFS is the fact that user intent is
underspecified. Even when queries are available
(i.e., Q �= ∅), they are incomplete expressions
of intent as it is unlikely to specify queries to
the level of detail necessary to compose a good
summary (Xu and Lapata, 2021). We thus iden-
tify latent query signals from D, and optionally
take advantage of Q as additional observation for
belief update.

Generative Model We model an observed input
document D as a sequence of random variables
x = [x1;x2; . . . ;xM ] where xi is a token and
M the length of the document. We define the
latent query as a sequence of discrete latent states
over input document tokens: z = [z1; z2; . . . ; zM ].
Specifically, from each document token xi, we
generate a binary query variable zi, whose
distribution p(zi) represents the belief that xi

contributes to a potential query for document D.
Modeling latent queries at the token-level allows
us to regularize the model—by taking into ac-
count weak supervision in the form of token-level
tagging (Gehrmann et al., 2018). It also renders
the model independent of the query form, thereby
enabling zero-shot inference (see Section 4).

The output summary y = [y1;y2; . . . ;yT ] is
then generated from {x, z} using teacher-forcing
at training time. At test time, we may additionally
be presented with a query Q; we ground this
optional information to the input document via
discrete observed variables z̃ = [z̃1; z̃2; . . . ; z̃M ],
and generate y by additionally conditioning on z̃
(if it exists) in an autoregressive manner.

Our model estimates the conditional distribu-
tion pθ(y|x) according to the generative process
just described (and illustrated in Figure 1) as:

pθ(y|x) =
∑
z

pθ(y|z,x)pθ(z|x) (1)

=
∑
z

pθ(y|z,x)
∏
i

pθ(zi|xi)

Inference Model The posterior distribution of
latent variable z is calculated as:

pθ(z|x,y) =
pθ(x,y, z)

pθ(x,y)
=

pθ(x,y, z)∑
z pθ(x,y, z)

(2)

Unfortunately, exact inference of this posterior
is computationally intractable due to the joint
probability pθ(x,y). We therefore approximate it
with a variational posterior qφ(z|x,y). Inspired by
β-VAE (Higgins et al., 2017), we maximize the
probability of generating summary y, provided
the distance between the prior and variational
posterior distributions is below a small constant δ:

max
φ,θ

E(x,y)∼D

[
Ez∼qφ(z|x,y) log pθ(y|x, z)

]
(3)

subject to DKL (qφ(z|x,y)‖pθ(z|x)) < δ (4)

Because we cannot solve Equation (4) directly,
we invoke the Karush-Kuhn-Tucker conditions
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Figure 1: Proposed summarization framework: generative process and neural parametrization. Shaded nodes
represent observed variables, unshaded nodes indicate latent variables, arrows represent conditional dependencies
between variables, and plates refer to repetitions of sampling steps. Dashed lines denote optional queries at test
time. Latent queries create a query-focused view of the input document, which together with a query-agnostic
view serve as input to a decoder for summary generation.

(Kuhn et al., 1951) and cast the above con-
strained optimization problem into unconstrained
optimization, with the following ELBO objective:

LELBO = Eqφ(z|x,y) [log pθ(y|x, z)] (5)

− βDKL (qφ(z|x,y)||pθ(z|x))

where the Lagrangian multiplier β is a hyperpa-
rameter. To minimize our model’s dependence
on queries (which we assume are unavailable for
both training and development), we adopt a uni-
form prior pθ(z|x). In other words, the probability
of variable z being a query word (given all in-
stances of x) follows a uniform distribution. In
this case, minimizing the KL term in Equation (5)
is equivalent to maximizing the entropy of the
variational posterior.2 We further assume that the
tokens observed in a document are a superset of
potential query tokens, and therefore z ⊥⊥ y and
qφ(z|x,y) = qφ(z|x).3

While the simplification reduces the risk of
exposure to bias from training on y, it makes
learning meaningful latent variables more chal-
lenging, as they depend solely on x. We alleviate
this by introducing a new type of weak super-
vision o(ẑ|x,y), which we automatically extract
from data (i.e., document-summary pairs). Essen-
tially, we tag tokens in the document as likely to
be in the summary and by extension in the query.

2When pθ(z|x) ∼ U(a, b), DKL(qφ(z|x,y)||pθ(z|x)) =
−H (qφ(z|x)) + log(b− a+ 1) always holds (z ∈ [a, b]).

3We experimentally verified this assumption in several
QFS datasets. In WikRef (Zhu et al., 2019) and Debatepedia
(Nema et al., 2017), 1.57% and 4.27% of query tokens are not
attested in the input document, respectively. In DUC (Dang,
2005) and TD-QFS (Baumel et al., 2016) where the input
contains multiple documents, all query tokens are attested.
Across all datasets, only 1.69% of query tokens are not
attested in the input document/cluster.

We discuss how this tagger is learned in Section 4.
For now, suffice it to say that weak supervision is
a form of posterior regularization adding an extra
term in the objective, which we rewrite as:

L = Eqφ(z|x) [log pθ(y|x, z)]︸ ︷︷ ︸
conditional language modeling

(6)

+ βH (qφ(z|x))− ωH (o(ẑ|x,y), qφ(z|x))︸ ︷︷ ︸
latent query modeling

where H(·) denotes posterior entropy and H(·, ·)
denotes cross entropy.

As can be seen from Equation (6), we decom-
pose summarization into two modeling objectives,
namely, latent query modeling and conditional
language modeling. Inside the query modeling
term, hyperparameter ω controls the influence of
weak supervision ẑ, while β controls the strength
of label smoothing on the weak annotations.

Neural Parametrization We parametrize the
two objectives in Equation (6) with a latent query
model and a conditional language model illus-
trated in Figure 1. The query model estimates
latent query z from input variable x. At infer-
ence time, it, optionally, conditions on query
knowledge ẑ (when this is available). The con-
ditional language model is based on the vanilla
encoder-decoder architecture, the main difference
being that it encodes two views of input doc-
ument D. One encoding is query-focused, and
depends directly on z as generated from the query
model. The second encoding is query-agnostic,
allowing for the original document to provide
complementary context. A decoder conditioned
on both encodings autoregressively generates
the summary y. In contrast to previous work
(Xu and Lapata, 2021), the latent query model and
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conditional language model are trained jointly in
a fully differentiable end-to-end manner. In the
following sections we explain in detail how these
two models are parametrized.

4 Latent Query Model

In this section we discuss how the inference net-
work for latent queries is constructed. We also
explain how query-focused document represen-
tations are obtained, our attempts to mitigate
posterior collapse via weak supervision o(ẑ|x,y)
(see Equation (6)), and how query belief is updated
when queries are available at test time.

Inference Network for Latent Queries We
construct a neural network model to infer for
each token in the input document whether it con-
stitutes a query term. Given a contextual token
representation matrix Hq ∈ R

M×dh , we project
it to R

M×2 with a two-layer MLP as a scoring
function:

Hs = ReLU(HqWh + bᵀ
h) (7)

π = HsWs + bᵀ
s (8)

where Wh ∈ R
dh×dh , bh ∈ R

dh×1, Ws ∈ R
dh×2,

and bs ∈ R
2×1 are learnable model parameters.

Let G(0) denote the standard Gumbel dis-
tribution, and g� ∼ G(0), � ∈ [0, 1] is i.i.d.
drawn Gumbel noise. We normalize π to form
a variational distribution as:

qφ(zi = �|x) = softmax�([π0 + g0,π1 + g1])

=
exp((π� + g�)/τ)∑

�′∈[0,1] exp((π�′ + g�′)/τ)

(9)

where τ is the temperature controlling how close
qφ(z|x) is to argmax� qφ(z|x), and is optimized
on the development set. Note that Gumbel noise is
only applied during learning and is set to its mode
(i.e., 0) for inference.

Query-focused View As explained earlier, in
addition to a canonical, query-agnostic encoding
of the input document D (which we discuss in
Section 5), we further introduce a query-focused
encoding factorized via latent queries z.

Specifically, for the ith token, we take the
continuous relaxation of its discrete latent variable
zi, and ground4 it to the input document via:

Qi = qφ(zi = 1|x) ·Hq,i (10)
4We also experimented with drawing hard samples from

z via the straight-through trick (Jang et al., 2016), which is

As we can see, the query-focused view explicitly
models the dependency on latent queries. From a
learning perspective, this factorization leads to the
following partial derivatives of the query encoder
states with respect to the query-focused view:

∂Qi

∂Hq,i
=

(
1− q

(1)
φ

)
︸ ︷︷ ︸

carry gate

· ∂Δπ

∂Hq,i

Qi + q

(1)
φ︸︷︷︸

transform gate

·1

(11)

where q
(�)
φ is a shorthand for the variational prob-

ability of zi = �|x, and Δπ = π1 − π0 (see
Equation (8)) and 1 denotes an all-one vector.
This can be viewed as a special case of highway
networks (Srivastava et al., 2015) where transform
gate q

(1)
φ compresses the information captured

by a token based on its likelihood of being a
query term.

Token Tagging as Weak Supervision Al-
though it is possible to optimize latent queries
solely based on conditional language modeling
(our approach is fully differentiable), we addi-
tionally exploit weak supervision to label tokens
in the document as query-specific or not. Weak
supervision is advantageous as it imposes extra
regularization on the posterior (see Equation (6)),
thereby mitigating its collapse (i.e., the decoder
may learn to ignore the query-focused view and
instead solely rely on the query-agnostic view).

Let t1, . . . , tn denote binary tags for each
of the source tokens, that is, 1 if a token is
query-specific and 0 otherwise. We could learn
such a tagger from training data generated by
aligning query tokens to the document. In de-
fault of such gold-standard data, we approximate
queries by summaries and obtain silver standard
token labels by aligning summaries to their cor-
responding documents. Specifically, inspired by
Gehrmann et al. (2018), we assume a token in
the document is query-specific if it is part of the
longest common sub-sequence (LCS) of tokens in
the summary. Our tagging model is built on top
of a pretrained language model, and thus operates
on subwords. We first byte-pair encode (BPE;
Sennrich et al., 2016) documents and summaries,
and then search for the LCS over BPE sequences.
If there exist multiple identical LCSs, only the
one appearing at the earliest document position is

differentiable with biased gradient estimation. However, it
did not yield better results than continuous relaxation.

627



tagged as positive. We refer to this tagging scheme
as BPE-LCS.

Note that although we model query variables at
the token level, we take phrases indirectly into ac-
count through LCS, which identifies subsequences
of tokens (or phrases) as query annotations. Our
our tagging model is therefore able to capture
dependencies between tokens, albeit indirectly.

Training To optimize the variational inference
model, that is, the MLP defined in Equations (7–9),
we use a cross entropy loss for token tagging, with
the posterior entropy term from Equation (6).
Formally, we write the query modeling loss as
follows:

Lquery = −ωLtag + βLentropy (12)

= −
N∑
j=1

M∑
i=1

((
ωẑji − βq

(1)
φ

)
log q

(1)
φ

+
(
ω
(
1− ẑji

)
− βq

(0)
φ

)
log q

(0)
φ

)

where ẑi is a binary label automatically assigned
via BPE-LCS(D,S), the alignment procedure de-
scribed above. As we can see, the entropy term
dynamically smooths the weak annotations ẑi (the
degree of smoothing is modulated by qφ). We
optimize ω and β on a development set.

In the initial stages of training, the tagger
might lead to inaccurate posterior probability as-
signments qφ(zi|x), and, consequently, hurt the
summarization model, which relies heavily on a
high-quality query-focused view. To address this
issue, we introduce a posterior dropout mecha-
nism that replaces the estimated posterior with
weak supervision o(ẑ|x) according to probability
α. We initialize α to 1, so that only o(ẑ|x) is
used in the beginning of training, and the tagger
is supervised via Equation (12). We then linearly
anneal α over optimization steps so that the gradi-
ents from the summarization objective (which we
introduce in Section 5) can jointly optimize the
tagger.

Zero-shot Transfer We now explain how
queries are taken into account at test time by
performing query belief updates Δ(zi|x, z̃). In
the case of generic summarization where no
queries are available, we simply perform no up-
date. When Q �= ∅, some tokens in the document
become more relevant and we consequently set
Δ(zi = 1|x, z̃) = 1, ∀wi ∈ BPE-LCS(D, Q), and

all other tokens to zero. We further incorporate
query information via a simple calibration as:

qφ(zi = 1|x, z̃) = min{1, (13)
qφ(zi = 1|x) + Δ(zi = 1|x, z̃)}

Note that our calibration is non-parametric, since
it is not realistic to assume access to a development
set for each query type (e.g., in order to perform
hyper-parameter tuning). This enables zero-shot
transfer to QFS tasks with varying characteristics.

5 Conditional Language Model

In this section we describe our conditional lan-
guage model, which estimates the log-likelihood
expectation of a summary sequence over the vari-
ational posterior (see Equation (6)). As mentioned
earlier, we adopt an encoder-decoder architecture
tailored to document summarization with latent
queries.

Encoder We encode two views of the input
document, a generic query-agnostic view D, and
a query-focused one Q (see Equation (10)). As
shown in Figure 1(c), our encoder module consists
of three encoders: a shared encoder, a document
encoder, and a query encoder. Because both views
are created from the same document, we use a
shared encoder for general document understand-
ing that also reduces model parameters. The shared
document representation serves as input to more
specialized encoders. Each encoder contains one
or multiple Transformer layers (Vaswani et al.,
2017), each composed of a multi-head attention
(MHA) layer and a feed-forward (FFN) layer:

H(enc) = LN
(
H(enc) + MHA

(
H(enc),H(enc),H(enc)))

H(enc) = LN
(
H(enc) + FFN

(
H(enc))) (14)

where LN denotes layer normalization. As shown
in Figure 1(c), the query-focused view Q directly
conditions on sampled latent queries, while D is
based on the original document and its content.

Decoder We adopt a decoder structure similar
to Dou et al. (2021) to handle multiple inputs. Our
decoder sequentially attends to the two encoded
views of the same document:

H(dec) = LN
(
H(dec) +MHA

(
H(dec),H(dec),H(dec)))

H(dec) = LN
(
H(dec) +MHA

(
H(dec),Q,Q

))
H(dec) = LN

(
H(dec) +MHA

(
H(dec),D,D

))
H(dec) = LN

(
H(dec) +FFN

(
H(dec))) (15)
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After taking the context of the previous generation
H(dec) into account, the decoder will first attend
to signals coming from query Q, then to original
document D (based on guidance provided by the
query). The final summary generation objective is
calculated autoregressively as:

Llm =
N∑
j=1

T∑
t=1

log pθ

(
yj
t |y

j
<t,D

j ,Qj
)

(16)

which is jointly trained with the query model (see
Equation (12)) as: L = Llm + Lquery.

6 Experimental Setup

Datasets For model training and development,
we used the CNN/Daily Mail dataset (Hermann
et al., 2015), a generic single-document summa-
rization benchmark containing news articles and
associated highlights (287,227/13,368 instances).
We evaluated our model on the CNN/Daily Mail
test set, following a generic summarization, super-
vised setting. We also performed several zero-shot
experiments, on five benchmarks representing var-
ious query formats, domains, and summarization
scenarios (e.g., single- vs. multiple-documents).
Specifically, we report results on WikiCatSum
(Perez-Beltrachini and Lapata, 2021) as an ex-
ample of multi-document generic summarization,
and WikiRef (Zhu et al., 2019), Debatepedia
(Nema et al., 2017), DUC 2006-07, and TD-QFS
(Baumel et al., 2016) as examples of QFS. Table 1
summarizes the characteristics of these datasets
and presents test set statistics. Note that in con-
trast to Xu and Lapata (2021), we do not make use
of development data for our QFS tasks.

Implementation Details The shared encoder
consists of 11 Transformer layers. The document
and query encoders have a separate Transformer
layer each. All encoders and decoder are initial-
ized with a pretrained BART model (Lewis et al.,
2020), while the query encoder is initialized ran-
domly. We used four GeForce RTX 2080 GPUs
for training; we set the batch size to 8 (i.e., one
sample for each GPU), and accumulate gradients
every 32 steps. We fine-tuned BART on CNN/Daily
Mail with a learning rate of 3 × 10−5 for 20,000
optimization steps, and a warmup-step of 500. We
used half float precision for efficient training and
set the maximum length of an input document
to 640 tokens, with the excess clipped. We set
β = 0.1 and ω = 10 in the learning objective, and

Upper Bound & Baselines R-1 R-2 R-L

ORACLE 55.8 33.2 51.8
LEAD 40.4 17.6 36.7
LEXRANK 33.2 11.8 29.6

Supervised (Extractive) R-1 R-2 R-L
BERTEXT (Liu and Lapata, 2019b) 43.9 20.3 39.9
MATCHSUM (Zhong et al., 2020) 43.9 20.6 39.8

Supervised (Abstractive) R-1 R-2 R-L
PTGEN (See et al., 2017) 39.5 17.3 36.4
BOTTOMUP (Gehrmann et al., 2018) 41.2 18.7 38.4
BERTABS (Liu and Lapata, 2019b) 41.7 19.4 38.8
BART (Lewis et al., 2020) 44.2 21.3 40.9
GSUM (Dou et al., 2021) 45.9 22.3 42.5
GSUM (our implementation) 45.0 21.9 41.8
LQSUM 45.1 22.0 41.9

Table 2: Generic summarization, supervised
setting, CNN/Daily Mail test set.

τ = 0.9 for latent query modeling. We annealed
the dropout rate α from 1.0 to 0.5 over the whole
training session.

7 Automatic Evaluation

Before analyzing our model under various
zero-shot settings, we first confirm it can in-
deed produce good quality generic summaries in
a supervised setting. There is no point in con-
templating zero-shot scenarios if our approach
underperforms when full supervision is available.
Following standard practice, we use F1 ROUGE
as our automatic evaluation metric (Lin and Hovy,
2003). Unigram and bigram ROUGE (R-1 and
R-2) are a proxy for assessing informativeness
and the longest common subsequence (R-L) repre-
sents fluency. For multi-document QFS, we follow
DUC (Dang, 2005) and report R-SU4 (based on
skip bigram with maximum skip distance of 4)
instead of R-L.5

7.1 Supervised Setting

Table 2 summarizes our results on the CNN/Daily
Mail test set. As an upper bound (first block)
we report the performance of an extractive
ORACLE that performs greedy search to find a
set of sentences in the source document that
maximize ROUGE scores against the reference
(Liu and Lapata, 2019b). The LEAD baseline con-
siders the first 3 sentences in a document as the

5We used pyrouge with the following parameter set-
tings: ROUGE-1.5.5.pl -a -c 95 -m -n 2 -2 4 -u -p 0.5 -l
250.
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Model Size Components

BART 400M ENC=12, DEC=12
GSUM 625M ENC=13, DEC=12, BERT=2 (220M; guidance)
LQSUM 406M ENC=13, DEC=12, TAG=1 (1M; latent query)

Table 3: System comparison. ENC, DEC, and TAG

denote number of layers for encoding, decoding, and
tagging, respectively. GSUM (Dou et al., 2021)
and LQSUM add a (randomly initialized) encod-
ing layer on top of BART (Lewis et al., 2020) for
guidance/query representation. LQSUM replaces
guidance extraction in GSUM (i.e., two BERT mod-
els) with latent query modeling (i.e., a lightweight
tagging layer), which is more parameter efficient.

summary. LEXRANK (Erkan and Radev, 2004) es-
timates sentence-level centrality via a Markov
Random Walk on graphs. The second block in-
cludes two additional extractive systems. BERTEXT

(Liu and Lapata, 2019b) is the first rendition of a
summarization system with a pretrained encoder
(Devlin et al., 2019). MATCHSUM (Zhong et al.,
2020) extracts an optimal set of sentences via
semantically matching documents to candidate
summaries.

The third block includes various abstractive
systems (see Section 2 for an overview). PTGEN

(See et al., 2017) and BOTTOMUP (Gehrmann
et al., 2018) do not use pretrained LMs, while
BERTABS (Liu and Lapata, 2019b) is built on top
of a pretrained BERT encoder. BART (Lewis et al.,
2020) is fine-tuned on CNN/DM, while GSUM

(Dou et al., 2021) is initialized with BART

parameters.
Our Latent Query Summarization model

(LQSUM) outperforms BART by a large margin,
which demonstrates the effectiveness of latent
queries even for generic summarization. It also
performs on par with GSUM, under identical
training resources and configurations. GSUM is
a state-of-the-art abstractive model, which re-
lies on MATCHSUM (Zhong et al., 2020), a
high-performance extractive model to provide
guidance to the decoder. Compared to GSUM,
LQSUM can be trained end-to-end and requires
significantly less parameters (406 M for LQSUM

versus 625 M for GSUM; see Table 3 for details).

7.2 Zero-Shot Setting

Multi-Document Summarization We evalu-
ated our model’s ability to summarize multiple

Upper Bound & Baselines R-1 R-2 R-L

ORACLE 47.2 23.3 42.9
LEAD 22.3 6.9 19.9
LEXRANK 23.3 6.5 20.3

Supervised (Abstractive) R-1 R-2 R-L
TRANSFORMER (Liu et al., 2018) 35.5 19.0 30.5
CV-S2D+T (Perez-Beltrachini et al., 2019b) 36.1 19.9 30.5

Zero-shot Abstractive R-1 R-2 R-L
BART (Lewis et al., 2020) 27.8 9.8 25.1
GSUM+LEXRANK 27.4 8.2 25.0
LQSUM 28.7 9.9 26.1

Table 4: Multi-document summarization,
zero-shot setting, WikiCatSum test set. Results
averaged over three domains: Company, Film,
Animal.

documents on WikiCatSum (Perez-Beltrachini
et al., 2019b), a collection of articles on a specific
topic (e.g., Tokyo Olympics) and their corre-
sponding Wikipedia summary. In order to handle
multi-document input with a model trained on
single-document data, we follow previous work
(Perez-Beltrachini et al., 2019b) and first select a
subset of salient passages which are then concate-
nated into a sequence and given to our model to
summarize.

In the first block of Table 4 we present up-
per bound and baseline results. The second block
contains results for two supervised systems, a
sequence-to-sequence model based on Trans-
former (Liu et al., 2018), and a state-of-the-art
system enhanced with a convolutional encoder, a
structured decoder, and a topic prediction module
(CV-S2D+T; Perez-Beltrachini et al. 2019b). The
third block contains zero-shot models, including
BART, GSUM, and LQSUM. GSUM requires another
extractive system’s output as guidance during in-
ference, for which we default to LEXRANK. As can
be seen, LQSUM performs best among zero-shot
models, but lags behind fully supervised ones
which is not surprising (zero-shot models operate
over pre-ranked, incoherent passages).

Single-Document QFS Tables 5 and 6 show
results for single-document QFS on two datasets,
namely, WikiRef (Zhu et al., 2019) and Debate-
pedia (Nema et al., 2017), which differ in terms
of document/summary size and query type (see
Table 1). The first block in both tables shows
results for the ORACLE upper bound, LEAD, and
LEXRANKQ, a query-focused version of LEXRANK
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Upper Bound & Baselines R-1 R-2 R-L

ORACLE 54.5 37.5 48.5
LEAD 26.3 10.5 21.8
LEXRANKQ 29.9 12.3 26.1

Supervised (Extractive) R-1 R-2 R-L
TRANSFORMER (Zhu et al., 2019) 28.1 12.8 23.8
BERTEXT (Zhu et al., 2019) 35.1 18.2 30.0

Zero-shot Abstractive R-1 R-2 R-L
BART (Lewis et al., 2020) 30.0 12.2 26.0
GSUM+LEXRANKQ 30.2 12.5 26.3
LQSUM 31.1 12.6 27.1

Table 5: Single-document QFS, zero-shot
setting, WikiRef test set (queries are keywords).

Upper Bound & Baselines R-1 R-2 R-L

ORACLE 28.9 11.0 24.9
LEAD 18.1 5.6 15.9
LEXRANKQ 17.4 5.3 15.1

Supervised (Abstractive) R-1 R-2 R-L
DDA (Laskar et al., 2020a) 7.4 2.8 7.2
BERTABS+RANK (Abdullah and Chali, 2020) 19.2 10.6 17.9
BERTABS+CONCAT (Laskar et al., 2020a) 26.4 11.9 25.1

Zero-shot Abstractive R-1 R-2 R-L
hline BERTABS† (Liu and Lapata, 2019b) 13.3 2.8 2.8
BART (Lewis et al., 2020) 21.4 6.3 18.4
GSUM+LEXRANKQ 21.2 6.2 18.2
LQSUM 23.5 7.2 20.6

Table 6: Single-document QFS, zero-shot set-
ting, Debatepedia test set (queries are natural
questions). BERTABS† (Laskar et al., 2020a) is
optimized on XSum (Narayan et al., 2018).

described in Xu and Lapata (2020). The sec-
ond block presents various supervised systems on
WikiRef and Debatepedia, both extractive and ab-
stractive. Note that abstractive QFS systems have
not been previously evaluated on WikiRef, while
Debatepedia contains short documents and ac-
cordingly short summaries and has mainly served
as a testbed for abstractive summarization. The
third block reports system performance in the
zero-shot setting. We compare LQSUM against
BART and GSUM, which, however, requires guid-
ance from automatically extracted sentences. Note
that MATCHSUM (Zhong et al., 2020), the original
extractive system used by GSUM for guidance, is
not directly applicable to QFS, as it is trained
for generic summarization which does not take
queries as input. We made a best effort attempt
to adapt GSUM to our QFS setting by using
query-focused LEXRANKQ to extract the top K
sentences for each test document as guidance.

Across both datasets, LQSUM achieves the high-
est ROUGE scores in the zero-shot setting, in some
cases surpassing the performance of supervised
models. Compared to our results on generic sum-
marization, LQSUM also shows a clearer advantage
over systems without latent query modeling.

Multi-Document QFS We performed experi-
ments on the DUC 2005-2007 benchmarks and
TD-QFS (Baumel et al., 2016). The former con-
tains long query narratives while TD-QFS focuses
on short keyword queries (see Table 1).

We applied our summarization model trained
on single documents to document clusters follow-
ing a simple iterative approach (Baumel et al.,
2018): We first rank documents in a cluster via
their query term frequency, and then generate a
summary for each document. The summary for the
entire cluster is the concatenation of the individual
document summaries subject to a budget (i.e., 250
tokens).6 Repeated sentences were skipped to
reduce redundancy in the final summary.

Our results are given in Table 7. The first
block reports performance for the ORACLE upper
bound and GOLD, which was estimated by com-
paring a (randomly selected) reference summary
against the remaining two or three reference sum-
maries.7 We also include LEXRANKQ, and LEAD

(Xu and Lapata, 2021), which returns all lead
sentences (up to 250 words) of the most recent
document.

The second block contains distantly supervised
approaches. QUERYSUM (Xu and Lapata, 2020)
is an extractive system that takes advantage of
existing QA datasets and adopts a coarse-to-fine
salience estimation procedure. BART-CAQ (Su et al.,
2020) uses an ensembled QA model for answer
evidence extraction, and a fine-tuned BART model
(Lewis et al., 2020) to iteratively generate sum-
maries from paragraphs. PQSUM (Laskar et al.,
2020b) uses fine-tuned BERTSUM to generate sum-
maries for each document in a cluster, and a QA
model for summary sentence re-ranking.

The third block compares our model against
MARGESUM (Xu and Lapata, 2021), a state-of-the-
art few-shot approach, which uses data for proxy
query generation and model development, and

6An alternative would be to generate a long summary at
once. However, this requires a model to be trained on a MDS
dataset, or at least a proxy thereof (Xu and Lapata, 2021).

7We compute this upper bound only for DUC and TD-QFS
benchmarks as they include multiple reference summaries.
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DUC 2006 DUC 2007 TD-QFS
Upper Bound & Baselines R-1 R-2 R-SU4 R-1 R-2 R-SU4 R-1 R-2 R-SU4

GOLD 45.4 11.2 16.8 47.5 14.0 18.9 52.2 27.0 30.2
ORACLE 47.5 15.8 20.2 47.6 17.1 20.9 64.9 48.3 49.4
LEAD 32.1 5.3 10.4 33.4 6.5 11.3 33.5 5.2 10.4
LEXRANKQ 34.2 6.4 11.4 35.8 7.7 12.7 35.3 7.6 12.2

Distantly Supervised R-1 R-2 R-SU4 R-1 R-2 R-SU4 R-1 R-2 R-SU4
QUERYSUM∗ (Xu and Lapata, 2020) 41.6 9.5 15.3 43.3 11.6 16.8 44.3 16.1 20.7
BART-CAQ (Su et al., 2020) 38.3 7.7 12.9 40.5 9.2 14.4 — — —
PQSUM (Laskar et al., 2020b) 40.9 9.4 14.8 42.2 10.8 16.0 — — —

Few- or Zero-shot Abstractive R-1 R-2 R-SU4 R-1 R-2 R-SU4 R-1 R-2 R-SU4
MARGESUM†(Xu and Lapata, 2021) 40.2 9.7 15.1 42.5 12.0 16.9 45.5 16.6 20.9
BART (Lewis et al., 2020) 38.3 7.8 13.1 40.2 9.9 14.6 45.1 16.9 21.4
GSUM+LEXRANKQ 38.1 7.9 13.1 39.5 9.5 14.3 45.5 18.0 22.4
LQSUM 39.1 8.5 13.7 40.4 10.2 15.0 45.7 18.1 22.1

Table 7: Multi-document QFS, zero-shot setting, DUC (queries are narratives) and TD-QFS (queries
are keywords) test sets. ∗/† denotes extractive/few-shot systems.

CNN/DM WikiRef Debatepedia DUC 2006 DUC 2007 TD-QFS
Model R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-SU4 R-1 R-2 R-SU4 R-1 R-2 R-SU4

LQSUM 45.1 22.0 41.9 31.1 12.6 27.1 23.5 7.2 20.6 39.1 8.5 13.7 40.4 10.2 15.0 45.7 18.1 22.1
−Δ(ẑ|x, z) — — — ↓0.1 ↓0.2 ↓0.2 ↓0.5 ↓0.3 ↓0.6 ↓0.6 ↓0.2 ↓0.6 ↑0.1 ↓0.1 ↓1.3 ↑0.1 ↓0.6 ↓0.4
−Joint training ↓0.4 ↓0.3 ↓0.4 ↓2.9 ↓0.9 ↓2.8 ↓2.8 ↓1.1 ↓2.8 ↓2.9 ↓1.7 ↓1.6 ↓2.4 ↓2.0 ↓1.7 ↓0.7 ↓0.6 ↓0.4
−Weak supervision ↓0.6 ↓0.7 ↓0.7 ↓0.7 ↓0.2 ↓0.5 ↓1.0 ↓0.5 ↓1.3 ↓0.2 ↓0.2 ↓0.2 ↓0.2 ↓0.3 ↓0.3 ↓0.1 ↓0.3 ↓0.0
−Dual view ↓2.7 ↓3.5 ↓2.5 ↓12.2 ↓9.3 ↓10.5 ↓7.9 ↓3.3 ↓6.6 ↓6.3 ↓1.8 ↓1.8 ↓6.5 ↓3.0 ↓2.5 ↓2.5 ↓3.3 ↓2.8
−Posterior dropout ↓0.7 ↓0.6 ↓0.8 ↓0.8 ↓0.3 ↓0.7 ↓1.1 ↓0.3 ↓1.2 ↓0.2 ↓0.2 ↓0.2 ↓0.4 ↓0.4 ↓0.5 ↑0.2 ↓0.0 ↑0.1

Table 8: LQSUM ablation results; ↑/↓: absolute increase/decrease.

various zero-shot systems including BART and
GSUM+LEXRANKQ.

Across datasets, LQSUM outperforms compar-
ison zero-shot approaches. It also has a clear
advantage over MARGESUM on TD-QFS but is
slightly worse on DUC. We also see that LQSUM

is superior to BART-CAQ, which relies on distant
supervision from QA data.

7.3 Ablation Studies
We further performed a series of ablation studies,
reported in Table 8, to assess the contribu-
tion of individual model components. Perhaps
unsurprisingly, we observe that not updating
the query belief at test time hurts performance
(−Δ(ẑ|x, z)). Recall that we adopt a simple
method that calibrates the variational posterior
distribution. When it comes to learning mean-
ingful latent queries that benefit summarization
tasks, relying solely on tagging (−Joint training)
or generation (−Weak supervision) substantially
decreases performance.8 Latent query learning
balances a trade-off between direct but weak
supervision from the tagging objective (based

8−Joint training replaces the softmax in Equation (9)
with argmax, to stop the gradients from the generation loss
in backpropagation. −Weak supervision sets ω = 0.

on silver standard token labels) and natural but
indirect supervision from the generation objec-
tive (based on human-written summaries). As
silver tagging labels provide less accurate supervi-
sion than human-written summaries, we observe
that −Joint training hurts performance more than
−Weak supervision.

Removing the query agnostic view (−Dual
view) causes a significant performance drop as
the decoder can no longer leverage the origi-
nal document context, which is useful especially
when the query model is not accurate. Rely-
ing solely on the estimated posterior to create
the query-focused view for training (−Posterior
dropout), also hurts performance as it leads to
more severe error propagation for the downstream
generation model.

8 Human Evaluation

Following previous work (Xu and Lapata, 2021,
2020), we also evaluated query-focused sum-
maries in a judgment elicitation study via Ama-
zon Mechanical Turk. Native English speakers
(self-reported) were asked to rate query-summary
pairs on two dimensions: Succinctness (does the
summary avoid unnecessary detail and redundant
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WikiRef Rel Suc Coh Debatepedia Rel Suc Coh
BERTEXT 3.57 3.63 3.72 BERTABS 2.42† 2.93†◦ 2.59†

GSUM+LEXRANKQ 2.92†◦ 3.48◦ 3.72 GSUM+LEXRANKQ 2.88† 3.60 3.49†

LEXRANKQ 3.23 3.40 3.68 LEXRANKQ 3.33 3.47◦ 3.52
LQSUM 3.41 3.58 3.78 LQSUM 3.39 3.74 3.78
GOLD 3.62 3.73 3.59 GOLD 3.29 3.76 3.57

DUC Rel Suc Coh TD-QFS Rel Suc Coh
MARGESUM 4.00 3.75 3.65†◦ MARGESUM 3.28 3.57 3.62
GSUM+LEXRANKQ 3.90 3.44†◦ 3.84 GSUM+LEXRANKQ 3.26 3.65 3.76
LEXRANKQ 3.59†◦ 3.38†◦ 3.54†◦ LEXRANKQ 2.78†◦ 3.36†◦ 3.33†◦

LQSUM 3.97 3.88 3.95 LQSUM 3.35 3.70 3.77
GOLD 4.01 3.94 4.04 GOLD 3.50 3.88 3.68

Table 9: Human evaluation on QFS benchmarks: average Relevance, Succinctness, Coherence ratings;
†/◦ : sig different from LQSUM/Gold (at p < 0.05, using a pairwise t-test); best system shown in bold.

Query: Prashant Bhushan, Legal activism, Government accountability

GOLD: CPIL won a major victory in 2003 when the Supreme Court restrained the Union government from privatising
Hindustan Petroleum and Bharat Petroleum without the approval of Parliament.
BERTEXT: New Delhi, March 3: The Supreme Court verdict against P.J. Thomas’s appointment is not the lone feather in
the cap of the petitioner, the Centre for Public Interest Litigation (CPIL), but perhaps the most visible one. That was when
it got the apex court to restrain the Centre from divesting majority shares in Hindustan Petroleum and Bharat Petroleum
without Parliament’s approval. The CPIL was founded in the late 1980s by Justice V.M. Tarkunde, who also co-founded
the People’s Union for Civil Liberties.
GSUM+LEXRANKQ: The Centre for Public Interest Litigation (CPIL) is a loose collection of activists and lawyers whose
aim is to fight corruption. Among its members are lawyers Shanti Bhushan, Prashant BhUSHan, Kamini Jaiswal, Ram
Jethmalani, Anand Divan and Anil Divan. Another PIL asks that the government be directed to recover Indian black money
stashed in foreign banks.
LQSUM: The Centre for Public Interest Litigation (CPIL) is a loose collection of activists and lawyers. The group had its
big hurrah in 2003 when it got the apex court to restrain the Centre from divesting majority shares in Hindustan Petroleum
and Bharat Petroleum.

Query: Effectiveness: Do earmarks allocate spending effectively?
GOLD: Earmarks are often unrelated to legislation; holds up bill.
BERTABS: Earmarks can be fully examined.
GSUM+LEXRANKQ: Sometimes a good piece of legislation that receives the support of a majority of congressman will be
held up and voted down.
LQSUM: Congressmen are using earmarks to hold up bills they don’t like, says Rep. Ruben Gallego.

Table 10: System output on WikiRef (above; document 3918) and and Debetepedia (below;
document 260). Information irrelevant to the query or incoherent in the summary is highlighted.

information?) and Coherence (does the summary
make logical sense?). The ratings were obtained
using a five-point Likert scale.

In addition, participants were asked to assess the
Relevance of the summary to the query. Crowd-
workers read a summary and for each sentence
decided whether it is relevant (i.e., provides an
answer to the query), irrelevant (i.e., does not an-
swer the query), or partially relevant (i.e., unclear
it directly answers the query). Relevant sentences
were awarded a score of 5, partially relevant ones
a score of 2.5, and 0 otherwise. Sentence scores
were averaged to obtain a relevance score for
the whole summary. We view Relevance as as

more critical for QFS than Coherence or Succinct-
ness. This is why we obtained per-sentence ratings
which we then aggregated to an overall summary
score. To make this task manageable, raters were
asked to provide more coarse-grained ratings.

Participants assessed summaries created by
LQSUM (our model), GSUM+LEXRANKQ (a com-
petitive abstractive system), LEXRANKQ (an extrac-
tive baseline), and GOLD (the ground-truth upper
bound). We also compared against BERTEXT on
WikiRef, BERTABS on Debatepedia, and MARGE-
SUM on DUC and TD-QFS.9 We sampled 40

9BERTEXT and BERTABS are supervised systems, while
MARGESUM is a few-shot system.
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query-document pairs from WikiRef and Debate-
pedia, 40 query-cluster pairs from DUC (2006,
2007; 20 from each set), and 40 pairs from
TD-QFS and collected three responses per pair.10

We show our results in Table 9 and examples
of system output in Table 10. On WikiRef, LQ-
SUM outperforms GSUM+LEXRANKQ significantly
in terms of relevance. On Debatepedia it sur-
passes BERTABS, a supervised model, across all
three metrics. On DUC, it outperforms comparison
systems in terms of succinctness and coherence.
LQSUM avoids repetition by yielding dynamic
(latent) query representations for each document
in the a cluster. On TD-QFS, all comparison sys-
tems perform similarly, except LEXRANKQ which
is significantly worse in terms of relevance and
succinctness. As far as Relevance is concerned
we observe that LQSUM outperforms compari-
son systems on Debatepedia and TD-QFS, while
being very similar to MARGESUM on DUC. On
Wikiref, BERTEXT is slightly more relevant but
less coherent.

9 Conclusion

We propose a deep generative formulation for
document summarization that supports generic
and query-focused applications. We represent
queries as discrete latent variables, whose approx-
imated posterior distribution can be calibrated
with query observations at test time without fur-
ther adaptation. Our approach does not rely on
any query-related resource and can be applied
in zero-shot settings. Experimental results across
summarization datasets show that the proposed
model yields state-of-the-art QFS performance in
zero-shot settings.

Directions for future work are many and var-
ied. One research challenge is to push this
low-resource approach even further and generate
abstractive summaries without access to any sum-
maries or queries. We would also like to extend
the proposed framework to cross-lingual settings,
and satisfy the information needs of users with
different language backgrounds through effective
query understanding and summary generation.
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