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Abstract

Existing methods to measure sentence similar-
ity are faced with two challenges: (1) labeled
datasets are usually limited in size, making
them insufficient to train supervised neural
models; and (2) there is a training-test gap for
unsupervised language modeling (LM) based
models to compute semantic scores between
sentences, since sentence-level semantics are
not explicitly modeled at training. This re-
sults in inferior performances in this task.
In this work, we propose a new framework
to address these two issues. The proposed
framework is based on the core idea that the
meaning of a sentence should be defined by
its contexts, and that sentence similarity can
be measured by comparing the probabilities
of generating two sentences given the same
context. The proposed framework is able to
generate high-quality, large-scale dataset with
semantic similarity scores between two sen-
tences in an unsupervised manner, with which
the train-test gap can be largely bridged. Ex-
tensive experiments show that the proposed
framework achieves significant performance
boosts over existing baselines under both the
supervised and unsupervised settings across
different datasets.

1 Introduction

Measuring sentence similarity is a long-standing
task in NLP (Luhn, 1957; Robertson et al., 1995;
Blei et al., 2003; Peng et al., 2020). The task
aims at quantitatively measuring the semantic re-
latedness between two sentences, and has wide
applications in text search (Farouk et al., 2018),
natural language understanding (MacCartney and
Manning, 2009), and machine translation (Yang
et al., 2019a).

One of the greatest challenges that existing
methods face for sentence similarity is the lack
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of large-scale labeled datasets, which contain
sentence pairs with labeled semantic similar-
ity scores. The acquisition of such a dataset is
both labor-intensive and expensive. For exam-
ple, the STS benchmark (Cer et al., 2017) and
SICK-Relatedness dataset (Marelli et al., 2014)
respectively contain 8.6K and 9.8K labeled sen-
tence pairs, the sizes of which are usually insuf-
ficient for training deep neural networks.
Unsupervised learning methods are proposed to
address this issue, where word embeddings (Le
and Mikolov, 2014) or BERT embeddings (Devlin
et al.,, 2018) are used to to map sentences to
fix-length vectors in an unsupervised manner.
Then sentence similarity is computed based on the
cosine or dot product of these sentence representa-
tions. Our work follows this thread where sentence
similarity is computed based on fix-length sen-
tence representations, as opposed to comparing
sentences directly. The biggest issue with cur-
rent unsupervised approaches is that there exists
a big gap between model training and testing
(i.e., computing semantic similarity between two
sentences). For example, the BERT-style mod-
els are trained at the token level by predicting
words given contexts, and there is neither explicit
modeling sentence semantics nor producing sen-
tence embeddings at the training stage. But at
test time, sentence semantics needs to be explic-
itly modeled to obtain semantic similarity. The
inconsistency results in a distinct discrepancy be-
tween the objectives at the two stages and inferior
performance on textual semantic similarity tasks.
For example, BERT embeddings yield inferior
performance on semantic similarity benchmarks
(Reimers and Gurevych, 2019), and even un-
derperform the naive method such as averaging
GloVe (Pennington et al., 2014) embeddings.
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Li et al. (2020) investigated this problem and
found that BERT always induces a non-smooth
anisotropic semantic space of sentences, and this
property significantly harms the performance of
semantic similarity.

Just as word meanings are defined by neigh-
boring words (Harris, 1954), the meaning of a
sentence is determined by its contexts. Given the
same context, there is a high probability of gen-
erating two similar sentences. If there is a low
probability of generating two sentences given the
same context, there is a gap between these two sen-
tences in the semantic space. Based on this idea,
we propose a framework that measures seman-
tic similarity through the probability similarity of
generating two sentences given the same context
in a fully unsupervised manner. As for implemen-
tation, the framework consists of the following
steps: (1) we train a contextual model by predict-
ing the probability of a sentence fitting into the
left and right contexts; (2) we obtain sentence pair
similarity by comparing scores assigned by the
contextual model across a large number of con-
texts. To facilitate inference, we train a surrogate
model, to act as the role of step 2, based on the
outputs from step 1. The surrogate model can be
directly used for sentence similarity prediction in
an unsupervised setup, or used as initialization to
be further finetuned on downstream datasets in the
supervised setup. Note that the outcome from step
1 or the surrogate model is a fixed-length vector
regarding the input sentence. Each element in the
vector indicates how fit the input sentence is to
the context corresponding to that element, and the
vector itself can be viewed as the overall seman-
tics of the input sentence in the contextual space.
Then we use cosine distance between two sentence
vectors to compute the semantic similarity.

The proposed framework offers the potential to
fully address the two challenges above: (1) the
context regularization provides a reliable means
to generate a large-scale high-quality dataset with
semantic similarity scores based on unlabeled
corpus; and (2) the train-test gap can be natu-
rally bridged by training the model on the large-
scale similarity dataset, leading to significant
performance gains compared to utilize pretrained
models directly.

We conduct experiments on different datasets
under both supervised and unsupervised set-
ups, and experimental results show that the
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proposed framework significantly outperforms
existing sentence similarity models.

2 Related Work

Statistics-based methods for measuring sen-
tence similarity include bag-of-words (BoW) (Li
et al., 2006), term frequency inverse document
frequency (TF-IDF) (Luhn, 1957; Jones, 2004),
BM?25 (Robertson et al., 1995), latent semantic
indexing (LSI) (Deerwester et al., 1990), and
latent Dirichlet allocation (LDA) (Blei et al.,
2003). Deep learning based methods for sen-
tence similarity rely on distributed representa-
tions (Mikolov et al., 2013; Le and Mikolov, 2014)
and can be generally divided into the following
three categories.

Matrix Based Methods

The first line of work for measuring sentence sim-
ilarity is to construct a similarity matrix between
two sentences, each element of which represents
the similarity between the two corresponding units
in two sentences. Then the matrix is aggregated
in different ways to induce the final similarity
score. Pang et al. (2016) applied a two-layer con-
volutional neural network (CNN) followed by a
feed-forward layer to the similarity matrix to de-
rive the similarity score. He and Lin (2016) used a
deeper CNN to make the best use of the similarity
matrix. Yin and Schiitze (2015) built a hierarchical
architecture to model text compositions at differ-
ent granularities, so several similarity matrices
can be computed and combined for interactions.
Other works proposed using the attention mecha-
nism as a way of computing the similarity matrix
(Rocktischel et al., 2015; Wang et al., 2016;
Parikh et al., 2016; Seo et al., 2016; Shen et al.,
2017; Lin et al., 2017; Gong et al., 2017; Tan
etal., 2018; Kim et al., 2019; Yang et al., 2019b).

Word Distance Based Methods

The second line of work to measure sentence
similarity is to calculate the cost of transforming
from one sentence to another; the smaller the cost
is, the more similar two sentences are. This idea
is implemented by the Word Mover’s Distance
(WMD) (Kusner et al., 2015), which measures the
dissimilarity between two documents as the mini-
mum amount of distance that the embedded words
of one document need to transform to words of an-
other document. Following works improve WMD



by incorporating supervision from downstream
tasks (Huang et al., 2016), introducing hierar-
chical optimal transport over topics (Yurochkin
et al., 2019), addressing the complexity limitation
of requiring to consider each pair (Wu and Li,
2017; Wu et al., 2018; Backurs et al., 2020), and
combining graph structures with WMD to perform
cross-domain alignment (Chen et al., 2020). More
recently, Yokoi et al. (2020) proposed to disentan-
gle word vectors in WRD have shown significant
performance boosts over vanilla WMD.

Sentence Embedding Based Methods

Sentence embeddings are high-dimensional rep-
resentations for sentences. They are expected
to contain rich sentence semantics so that the
similarity between two sentences can be com-
puted by considering their sentence embeddings
via certain metrics such as cosine similarity.
Le and Mikolov (2014) introduced paragraph vec-
tor, which is learned in an unsupervised manner
by predicting the words within the paragraph us-
ing the paragraph vector. In a followup, a line of
sentence embedding methods such as FastText,
Skip-Thought vectors (Kiros et al., 2015), Smooth
Inverse Frequency (SIF) (Arora et al., 2017), Se-
quential Denoising Autoencoder (SDAEs) (Hill
et al., 2016), InferSent (Conneau et al., 2017),
Quick-Thought vectors (Logeswaran and Lee,
2018), and Universal Sentence Encoder (Cer
et al., 2018) have been proposed to improve the
sentence embedding quality with more efficiency.
The great success achieved by large-scale pre-
training models (Devlin et al., 2018; Liu et al.,
2019) has recently stimulated a strand of work
on producing sentence embeddings based on the
pretraining-finetuning paradigm using large-scale
unlabeled corpora. The cosine outcome between
the representations of two sentences produced
by large-scale pretrained models is treated as
the semantic similarity (Reimers and Gurevych,
2019; Wang and Kuo, 2020; Li et al., 2020).
Su et al. (2021) and Huang et al. (2021) pro-
posed regularizing the sentence representations by
whitening them, that is, enforcing the covariance
to be an identity matrix to address the non-smooth
anisotropic distribution issue (Li et al., 2020).
The BERT-based scores (Zhang et al., 2020;
Sellam et al., 2020), though serving as automatic
metrics, also capture rich semantic information
regarding the sentence and have the potentials
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for measuring semantic similarity. Cer et al.
(2018) proposed a method of encoding sentences
into their corresponding embeddings that specifi-
cally target transfer learning to other NLP tasks.
Karpukhin et al. (2020) adopted two unique BERT
encoder models and the model weights are opti-
mized to maximize the dot product. The most
recent line of work focuses on leveraging the
contrastive learning framework to tackle seman-
tic textual similarity (Wu et al., 2020; Carlsson
etal.,2021; Kimetal., 2021; Yanetal., 2021; Gao
et al., 2021), where two similar sentences are
pulled close and two random sentences are pulled
away in the sentence representation space. This
learning strategy helps better separate sentences
with different semantics.

This work is motivated by learning word repre-
sentations given its contexts (Mikolov et al., 2013;
Le and Mikolov, 2014) with the assumption that
the meaning of a word is determined by its con-
text. Our work is based on large-scale pretrained
model and aims at learning informative sentence
representations for measuring sentence similarity.

3 Model

3.1 Overview

The key point of the proposed paradigm is to com-
pute semantic similarity between two sentences by
measuring the probabilities of generating the two
sentences across a number of context.

We can achieve this goal based on the following
steps: (1) we first need to train a contextual model
to predict the probability of a sentence fitting
into the left and right contexts. This goal can be
achieved by either a discriminative model, namely,
predicting the probability that the concatenation of
a sentence with context forms a coherent text, or
a generative model, namely, predicting the proba-
bility of generating a sentence given contexts; (2)
next, given a pair of sentences, we can measure
their similarity by comparing their scores assigned
by contextual models given different contexts; (3)
for step 2, for any pair of sentences at test time,
we need to sample different contexts to compute
scores assigned by contextual models, which is
time-consuming. We thus propose to train a surro-
gate model that takes a pair of sentences as inputs
and predicts the similarity assigned by the contex-
tual model. This enables faster inference, though
at a small sacrifice of accuracy; (4) the surrogate



model can be directly used for obtaining sentence
similarity scores in a unsupervised manner, or
used as model initialization, which will be further
fine-tuned on downstream datasets in a supervised
setting. We will discuss the detail of each module
in order below.

3.2 Training Contextual Models

We need a contextual model to predict the prob-
ability of a sentence fitting into left and right
contexts. We combine a generative model and a
discriminative model to achieve this goal, allow-
ing us to take the advantage of both to model text
coherence (Li et al., 2017).

Notations Let ¢; denote the i-th sentence,
which consists of a sequence of words ¢; =
{¢i1,...,cin;}, where n; denotes the number
of words in ¢;. Let ¢;.; denote the i-th to j-th
sentences. c; and c-; respectively denote the
preceding and subsequent context of c;.

3.2.1 Discriminative Models

The discriminative model takes a sequence of con-
secutive sentences [c;, ¢;, C>;] as the input, and
maps the input to a probability indicating whether
the input is natural and coherent. We treat sentence
sequences taken from the original articles written
by humans as positive examples and sequences
with replacements of the center sentence c; as neg-
ative ones. Half of replacements of ¢; come from
the original document, and half of replacements
come from random sentences from the corpus.
The concatenation of LSTM representations at the
last step (right-to-left and left-to-right) is used to
represent the sentence. Sentence representations
for consecutive sentences are concatenated and
output to the sigmoid function to obtain the final
probability:

p(y=1l¢i, c<isesi) =sigmoid(h ' [h<i,hi, hsi))

)]
where h denotes learnable parameters. We de-
liberately make the discriminative model simple
for two reasons: The discriminative approach for
coherence prediction is a relatively easy task and
more importantly, it will be further used in the
next selection stage for screening, where faster
speed is preferred.

3.2.2 Generative Models

Given contexts c«; and ¢~ ;, the generative model
predicts the probability of generating each token in
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sentence c; sequentially using SEQ2SEQ structures
(Sutskever et al., 2014) as the backbone:

pleileci, esi) = [ [ pleijleci esiseics) ()
J

Semantic similarity between two sentences can
be measured by not only the forward probabil-
ity of generating the two sentences given the
same context p(c;|c<;, €;), butalso the backward
probability of generating contexts given sentences.
The context-given-sentence probability can be
modeled by predicting preceding contexts given
subsequent contexts p(c<;|c;, c>;) and to pre-
dict subsequent contexts given preceding contexts

plesile<i, ¢i).
3.3 Scoring Sentence Pairs

Given context [c<;, c>;], the score for s; fitting
into the context is the linear combination of scores
from discriminative and generative models:

S(si,ccisc>i) = A logp(y = 1]si, c<i, €54)

1
+ A
|84

1
— logp(c<ilsi, e54)
le<il

log p(silc<i, ei)

+ A ©)

1
+ M

logp(esile<, si)
lesil

where A1, Ao, A3, A4 control the tradeoff between
different modules. For simplification, we use c to
denote context c<;, ¢~;. S(s;, ¢) is thus equivalent
to S(Sz‘, C<j, C>i).

Let C denote a set of contexts, where N¢
is the size of C. For a sentence s, its semantic
representation v is an N¢ dimensional vector,
with each individual value being S(s,c) with
c € C. The semantic similarity between two
sentences s; and so can be computed based
on vs, and wvg, using different metrics such as
cosine similarity.

Constructing C  We need to pay special at-
tentions to the construction of C. The optimal
situation is to use all contexts, where C' is the en-
tire corpus. Unfortunately, this is computationally
prohibitive as we need to iterate over the entire
corpus for each sentence s.

We propose the following workaround for
tractable computation. For a sentence s, rather
than using the full corpus as C, we construct its
sentence specific context set Cg in a way that
s can fit into all constituent context in C'g. The



intuition is as follows. With respect to sentence
s1, contexts can be divided into two categories:
contexts that s; fits into, based on which we will
measure whether or not ss also fits in, and con-
texts that s; does not fit into, and we will measure
whether or not sy also does not fit in. We are
mostly concerned about the former, and can ne-
glect the latter. The reason is as follows: The latter
can also further be divided into two categories:
contexts that fit neither s; or sy, and contexts
that do not fit s; but fit s5. For contexts that fit
neither s; and s», we can neglect them since two
sentences not fitting into the same context does
not signify their semantic relatedness; for contexts
that does not fit s; but fit s5, we can leave them
to when we compute Cs,.

Practically, for a given sentence s, we first use
TF-IDF weighted BoW bi-gram vectors to perform
primary screening on the whole corpus to re-
trieve related text chunks (20K for each sentence).
Next, we rank all contexts using the discriminative
model based on Eq. (1). For discriminative mod-
els, we cache sentence representations in advance,
and compute model scores in the last neural layer,
which is significantly faster than the generative
model. This two-step selection strategy is akin to
the pipelined selection system (Chen et al., 2017;
Karpukhin et al., 2020) in open-domain QA that
contains document retrieval using IR systems and
fine-grained question answering using neural QA
models.

C is built by selecting top ranked contexts
by Eq. (3). We use the incremental construction
strategy, adding one context at a time. To promote
diversity of Cg, each text chunk is allowed to
contribute at most one context, and the Jaccard
similarity between the ¢ — 1-th sentence in the
context to select and those already selected should
be lower than 0.5.!

To compute semantic similarity between s; and
82, we concatenate Cg, and C, and use the
concatenation as the context set C. The semantic
similarity score between s; and so is given as
follows:

=1[S(s1,¢) forc e Cg, + Cyg,)]
=[S(sy,¢) forc e Cg4, + Cyg,]

cosine(vg,, Vs,)

S2

sim(sy, 82)

“)

I'This strategy can also remove text duplicates.
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3.4 Training Surrogate Models

The method described in Section 3.3 provides a
direct way to compute scores for semantic relat-
edness. But it comes with a severe shortcoming
of slow speed at inference time: Given an arbi-
trary pair of sentences, the model still needs to
go through the entire corpus, harvest the context
set C'g, and iterate all instances in C g for context
score calculation based on Eq. (3), each of which is
time consuming. To address this issue, we propose
training a surrogate model to accelerate inference.

Specifically, we first harvest similarity scores
for sentence pairs using methods in Section 3.3.
We collect scores for 100M pairs in total, which
are further split into train/dev/test by 98/1/1.
Next, by treating harvested similarity scores as
gold labels, we train a neural model that takes
a pair of sentence as an input, and predicts its
similarity score. The cosine similarity between
the two sentence representations is the predicted
semantic similarity, and we minimize the Lo
distance between predicted and golden similar-
ities. The Siamese structure makes it possible
for fixed-sized vectors for input sentences to be
derived and stored, allowing for fast semantic sim-
ilarity search, which we will discuss in detail in
the ablation study section.

It is worth noting both the advantages and
disadvantages of the surrogate model. For ad-
vantages, firstly, it can significantly speed up
inference as it avoids the time-consuming process
of iterating over the entire corpus to construct C.
Secondly, the surrogate shares the same structure
with existing widely-used models such as BERT
and RoBERTa, and can thus later be easily fine-
tuned on the human-labeled datasets in supervised
learning; on the other hand, the origin model in
Section 3.3 cannot be readily combined with other
human-labeled datasets. For disadvantages, the
surrogate model inevitably comes with a cost of
accuracy, as its upper bound is the origin model
in Section 3.3.

4 Experiments

4.1 Experiment Settings

We evaluate the Surrogate model on Semantic
Textual Similarity (STS), Argument Facet Sim-
ilarity (AFS) corpus (Misra et al., 2016), and
Wikipedia Sections Distinction (Ein Dor et al.,
2018) tasks. We perform both unsupervised and



supervised evaluations on these tasks. For unsu-
pervised evaluations, models are directly used for
obtaining sentence representations. For supervised
evaluations, we use the training set to fine-tune all
models and use the L, regression as the objective
function. Additionally, we also conduct partially
supervised evaluation on STS benchmarks.

Implementation Details For discriminative
modelin 3.2.1, we use a single-layer bi-directional
LSTM as the backbone with the size of hidden
states set to 300.

For the generative model in 3.2.2, we implement
the above three models, namely, p(c¢;|c<i, c>;),
p(e<ilei, esq), and p(esile<;, ¢;) based on the
SEQ2SEQ structure, and use Transformer-large as
the backbone (Vaswani et al., 2017). Sentence
position embeddings and token position embed-
dings are added to word embeddings. The model is
trained on a corpus extracted from CommonCrawl
that contains 100B tokens.

For the surrogate model in 3.4, we use
RoBERTa (Liu et al.,, 2019) as the backbone,
and adopt the Siamese structure (Reimers and
Gurevych, 2019), where two sentences are first
mapped to vector representations using RoOBERTa.
We use the average pooling on the last RoOBERTa
layer to obtain the sentence representation. Dur-
ing training, we use Adam (Kingma and Ba, 2014)
with learning rate of le-4, 81 = 0.9, 55 = 0.999.
The trained surrogate model obtains an average
L, distance of 7.4 x 10~ on dev set when trained
from scratch, and 6.1 x 10~* when initialized us-
ing the RoBERTa-large model (Liu et al., 2019).
We set C'5 to 500.

Baselines We use the following models as
baselines:

e Avg. Glove embeddings is the aver-
age of word embeddings produced via
the co-occurrence statistics in the corpus
(Pennington et al., 2014).

e Avg. Skip-Thought embeddings is the av-
erage of word embeddings produced by
Skip-Thought vectors (Kiros et al., 2015).

InferSent uses a Siamese BiLSTM network
with max-pooling over the output on NLI
datasets (Conneau et al., 2017).

e Avg. BERT embeddings is the average
of word embeddings produced by BERT
(Devlin et al., 2018).
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BERT [CLS] computes scores based on the
vector representation of the special token
[CLS] in BERT.

BERTScore computes the similarity of two
sentences as a sum of cosine similarities
between their tokens’ embeddings (Zhang
et al., 2020).

BLEURT is baseed on BERT and cap-
tures non-trivial semantic similarities by
fine-tuning the model on the WMT Met-
rics dataset, on a set of ratings provided by
the user, or a combination of both (Sellam
et al., 2020).

DPR works by using two unique BERT
encoder models and the model weights
are optimized to maximize the dot product
(Karpukhin et al., 2020).

Universal Sent Encoder is a method of
encoding sentences into their corresponding
embeddings that specifically target transfer
learning to other NLP tasks (Cer et al., 2018).

SBERT is a BERT-based method of using the
Siamese structure to derive sentence embed-
dings that can be compared through cosine
similarity (Reimers and Gurevych, 2019).

4.2 Run-time Efficiency

The run-time efficiency is important for sentence
representation models because similarity func-
tions are potentially applied to large corpora.
In this subsection, we compare Surrogatep,se
to InferSent (Conneau et al., 2017), Universal
Sent Encoder (Cer et al., 2018), and SBERT ;e
(Reimers and Gurevych, 2019). We adopt a length
batching strategy in which sentences are grouped
together by length.

The proposed Surrogate model is based on
PyTorch. InferSent (Conneau et al., 2017) and
SBERT (Reimers and Gurevych, 2019) are based
on PyTorch. Universal Sent Encoder (Cer et al.,
2018) is based on Tensorflow and the model is
from the Tensorflow Hub. Model efficiency is
measured on a server with Intel i7-5820K CPU
@ 3.30GHz, Nvidia Tesla V100 GPU, CUDA
10.2, and cuDNN. We report both CPU and GPU
speed and the results can be found in Table 1.
As can be seen, InferSent is around 69% faster
than Surrogate model on CPU since its simpler
model architecture. The speed of the proposed
Surrogate model is comparable to SBERT for



Model CPU GPU
InferSent 125 1527
Universal Sent Encoder 72 1330
SBERT ¢ 41 1315
SBERT}s. length batching 88 2112
Surrogatep,se 48 1514
Surrogatey, s length batching 91 2175

Table 1: Computation speed of sentence embed-
ding methods(sentences per second).

both non-batching and batching setups, which is
in accord with our expectations due the same
transformer structure adopted by the Surrogate
model.

4.3 Experiment: Semantic Textual Similarity

We evaluate the proposed method on the Semantic
Textual Similarity (STS) tasks. We compute the
Spearman’s rank correlation p between the cosine
similarity of the sentence pairs and the gold labels
for comparison.

Unsupervised Evaluation We evaluate the pro-
posed method on the Semantic Textual Similarity
(STS) tasks 2012-2016 (Agirre et al., 2012, 2013,
2014,2015,2016), the STS benchmark (Cer et al.,
2017), and the SICK-Relatedness dataset (Marelli
et al., 2014) for evaluation. All datasets contain
sentence pairs labeled between 0 and 5 as the
semantic relatedness. The proposed models are
directly used for inference under the unsuper-
vised setup.

The results are shown in Table 2 and we observe
significant performance boosts of the proposed
models over baselines. Notably, the proposed
models trained in the unsupervised setting (both
Origin and Surrogate) are able to achieve com-
petitive results to models trained on additional
annotated NLI datasets. Another observation is,
as expected, the Surrogate models underperform
the Origin model as Origin serves as an upper
bound for Surrogate but with a cost of inference
speed.

Partially Supervised Evaluation We finetune
the model on the combination of the SNLI
(Bowman et al., 2015) and the Multi-Genre NLI
(Williams et al., 2018) datasets, with the for-
mer containing 570K sentence pairs and the latter
containing 433K pairs across various genres of
sources. Sentence pairs from both datasets are
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annotated with one of the labels contradiction,
entailment, and neutral. The proposed models are
trained on the natural language inference task then
used for computing sentence representations in an
unsupervised manner.

The partially supervised results are shown in
Table 2. As can be seen, results from the proposed
model finetuned on NLI datasets are comparable
to results from unsupervised models since no la-
beled similarity dataset is used, and comparable to
results from supervised models if further finetuned
on similarity datasets such as STS.

Supervised Evaluation For the supervised set-
ting, we use the STS benchmark (STSb) to
evaluate supervised STS systems. This dataset
contains 8,628 sentence pairs from three cat-
egories: captions, news, and forums, and is
split into 5,749/1,500/1,379 sentence pairs, re-
spectively, for training/dev/test. The proposed
models are finetuned on the labeled datasets under
the setup.

For our proposed framework, we use Origin
to represent the original model, where C' for
each sentence is constructed by searching the
entire corpus as in Section 3.3 and we compute
similarity scores based on Eq. (4). We also report
performances for Surrogate models with base and
large sizes.

The results are shown in Table 3. We can see
that for both model sizes (base and large) and both
setups (with and without NLI training), the pro-
posed Surrogate model significantly outperforms
baseline models, leading to an average of over
2-point performance gains on the STSb dataset.

Note that the Origin model cannot be readily
adapted to the partially supervised or supervised
setting because it is hard to finetune the Origin
model where the context set C' needs to be con-
structed first. Hence, we finetune the Surrogate
model as a compensation for the accuracy loss
brought by the replacement of Origin with Surro-
gate. As we can see from Table 2 and Table 3,
finetuning Surrogate on NLI datasets and STSb is
an effective remedy for the performance loss.

4.4 Experiment: Argument Facet Similarity

We evaluate the proposed model on the Ar-
gument Facet Similarity (AFS) dataset (Misra
et al., 2016). This dataset contains 6,000 manually
annotated argument pairs collected from human
conversations on three topics: gun control, gay



Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg
Sfully unsupervised without human labels
Avg. Glove embeddings® 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
Avg. Skip-Thought embeddings’ 57.11 71.98 61.30 70.13 65.21 59.42 55.50 62.95
InferSent-Glove! 52.86 66.75 62.15 72.77 66.87 68.03 65.65 65.01
Avg. BERT embeddings® 38.78 57.98 57.98 63.15 61.06 46.35 58.40 54.81
BERT [CLS]! 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19
BERTScoret 54.60 50.11 57.74 70.79 64.58 57.58 51.37 58.11
DPR! 53.98 56.00 57.83 66.68 67.43 58.53 61.85 60.33
BLEURT* 70.16 64.97 57.41 7291 70.01 69.81 58.46 66.25
Universal Sent Encoder* 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22
origin 7 7241 7430 7545 7845 7993 7847 7949 7693
Surrogatepase 70.62 72.14 72.72 76.34 75.24 74.19 77.20 74.06
Surrogatearge 71.93 73.74 73.95 77.01 76.64 75.32 77.84 75.20
partially supervised without human labels but not the same domain
InferSent-NLI* 50.48 67.75 62.15 72.77 66.87 68.03 65.65 64.81
BERT [CLS]-NLI* 60.35 54.97 64.92 71.49 70.49 73.25 70.79 66.61
BERTScore-NLI* 60.89 54.64 63.96 74.35 66.67 65.65 66.01 64.60
DPR-NLI* 61.36 56.71 65.49 71.80 71.03 74.08 70.86 67.33
BLEURT-NLI* 66.40 68.15 71.98 79.69 77.86 77.98 70.92 73.28
Universal Sent Ecoder-NLI* 65.55 67.95 71.47 80.81 78.70 78.41 69.31 73.17
BERT-NL[& - 71.07 76.81 73.29 79.56 74.58 77.10 72.65 75.01
SBERT-NLI}, . 70.97 76.53 73.19 79.09 74.30 77.03 7291 74.86
SR()BERTa-NLIEase 71.54 72.49 70.80 78.74 73.69 71.77 74.46 74.21
Surrogate-NLI e 74.15 76.50 72.23 81.24 78.75 79.32 78.56 77.25
BERT-NLIP,drge 71.62 77.40 72.69 78.61 75.28 77.83 72.64 75.15
SBERT—NLIElrge 72.27 78.46 74.90 80.99 76.25 79.23 73.75 76.55
SRoBERTa—NLI?,drge 74.53 77.00 73.18 81.85 76.82 79.10 74.29 76.68
Surrogate-NLI1yrge 76.98 79.83 75.15 83.54 79.32 80.82 79.64 79.33

Table 2: Spearman rank correlation p between the cosine similarity of sentence representations and the
gold labels for various Textual Similarity (STS) tasks under the unsupervised setting. We use *-NLI
to denote the model additionally trained on NLI datasets. f indicates that results are reproduced by
ourselves; § indicates results are taken from Reimers and Gurevych (2019); Surrogate are results for

our proposed method.

marriage, and death penalty. Each argument pair
is labeled on a scale between 0 and 5 with a step
of 1. Different from the sentence pairs in STS
datasets, the similarity of an argument pair in AFS
is measured not only in the claim, but also in
the way of reasoning, which makes AFS a more
difficult dataset compared to STS datasets. We
report the Pearson correlation r and Spearman’s
rank correlation p to compare all models.

Unsupervised Evaluation The results are
shown in Table 4, from which we can see that
for both the unsupervised settings, the proposed
models Origin and Surrogate outperform baseline
models by a large margin, with over 10 points for
the unsupervised setting and over 4 points for the
supervised setting.

Supervised Evaluation We follow Reimers and
Gurevych (2019) to use 10-fold cross-validation
for supervised learning. Results are shown in
Table 4, from which we can see for both the
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supervised settings, the proposed models Origin
and Surrogate outperform baseline models by a
large margin, with over 10 points for the unsu-
pervised setting and over 4 points for the super-
vised setting.

4.5 Experiment: Wikipedia Sections
Distinction

Ein Dor et al. (2018) constructed a large set of
weakly labeled sentence triplets from Wikipedia
for evaluating sentence embedding methods, each
of which is composed of a pivot sentence, one
sentence from the same section, and one from an-
other section. The test set contains 222K triplets.
The construction of this dataset is based on the
idea that a sentence is thematically closer to sen-
tences within its section than to sentences from
other sections.

We use accuracy as the evaluation metric for
both unsupervised and supervised experiments:
An example is treated as correctly classified if the



Model Spearman p
BERT [CLS]sherp 73.01
BERT} . 84.30
SBERT; . 84.67
SRoBERTa . 84.92
Surrogatepqse 87.91
BERT-NLL,,, 8833
SBERT-NLI}, 85.35
SRoBERTa-NLI} ., 84.79
Surrogate-NLIyyse 89.95
BERT},,. 85.64
SBERTY,,,. 84.45
SRoBERTaj,,,, 85.02
Surrogateiyrge 88.52
BERT-NLI,,,,, 88.77
SBERT-NLI}, 86.10
SRoBERTa-NLI},,,. 86.15
Surrogate-NLI g 90.69

Table 3: Spearman correlation p for the STSb
dataset under the supervised setting. We use
*-NLI to denote the model additionally trained
on NLI datasets. f indicates that results are repro-
duced by ourselves; § indicates results are taken
from Reimers and Gurevych (2019); Surrogate
are results for our proposed method.

positive example is closer to the anchor than the
negative example.

Unsupervised Evaluation We directly evaluate
the trained model on the test set without finetuning.
Results are shown in Table 5. For the unsupervised
setting, the large model Surrogate;, g, outperforms
the base model Surrogatep,s by 2.1 points.

Supervised Evaluation During training, we use
the triple objective to train the proposed model
on 1.8M training triplets and evaluate it on the
test set.

Results are shown in Table 5. For the super-
vised setting, the proposed model significantly
outperforms SBERT, with a nearly 3-point gain in
accuracy for both base and large models.

5 Ablation Studies

We perform comprehensive ablation studies on
the STSb dataset with no additional training on
NLI datasets to better understand the behavior of
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Model Pearson r  Spearman p
Unsupervised Setting
Avg. Glove embeddings® 32.40 34.00
Avg. Skip-Thought embeddings® 22.34 23.24
InferSent-Glove! 24.83 25.83
Avg. BERT embeddings® 29.15 31.45
BERT [CLS]* 12.00 9.06
BERTScore 45.32 33.56
DPR? 41.89 32.16
BLEURT? 45.98 44.12
Universal Sent Encoder! 44.28 43.47
origin 5620 5440
Surrogatep,se 53.00 52.50
Surrogateyarge 54.50 54.70

Supervised Setting

BERT [CLS]* 35.28 36.24
BERT} 77.20 74.84
SBERT!. _ 76.57 74.13
SRoBERTa,, 77.26 74.89
Surrogatehese 7980 7820
BERT} .. 78.68 76.38
SBERT! . 77.85 75.93
SROBERTaf,,,, 79.03 76.92
Surrogateyarge 81.00 80.50

Table 4: Results of Pearson correlation r and
Spearman’s rank correlation p on the Argument
Facet Similarity (AFS) dataset. f indicates that
results are reproduced by ourselves; § indicates
results are taken from Reimers and Gurevych
(2019); Surrogate are results for our proposed
method.

the proposed framework. Studies are performed
on both the original model setup (denoted by
Origin) and the surrogate model setup (denoted
by Surrogate). We adopt the unsupervised setting
for comparison.

5.1 Size of Training Data for Origin

We would like to understand how the size of data
for training Origin affects downstream perfor-
mances. We vary the training size between [10M,
100M, 1B, 10B, 100B] and present the results
in Table 6. The model performance drastically
improves as we increase the size of training data
when its size is below 1B. With more training
data, for example, 1B and 10B, the performance
approaches the best result achieved with the largest
training data.

5.2 Size of C,

Changing the size of Cs will have an influence
on downstream performance. Table 7 shows the
results. The overall trend is clear: A larger C' leads



Model Accuracy Model Spearman p
Unsupervised Setting Full 78.47
Avg. Glove embeddings® 60.94 w/o discriminative 77.97 (—0.50)
Avg. Skip-Thought embeddings® 61.54 w/o left-context 77.36 (—1.11)
InferSent-Glove® 63.39 w/o right-context 77.01 (—1.46)
Avg. BERT embeddings* 66.40 w/o both contexts 76.50 (—1.97)
BERT [CLS]* 32.30
BERTScoret 67.29 Table 9: The effect of each term in the scor-
DPR! 66.71 ing function Eq. (3). discriminative stands for
BLEURT! 67.39 logp(y = 1|si,c<i,c>i), left-context stands
Universal Sent Encoder* 65.18 for @ log p(c<ilsi, ¢>i) and right-context stands
Surrogatey,se 71.40 for ﬁ log p(esi|c<i, 8i). both contexts means we
Surrogateyyge 73.50 remove both left context and right context.
Supervised Setting
BERT [CLS] 78.13 gains. We thus use 500 for a trade-off between
BERTﬁase 79.30 performance and speed.
SBERT‘%ase § 80.42 5.3 Number of Pairs to Train Surrogate
SRoBERTua;, 79.45 )
SUITOgateysm. 83.10 Next, we would like tc? explorej the effect of the
BERT: T T oo 8015 number of sentence pairs to train Surrogate. The
l‘l‘ége ' results are shown in Table 8. As expected, more
SBERT ;4 ‘ 80.78 training data leads to better performances. With
SRoBERT . 79.73 only 100K training pairs, the Surrogate model
Surrogateiarge 83.50 still achieves an acceptable result of 74.02, which

Table 5: Accuracy results for the Wikipedia sec-
tions distinction task. # indicates that results
are reproduced by ourselves; § indicates results
are taken from Reimers and Gurevych (2019);
Surrogate are results for our proposed method.

Size 10M 100B 1B 10B 100B
Spearman p 49.41 66.92 76.17 77.81 78.47

Table 6: The effect of size of training data for
Origin.

Size 20 100 500 1000
Spearman p  66.25 7393 7847 78.56
Table 7: The effect of size of C.

Size 100K M 10M 100M
Spearman p  74.02  76.11 7692  77.32

Table 8: The effect of training data size for
Surrogate.

to better performance. When the size is 20 or 100,
the results are substantially worse than the result
when the size is 500. Increasing the size from
500 to 1000 only brings marginal performance

indicates that the collected automatically labeled
sentence pairs are of high quality.

5.4 How to Construct C

We explore the effect of the way we construct
C. We compare three different strategies: (1)
the proposed two-step strategy as detailed in Sec-
tion 3.3; (2) random selection; and (3) the proposed
two-step strategy but without the diversity promo-
tion constraint that allows each text chunk to
contribute at most one context. For all strategies,
we fix the size of C to 500.

The results for these strategies are, respectively,
78.47, 34.45, and 76.32. The random selection
strategy significantly underperforms the other two.
The explanation is as follows: Given the huge se-
mantic space for sentences, randomly selected
contexts are very likely to be semantic irrelevant
to both s; and s, and can hardly reflect the contex-
tual semantics in which the sentence resides. The
similarity computed using context scores based on
completely irrelevant contexts is thus extremely
noisy, leading to inferior performance. Removing
the diversity promotion constraint (the third strat-
egy), the Spearman correlation reduces by over 2
points. The explanation is straightforward: With-
out the diversity constraint, very similar contexts
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Example 1 Score
Sent 1: the problem likely will mean corrective changes 4.4
before the shuttle fleet starts flying again . 0.74
Sent 2: he said the problem needs to be corrected
before the space shuttle fleet is cleared to fly again . 0.43
Example 2 Score
Sent 1: every morning, they fly 240 miles to the farm . 0.8

—0.74

Sent 2: every morning, you fly 240 miles to every morning .

Example 3 Score
Sent 1: rt jones analyst juli niemann said grant was ‘‘the one 1.4
we were all pulling for he has a very good reputation,” —0.71

Sent 2: rt jones analyst juli niemann said of grant .

0.19

Table 10: We use gold, surrogate, , and uni-
versal to denote scores obtained from the gold
label, the proposed Surrogate model, the SBERT
model (Reimers and Gurevych, 2019) and the Uni-
versal Sentence Encoder model (Cer et al., 2018),
respectively. Scores from the proposed surrogate
model are more correlated with the gold compared
to the universal sentence encoder and the SBERT
model.

will be included in C, making the dimensions in
the semantic vector redundant; with more diverse
contexts, the sentence similarity can be mea-
sured more comprehensively and the result can be
more accurate.

5.5 Modules in the Scoring Function

We next turn to explore the effect of each term
in the scoring function of Eq. (3). Table 9 shows
the results. We can observe that removing each of
these terms leads to performance drops to different
degrees. Removing discriminative results in the
least performance loss, with a reduction of 0.5; re-
moving left-context and right-context respectively
results in a performance loss of 1.11 and 1.46; and
removing both left-context and right-context has
the largest negative impact on the final results,
with a performance loss of 1.97. These observa-
tions verify the importance of different terms in
the scoring function, especially the context predic-
tion terms.

5.6 Model Structures

To train the surrogate model, we originally use
the Siamese network structure where two sen-
tences are separately feed into the same model. It
would be interesting to see the effect of feeding
two sentences together into the model, that is,
{[CLS], s1, [SEP], s5} and then using the special
token [CLS] for computing the similarity, which
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is the strategy that BERT uses for sentence-pair
classification. Here, we call it the BERT-style
model for comparison with the Siamese model.

By training the BERT-style model using the
same harvested sentence pairs as the Siamese
model with the Lo regression loss, we obtain
a Spearman’s rank correlation of 77.43, slightly
better than the result of 77.32 for the Siamese
model. This is because interactions between
words/phrases in two sentences are modeled more
sufficiently in the BERT structure as interactions
start at the input layer through self-attentions. For
the Siamese structure, the two sentences do not
interact until the output cosine layer.

The merit of sufficient interactions from the
BERT structure also comes at a cost: We need to
rerun the full model for any new sentence pair.
This is not the case with the Siamese structure,
which allows for fast semantic similarity search
by caching sentence representations in advance.
In practice, we prefer the Siamese structure be-
cause the speedup in semantic similarity search
overweighs the slight performance boost brought
by the BERT structure.

5.7 Case Analysis

We conduct a case analysis on STS benchmark
(Cer et al., 2017) test set. Examples can be seen
in Table 10. Given two sentences of text s; and
59, the models need to compute how similar s;
and so are, returning a similarity score between 0
and 5. As can be seen, scores from the proposed
Surrogate model are more correlated with the gold
compared to the universal sentence encoder and
the SBERT model.

6 Conclusion

In this work, we propose a new framework for
measuring sentence similarity based on the fact
that the probabilities of generating two similar sen-
tences based on the same context should be similar.
We propose a pipelined system by first harvesting
massive amounts of sentence pairs along with their
similarity scores, and then training a surrogate
model using the automatically labeled sentence
pairs for the purpose of faster inference. Exten-
sive experiments demonstrate the effectiveness of
the proposed framework against existing sentence
embedding based methods.
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