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Abstract

One of the biggest challenges hindering pro-
gress in low-resource and multilingual ma-
chine translation is the lack of good evaluation
benchmarks. Current evaluation benchmarks
either lack good coverage of low-resource lan-
guages, consider only restricted domains, or
are low quality because they are constructed
using semi-automatic procedures. In this work,
we introduce the FLorEs-101 evaluation bench-
mark, consisting of 3001 sentences extracted
from English Wikipedia and covering a variety
of different topics and domains. These sen-
tences have been translated in 101 languages
by professional translators through a carefully
controlled process. The resulting dataset en-
ables better assessment of model quality on
the long tail of low-resource languages, in-
cluding the evaluation of many-to-many multi-
lingual translation systems, as all translations
are fully aligned. By publicly releasing such
a high-quality and high-coverage dataset, we
hope to foster progress in the machine trans-
lation community and beyond.

1 Introduction

Machine translation (MT) is one of the most
successful applications in natural language pro-
cessing, as exemplified by its numerous practical
applications and the number of contributions on
this topic at major machine learning and nat-
ural language processing venues. Despite recent
advances in translation quality for a handful of lan-
guage pairs and domains, MT systems still perform
poorly on low-resource languages, that is, lan-
guages without a lot of training data. In fact, many
low-resource languages are not even supported
by most popular translation engines. Yet, much
of the world’s population speak low-resource lan-
guages and would benefit from improvements in
translation quality on their native languages. As a
result, the field has been increasing focus towards
low-resource languages.
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At present, there are very few benchmarks on
low-resource languages. These often have very
low coverage of low-resource languages (Riza
et al.,, 2016; Thu et al., 2016; Guzman et al.,
2019; Barrault et al., 2020a; Nekoto et al., 2020;
Ebrahimi et al., 2021; Kuwanto et al., 2021), lim-
iting our understanding of how well methods gen-
eralize and scale to a larger number of languages
with a diversity of linguistic features. There are
some benchmarks that have high coverage, but
these are often in specific domains, like COVID-
19 (Anastasopoulos et al., 2020) or religious
texts (Christodouloupoulos and Steedman, 2015;
Malaviya et al., 2017; Tiedemann, 2018; Agi¢ and
Vulié, 2019); or have low quality because they are
built using automatic approaches (Zhang et al.,
2020; Schwenk et al., 2019, 2021). As a result, it
is difficult to draw firm conclusions about research
efforts on low-resource MT. In particular, there
are even fewer benchmarks that are suitable for
evaluation of many-to-many multilingual transla-
tion, as these require multi-lingual alignment (i.e.,
having the translation of the same sentence in
multiple languages), which hampers the progress
of the field despite all the recent excitement on
this research direction.

We present the FLores-101 benchmark, con-
sisting of 3001 sentences sampled from various
topics in English Wikipedia and professionally
translated in 101 languages. With this dataset, we
make several contributions. First, we provide the
community with a high-quality benchmark that
has much larger breadth of topics and coverage
of low resource languages than any other existing
dataset (§4). Second, FLores-101 is suitable for
many-to-many evaluation, meaning that it enables
seamless evaluation of 10,100 language pairs. This
enables the evaluation of popular multilingual MT
systems as well as the evaluation of regionally-
relevant language pairs like Spanish-Aymara
and Vietnamese-Thai, for example. Third, we
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thoroughly document the annotation process we
followed (§3), helping the community build in-
stitutional knowledge about how to construct MT
datasets. Fourth, we release not only sentences
with their translation but also rich meta-data that
enables other kinds of evaluations and tasks, such
as document level translation, multimodal trans-
lation, and text classification. Fifth, we propose
to use the BLEU metric based on sentence piece
tokenization (Kudo and Richardson, 2018) (§5) to
enable evaluation of all languages in the set in a
unified and extensible framework, while preserv-
ing the familiarity of BLEU. Finally, we publicly
release both data and baselines used in our ex-
periments (§6), to foster research in low-resource
machine translation and related areas.

2 Related Work

A major challenge in machine translation, partic-
ularly as the field shifts its focus to low-resource
languages, is the lack of availability of evalua-
tion benchmarks. Much recent work has focused
on the creation of training corpora (Auguste Tapo
et al., 2021; Ali et al., 2021; Adelani et al., 2021;
Gezmu et al., 2021; Nyoni and Bassett, 2021;
Chauhan et al., 2021) and development of models
(Koneru et al., 2021; Nagoudi et al., 2021; Aulamo
etal., 2021), but evaluation is critical to being able

to assess and improve translation quality.
Traditionally, the yearly Workshop on Machine

Translation (WMT) and its associated shared tasks
have provided standardized benchmarks and met-
rics to the community, fostering progress by pro-
viding means of fair comparison among various
approaches. Over recent years, the main trans-
lation task at WMT has challenged participants
with low-resource languages, but the evaluation
has been limited to a handful of languages—for
example, Latvian in 2017 (Bojar et al., 2017),
Kazakh in 2018 (Bojar et al., 2018), Gujarati
and Lithuanian in 2019 (Barrault et al., 2019),
and Inuktitut, Khmer, Pashto, and Tamil in 2020
(Barrault et al., 2020b). Moreover, these tasks
have considered translation to and from English
only, while the field has been recently focusing on
large-scale multilingual models (Johnson et al.,
2016; Aharoni et al., 2019; Freitag and Firat,
2020; Fan et al., 2020).

There are other datasets for evaluation pur-
poses, such as Flores v1.0 (Guzmén et al., 2019),
LORELEI (Strassel and Tracey, 2016), ALT
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(Thu et al., 2016; Riza et al., 2016; Ding et al.,
2016), and TICO-19 (Anastasopoulos et al., 2020),
as well as datasets for specific languages such as
Igbo (Ezeani et al., 2020) and Fon (Dossou and
Emezue, 2020). These are similar to FLores-101
because they focus on low-resource languages.
However, the language coverage of these datasets
is much smaller. Among these, only TICO-19 is
suitable for multilingual machine translation, but
its content is centered around COVID-19, un-
like the much broader coverage of topics offered
by FLores-101. The Tatoeba corpus (Tiedemann,
2020) covers a large number of languages and
translation directions, but the low volume of sen-
tences for many directions makes the evaluation
less reliable. Further, many of the Tatoeba cor-
pus sentences are very short and straightforward,
making the dataset not as generalizable to a more
diverse set of content.

3 Dataset Construction

We describe how FLores-101 was constructed,
first noting where the sentences originated from
and subsequently describing the carefully de-
signed translation process.

3.1 Sourcing Sentences

Original Source. All source sentences were ex-
tracted from multiple Wikimedia sources, as this is
a repository of text that is public and freely avail-
able under permissive licensing, and covers a broad
range of topics. Although Wikipedia currently
supports more than 260 languages,' several low-
resource languages have relatively few articles
containing well structured sentences. Moreover,
translating a few hundred sentences for several
thousand different language pairs would be in-
feasible, at the very least because of the lack of
qualified translators that can read both the source
and target.

Instead, we opted to source all sentences from
three locations in English Wikimedia, while con-
sidering a broad set of topics that could be of
general interest regardless of the native language
of the reader. In particular, we collected a third
of the sentences from Wikinews,> which is a
collection of international news articles, a third

"https://en.wikipedia.org/wiki/Wikipedia
:Multilingual_statistics.
’https://en.wikinews.org/wiki/Main_Page.
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from Wikijunior,> which is a collection of age-
appropriate nonfiction books for children from
birth to age 12, and a third from WikiVoyage,*
which is a travel guide with a collection of articles
about travel tips, food, and destinations around
the globe. By translating the same set of English
sentences in more than hundred languages, we
enable evaluation of multilingual MT with the
caveat that source sentences not in English are
produced by human translators. While translation-
ese (or overly literal or awkward translations) has
known idiosyncrasies (Zhang and Toral, 2019),
we conjecture that these effects are rather mar-
ginal when evaluating models in low-resource
languages, where current MT systems produce
many severe mistakes. Another downside to this
English-centric translation approach is a possi-
ble artificial increase of the differences between
two dialects of the same language. For example,
Catalan translations of Spanish sentences are very
close to the original source sentences. However,
translating from English to Spanish and English
to Catalan can produce Spanish and Catalan sen-
tences that are no longer so similar. We believe the
benefits of many-to-many evaluation, which sup-
ports the measurement of traditionally neglected
regionally relevant pairs such as Xhosa-Zulu,
Vietnamese-Thai, and Spanish-Aymara, largely
outsize the risk of evaluating translationese.

Sentence Selection. The sentence process con-
sisted of selecting an article at random from each
domain, and then selecting between 3 and 5 con-
tiguous sentences, avoiding segments with very
short or malformed sentences. We selected one
paragraph per document, from either the begin-
ning, middle, or end of the article. For each sen-
tence, we extracted the URL, topic, and noted
Boolean flags to indicate whether the sentence
contained entities linked to other Wikipedia pages
and images.

Several contiguous sentences are extracted from
the same article and we also provide the corre-
sponding URL. Additional document-level context
can be accessed through this provided metadata
when translating each sentence. On average, we
select 3.5 contiguous sentences per article, pro-
viding assessment possibilities beyond single sen-
tences. However, we note that compared to the
document-level evaluation datasets in WMT 2018

3https://en.wikibooks.org/wiki/Wikijunior.
“https://en.wikivoyage.org/wiki/Main Page.
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to 2020 for Russian and German, FLores-101
does not contain translations of full documents.
On the other hand, FLores-101 covers a much
wider array of domains and topics, facilitated by
translating a far greater number of articles and
fewer sentences per article. Further, the metadata
for each sentence in FLorEs-101 is provided, and
thus the full English document could be used
in studies of document-level translation. Overall,
we find this a reasonable compromise between
evaluating beyond sentence-level context while
creating a diverse evaluation dataset.

Finally, with the additional meta-data provided
in FLorEs-101, we also enable evaluation of mul-
timodal machine translation as users can access
images through the metadata. Around two-thirds
of all articles chosen for translation contain im-
ages (see Table 3), allowing the incorporation of
both text and image content for evaluation.

3.2 Translation Guidelines

We describe how translators were selected and
detail the guidelines provided to translators.

Translator Selection Translators are required
to be native speakers and educated in the target
language. They must also have a high level of flu-
ency (C1-C2) in English. Translators are required
to have at least two to three years of translation ex-
perience in the relevant language pair if they have
an academic degree in translation or linguistics and
three to five years of translation experience if they
do not have any relevant academic qualification.
Translators are also required to to be an experi-
enced, generalist translator and/or familiar with
United States and international news, current af-
fairs, politics, sports, and so forth. Translators also
undergo a translation test every 18 months to as-
sess their translation quality. In addition to having
the necessary translation skills, FLORES trans-
lators must be able to communicate effectively
in English.

Instructions for Translation Translators were
instructed to translate source data as informa-
tive, neutral, and standardized content. Assistance
from any machine translation was strictly pro-
hibited and translators were advised to translate
localized in the target language as appropriate
for content in the informative domain. Particular
guidance was made on translating named enti-
ties, in which proper nouns were to be translated
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ISO 639-3 Language Family Subgrouping Script Bitext Mono
w/ En Data

afr Afrikaans Indo-European Germanic Latin 570K 26.1M
amh Ambharic Afro-Asiatic Afro-Asiatic Ge'ez 339K 3.02M
ara Arabic Afro-Asiatic Afro-Asiatic Arabic 25.2M 126M
hye Armenian Indo-European Other IE Armenian 977K 25.4M
asm Assamese Indo-European Indo-Aryan Bengali 43.7K 738K
ast Asturian Indo-European Romance Latin 124K —

azj Azerbaijani Turkic Turkic Latin 867K 41.4M
bel Belarusian Indo-European Balto-Slavic Cyrillic 424K 24M
ben Bengali Indo-European Indo-Aryan Bengali 2.16M 57.9M
bos Bosnian Indo-European Balto-Slavic Latin 187K 15.9M
bul Bulgarian Indo-European Balto-Slavic Cyrillic 10.3M 235M
mya Burmese Sino-Tibetan Sino-Tibetan+Kra-Dai Myanmar 283K 2.66M
cat Catalan Indo-European Romance Latin 5.7 77. M
ceb Cebuano Austronesian Austronesian Latin 484K 4.11M
zho Chinese (Simpl) Sino-Tibetan Sino-Tibetan+Kra-Dai Han 37.9M 209M
zho Chinese (Traq) Sino-Tibetan Sino-Tibetan+Kra-Dai Han 37.9M 85.2M
hrv Croatian Indo-European Balto-Slavic Latin 422K 144M
ces Czech Indo-European Balto-Slavic Latin 23.2M 124M
dan Danish Indo-European Germanic Latin 10.6M 344M
nld Dutch Indo-European Germanic Latin 82.4M 230M
est Estonian Uralic Uralic Latin 4.82M 46M
tgl Filipino (ragalog) Austronesian Austronesian Latin 70.6K 107M
fin Finnish Uralic Uralic Latin 15.2M 37TM
fra French Indo-European Romance Latin 289M 428M
ful Fula Atlantic-Congo Nilotic+Other AC Latin 71K 531K
glg Galician Indo-European Romance Latin 1.13M 4.22M
lug Ganda Atlantic-Congo Bantu Latin 14.4K 537K
kat Georgian Kartvelian Other Georgian 1.23M 31.7M
deu German Indo-European Germanic Latin 216M 417M
ell Greek Indo-European Other IE Greek 23.7M 201M
guj Gujarati Indo-European Indo-Aryan Gujarati 160K 9.41M
hau Hausa Afro-Asiatic Afro-Asiatic Latin 335K 5.87TM
heb Hebrew Afro-Asiatic Afro-Asiatic Hebrew 6.64M 208M
hin Hindi Indo-European Indo-Aryan Devanagari 3.3M 104M
hun Hungarian Uralic Uralic Latin 16.3M 385M
isl Icelandic Indo-European Germanic Latin 1.17M 37.5M
ibo Igbo Atlantic-Congo Nilotic+Other AC Latin 145K 693K
ind Indonesian Austronesian Austronesian Latin 39.1IM 1.05B
gle Irish Indo-European Other IE Latin 329K 1.54M
ita Italian Indo-European Romance Latin 116M 179M
jpn Japanese Japonic Other Han, Hiragana, Katakana 23.2M 458M
jav Javanese Austronesian Austronesian Latin 1.49M 24.4M
kea Kabuverdianu Indo-European Romance Latin 5.46K 178K
kam Kamba Atlantic-Congo Bantu Latin 50K 181K
kan Kannada Dravidian Dravidian Telugu-Kannada 155K 13.1M
kaz Kazakh Turkic Turkic Cyrillic 701K 35.6M
khm Khmer Austro-Asiatic Austro-Asiatic Khmer 398K 8.8T™M
kor Korean Koreanic Other Hangul 7.46M 390M
kir Kyrgyz Turkic Turkic Cyrillic 566K 2.02M
lao Lao Kra-Dai Sino-Tibetan+Kra-Dai Lao 153K 2.47TM
lav Latvian Indo-European Balto-Slavic Latin 4.8M 68.4M
lin Lingala Atlantic-Congo Bantu Latin 21.1K 336K
lit Lithuanian Indo-European Balto-Slavic Latin 6.6OM 111M
luo Luo Nilo-Saharan Nilotic+Other AC Latin 142K 239K
Itz Luxembourgish Indo-European Germanic Latin 3.41M —

mkd Macedonian Indo-European Balto-Slavic Cyrillic 1.13M 28.8M
msa Malay Austronesian Austronesian Latin 968K 77.5M
mal Malayalam Dravidian Dravidian Malayalam 497K 24.8M
mlt Maltese Afro-Asiatic Afro-Asiatic Latin 5.82M —

mri Maori Austronesian Austronesian Latin 196K —
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ISO 639-3 Language Family Subgrouping Script Bitext Mono
w/ En Data

mar Marathi Indo-European Indo-Aryan Devanagari 109K 14.4M
mon Mongolian Mongolic Other Cyrillic 555K 20.4M
npi Nepali Indo-European Indo-Aryan Devanagari 19.6K 17.9M
nso Northern Sotho Atlantic-Congo Bantu Latin 13.8K 612K
nob Norwegian Indo-European Germanic Latin 10.9M 338M
nya Nyanja Atlantic-Congo Bantu Latin 932K —

oci Occitan Indo-European Romance Latin 5.11K —

ory Oriya Indo-European Indo-Aryan Oriya 5K 2.47T™M
orm Oromo Afro-Asiatic Afro-Asiatic Latin 162K 752K
pus Pashto Indo-European Indo-Aryan Perso-Arabic 293K 12M
fas Persian Indo-European Indo-Aryan Perso-Arabic 6.63M 611M
pol Polish Indo-European Balto-Slavic Latin 40.9M 256M
por Portuguese (Brazin Indo-European Romance Latin 137M 340M
pan Punjabi Indo-European Indo-Aryan Gurmukhi 142K 5.02M
ron Romanian Indo-European Romance Latin 31.9M 391M
rus Russian Indo-European Balto-Slavic Cyrillic 127M 849M
srp Serbian Indo-European Balto-Slavic Cyrillic 7.01M 35.7M
sna Shona Atlantic-Congo Bantu Latin 877K —

snd Sindhi Indo-European Indo-Aryan Perso-Arabic 21.8K 314K
slk Slovak Indo-European Balto-Slavic Latin 10.5M 174M
slv Slovenian Indo-European Balto-Slavic Latin 5.42M 74.TM
som Somali Afro-Asiatic Afro-Asiatic Latin 358K 14.1M
ckb Sorani Kurdish Indo-European Indo-Aryan Arabic 305K 7.98M
spa Spanish (Latin America) Indo-European Romance Latin 315M 379M
swh Swahili Atlantic-Congo Bantu Latin 349K 35.8M
swe Swedish Indo-European Germanic Latin 54.8M 580M
tgk Tajik Indo-European Indo-Aryan Cyrillic 544K —

tam Tamil Dravidian Dravidian Tamil 992K 68.2M
tel Telugu Dravidian Dravidian Telugu-Kannada 381K 17.2M
tha Thai Kra-Dai Sino-Tibetan+Kra-Dai Thai 10.6M 319M
tur Turkish Turkic Turkic Latin 41.2M 128M
ukr Ukrainian Indo-European Balto-Slavic Cyrillic 5.44M 357TM
umb Umbundu Atlantic-Congo Bantu Latin 217K 142K
urd Urdu Indo-European Indo-Aryan Perso-Arabic 630K 28M
uzb Uzbek Turkic Turkic Latin — 7.54M
vie Vietnamese Austro-Asiatic Austro-Asiatic Latin 32.1IM 992M
cym Welsh Indo-European Other IE Latin 826K 12.7M
wol Wolof Atlantic-Congo Nilotic+Other AC Latin 86.9K 676K
xho Xhosa Atlantic-Congo Bantu Latin 130K 995K
yor Yoruba Atlantic-Congo Nilotic+Other AC Latin 171K 1.59M
zul Zulu Atlantic-Congo Bantu Latin 123K 994K

Table 1: 101 Languages in FLORES-101. We include the ISO 639-3 code, the language family, and
script. Next to each language family, we include more fine-grained subgrouping information. We also
include the amount of resources available in OPUS (for bitext with English) and cc100 (for monolingual
data) at the time this report was written. The parallel datasets were used to train the baseline described
in §5, the monolingual datasets were only used to calculate SentencePiece, see Section §5.

in the most commonly used form in the target
language and when such equivalent terms did
not exist, transliteration in the target language
was advised. Translators were also advised to
translate abbreviations and idiomatic expressions
to their best knowledge for how these terms and
phrases usually appear in the target language, find-
ing equivalents rather than literal word-for-word
translations. Gender neutral pronouns were also
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advised to be used when 3rd person pronouns are
ambiguous in the source text.

3.3 Translation and Evaluation

Obtaining high translation quality in low-resource
languages is difficult because the translation job
relies on the skill of a small set of translators. If one
translator is not perfectly fluent or uses a different
local convention for that language, this could
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Figure 1: Depiction of Overall Translation Workflow.

render the quality of the dataset insufficient or in-
consistent for that language. Here, we describe the
process we followed with our Language Service
Providers (LLSPs) for translation and evaluation.

Translation Quality Score. How do we know
if the translations are good enough to include in
FLorEs-101, and how do we know when a language
has completed translation? Twenty percent of the
dataset is sampled and reviewed, this is the same
set of sentences across all languages, which allows
us to compare quality. Each sentence-translation
pair in the sampled data is assessed by a language-
specific reviewer. We assess quality through a
Translation Quality Score per language on a 0
to 100 scale, determined based on the number of
identified errors by the evaluation LSPs. The fol-
lowing errors are examined: grammar, punctua-
tion, spelling, capitalization, addition or omission
of information, mistranslation, unnatural transla-
tion, untranslated text, and register. Each error is
also associated with a severity level:minor, major
or critical. Based on pilots, we set the acceptable
score to 90%.

Translation Workflow. The overall translation
workflow is depicted in Figure 1. For each lan-
guage, all source sentences are sent to a certain
translation LSP. Once sentences are translated,
the data is sent to different translators within the
LSP for editing and then moves on to automated
quality control steps. If any of the checks fail,
the LSP has to re-translate until all verification
is passed. Afterwards, translations are sent to an
evaluation LSP that performs quality assessment,
providing a translation quality score and construc-
tive linguistic feedback both on the sentence and
language levels. If the score is below 90%, trans-
lations together with the assessment report are
sent back to the translation LSP for re-translation.
Languages scoring above our quality threshold of
90% have an average 15% of the reviewed sample
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with major or critical errors, 2% of the reviewed
sample with critical errors, and 3% with unnatural
translation errors. We summarize in Table 4 the
overall statistics around the translation process.

4 FLores-101 At a Glance

In this section, we analyze FLorEs-101. We pro-
vide a high-level comparison of FLorgs-101 with
existing benchmarks, then discuss the sentences,
languages, and translation quality in detail.

4.1 Comparison with Existing Benchmarks

We compare FLores-101 with several existing
benchmarks, summarized in Table 2. FLorgs-101
combines large language coverage with topic
diversity, support for many-to-many evaluation,
and high quality human translations (e.g., pro-
duced with no automatic alignment). Further,
FLores-101 adds document-level evaluation and
support multimodal translation evaluation through
provided metadata.

4.2 Sentences in FLoRrES-101

Table 3 provides an overview of FLOrEs-101. The
total dataset translates 3001 sentences into 101 lan-
guages. On average, sentences contain around 20
words. These sentences originate from 1,175 dif-
ferent articles in three domains: WikiNews, Wiki-
Junior, and WikiVoyage. On average, 3 sentences
are selected from each document, and then doc-
uments are divided into dev, devtest, and test
sets. The articles are rich in metadata: 40% of
articles contain hyperlinks to other pages, and
66% of articles contain images. We manually
classify the content of the sentences into one of
10 broader topics, and display the distribution.
Overall, most sentences are about world travel
(sourced from WikiVoyage), though there are also
a large number of sentences about science, poli-
tics, and crime.



# Languages Diverse = Many to Manual Document  Multi

Topics Many Alignments Level modal
FLORES v1 (Guzmén et al., 2019) 2 v X v X X
AmericasNLI (Ebrahimi et al., 2021) 10 v v v X X
ALT (Riza et al., 2016) 13 v v v X X
Europarl (Koehn, 2005) 21 X v X v X
TICO-19 (Anastasopoulos et al., 2020) 36 X v v X X
OPUS-100 (Zhang et al., 2020) 100 v v X X X
M2M (Fan et al., 2020) 100 X v X X X
FLORES-101 | 101 v v v v v/

Table 2: Comparison of Various Evaluation Benchmarks. We compare FLoREs-101 to a variety
of popular, existing translation benchmarks, indicating language coverage, topic diversity, whether
many-to-many translation is supported, if the translations are manually aligned by humans, and if the
tasks of document-level translation or multimodal translation are supported.

Number of Sentences 3001
Average Words per Sentence 21
Number of Articles 842
Average Number of Sentences per Article 35
% of Articles with Hyperlinked Entities 40
% of Articles with Images 66
Evaluation Split # Articles  # Sentences
dev 281 997
devtest 281 1012
test 280 992
Domain # Articles  # Sentences
WikiNews 309 993
WikiJunior 284 1006
WikiVoyage 249 1002
Sub-Topic # Articles  # Sentences
Crime 155 313
Disasters 27 65
Entertainment 28 68
Geography 36 86
Health 27 67
Nature 17 45
Politics 171 341
Science 154 325
Sports 154 162
Travel 505 1529

Table 3: Statistics of FLores-101.

4.3 Languages in FLOREs-101

We summarize all languages in FLORES-101 in
Table 1. Our selected languages cover a large
percentage of people globally, with a large diver-
sity of scripts and families. Many languages are
spoken by millions, despite being considered low-
resource in the research community. In Table 1, we
estimate resource level by reporting the amount
of data available in OPUS, a public repository for
multilingual data. The majority of languages have
bilingual data through English and monolingual
data, though a number of languages have less than
100K sentences through English. Many have no
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# of Languages requiring Re-translation 45
Avg # of Re-translations 1
Max # of Re-translations

Avg # of Days to Translate 1 language 26
Avg # of Days to Re-Translate 35
Avg # of Days for 1 language 61
Shortest Turnaround (days) for 1 language 31
Longest Turnaround (days) for 1 language 89

Table 4: Statistics of FLores-101 Translation
Workflow.

monolingual data available, making them truly
low-resource.

4.4 Translation Quality

The translation quality score across all languages
is depicted in Figure 2. All 101 languages in
FLores-101 meet our threshold of 90% quality.
Overall, about 50% of languages have fairly high
quality (above 95%), with few near the 90%
threshold boundary. Even low-resource languages
like Lao and Zulu can score well on the qual-
ity metric. The largest error category across all
languages was mistranslation, a broad category
that generally notes that the source text was not
translated faithfully and the translation has ren-
dered an incorrect meaning in the target language.
Error categories with few errors include register,
grammar, and punctuation.

5 Multilingual Evaluation

Automatic evaluation of translation quality is
an active research field. Each year, the WMT



100% 90% Quality Standard

95%

Quality Score

Northern Sotho(J l |—> Khmer

Wolof

Uzbek «——
|

Lao

Languages

Figure 2: Translation Quality Score across Languages. We require the final translation quality score to be above
90% before the translation is of sufficient quality to include in FLores-101.

Metrics shared task seeks to determine the met-
rics that better correlate with human evaluations
(Mathur et al., 2020). While many metrics have
been proposed through the years, most have
not gained traction in the community.’ In fact,
99% of MT publications in the last decade
still report BLEU, and 74% do so exclusively
(Marieetal.,2021). Through the years, researchers
continue to use BLEU to compare different mod-
els. As a result, the community has developed
strong intuitions on the significance of the ef-
fects when looking at BLEU. Unfortunately, using
word-level BLEU as-is is suboptimal in a multilin-
gual context, as n-gram overlap heavily depends
on the particular tokenization used, which is not
well defined in many low-resource languages.

5.1 The Challenge of Multilingual Evaluation

Making BLEU comparable by using equivalent
tokenization schemes has been challenging for
the translation community. It has been partially
addressed by sacrebleu (Post, 2018) which
allows specifying evaluation signatures that take
tokenization into account. For example, sacre-
bleu uses the standardized NIST tokenizer® as
a default.

However, the picture is not so simple when
looking into multilingual evaluation. For instance,
some languages like Hindi and Japanese already
have custom tokenizers that are used when com-
puting BLEU, although these appear scattered
in various publication footnotes. For many other
languages, tokenizers do not exist and English
rules are applied as a default. While English to-
kenization rules might operate reasonably well
for European languages, they do not extend to
global support. For example, white-space tok-
enization is insufficient for some languages like
Burmese or Khmer, which do not segment words

3In the past 10 years, only RIBES and chrF++ have been
used more than twice in MT publications (Marie et al., 2021).
Shttps://bit.ly/3CoGWma.
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with white space. Other languages like Arabic are
morphologically rich, and encode more meaning
into a single word through the use of clitics.’
In short, there is no standard for universal tok-
enization and developing tokenizers for each lan-
guage of interest is a challenging effort (Dossou
and Emezue, 2021; Li et al., 2021) that is dif-
ficult to scale.

Ideally, we would like an automatic
evaluation process that is robust, simple, and
applicable to any language without the need to
specify any particular tokenizer, as this will make
it easier for researchers to compare against each
other. We would like our automatic evaluation
to also support future languages—as translation
quality continues to improve, the community will
naturally produce models for more and more
languages.

5.2 SentencePiece BLEU

Towards this goal, we propose to use BLEU over
text tokenized with a single language-agnostic and
publicly available fixed SentencePiece subword
model. We call this evaluation method spBLEU,
for brevity. It has the benefit of continuing to use a
metric that the community is familiar with, while
addressing the proliferation of tokenizers.

For this, we have trained a SentencePiece
(SPM) tokenizer (Kudo and Richardson, 2018)
with 256,000 tokens using monolingual data
(Conneau et al., 2020; Wenzek et al., 2019) from
all the FLores-101 languages. SPM is a system
that learns subword units based on training data,
and does not require tokenization. The logic is not
dependent on language, as the system treats all sen-
tences as sequences of Unicode. Given the large
amount of multilingual data and the large number
of languages, this essentially provides a universal
tokenizer, that can operate on any language.

"This has incentivized the creation of BLEU variants
(Bouamor et al., 2014) that rely on morphological analyzers.


https://bit.ly/3CoGWma

Training SPM. One challenge is that the
amount of monolingual data available for dif-
ferent languages is not the same—an effect that
is extreme when considering low-resource lan-
guages. Languages with small quantities of data
may not have the same level of coverage in sub-
word units, or an insufficient quantity of sentences
to represent a diverse enough set of content.

To address the low resource languages, first we
extend monolingual data of lowest 80 resource lan-
guages to 60 Common Crawl snapshots. We then
perform temperature sampling (Arivazhagan et al.,
2019) with temperature = 5.0 so that low-resource
languages are well represented. The SPM model
is trained on a combined total of 100M sampled
sentences based on the temperature sampling prob-
ability mentioned above. We use a character cov-
erage value of 0.9995 following Fan et al. (2020)
to have sufficient representation of character-
based languages. For FLorEs-101 languages, the
max unknown token rate with our SPM model is
3.8% for Tagalog, with all other languages below
1%, indicating good coverage for low resource
languages from the trained tokenizer. In the future
if a new language is added to FLoRrEs-101 and this
tokenizer does not support its script, we can add
new tokens to encode it as desired.

Computing spBLEU. Given this SPM-tokenizer,
we compute BLEU by tokenizing the system out-
put and the reference, and then calculate BLEU
in the space of sentence-pieces. SpBLEU is inte-
grated into sacrebleu for ease of use® as the
spm tokenizer.

5.3 Experiments and Analysis

In this section we evaluate spBLEU to understand
its properties. Particularly, we want to verify that it
preserves the intuitions that researchers have built
over years using BLEU. To do so, we contrast its
results to languages where mosestokenizer
is used as the default; and when custom tokenizers
are used. Secondly, we verify that spBLEU offers
similar results to other metrics that are tokenizer-
independent such as chrF++ (Popovié, 2017).

Note that a rigorous assessment of any automatic
metric requires the measurement of correlation
with respect to human evaluations. However, to
date, such annotations are only available for a
handful of languages, most of which are high-

8nttps://github.com/mjpost/sacrebleu.
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Lang Correlation Correlation
spBLEU v. BLEU SpBLEU v. chrF++

French 0.99 0.98

Italian 0.99 0.98

Spanish 0.99 0.98

Hindi 0.99 0.98

Tamil 0.41 0.94

Chinese 0.99 0.98

Table 5: Spearman Correlation of spBLEU,

BLEU, and chrF++. We evaluate on three sets of
languages (En-XX). Models evaluated are derived
from our baselines (discussed in Section 6). In the
top section, we evaluate languages that often use
the standard mosestokenizer. In the bottom
section, we evaluate languages that have their own
custom tokenization.

resource. Obtaining human evaluations for a large
proportion of languages covered in FLORES101 is
costly and time-consuming. Moreover, the conclu-
sions of a partial study focused on high-resource
languages might not generalize well to other lan-
guages. Therefore, we defer the in-depth evalua-
tion of the best metric for multilingual evaluation
to future work, once the adequate data is available.

spBLEU Correlates with BLEU. First, we ex-
amine the correlation between spBLEU and BLEU
across various languages where the mosesto-
kenizer is widely used. We examine Spanish,
Italian, and French. As shown in Table 5 (top),
spBLEU correlates well (0.99) with BLEU on
these languages. In the bottom section, we show
the correlation for Chinese, Hindi, and Tamil
where custom tokenizers are needed.” We observe
a high correlation (0.99) for Hindi and Chinese,
and a weaker correlation (0.41) for Tamil.'”

spBLEU Has a Strong Correlation with chrF++.
Next, we compare how well spBLEU tracks
against another well vetted tokenizer-independent
metric: chrF++. In Table 5 we observe that both
metrics are highly correlated across target lan-
guages ranging from 0.94 to 0.98. This is con-
sistent across all the 101x100 language pairs

°Chinese is supported by mosetokenizer with
special rules. Hindi and Tamil have a popularly used
tokenizer in the community from IndicNLP (https://
anoopkunchukuttan.github.io/indicnlp_library/).

0We hypothesize that a weaker correlation for Tamil
might be due to the agglutinative nature of the language,
which spBLEU handles more similarly to chrF++.
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chrF++
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Figure 3: Scatterplot of spBLEU against chrF++ for
101 x 100 language pairs in FLORES-101 devtest. Each
point represents the score of the translation for a given
language pair. To illustrate the behavior of evaluation
into the same target language (e.g., XX-> zho), we use
different color shades for each target language. Target
language groupings can be observed as streaks that
extend from left to right. We can observe a high-degree
of global correlation (0.94) between the chrF++ and
metrics, although different trends with strong local
correlation can be observed for individual languages
like Chinese (zho), Japanese (jpn), and Korean (kor).

supported by FLores-101. In Figure 3, we plot
chrF++ vs. spBLEU scores resulting from trans-
lating between all languages in FLORES. We
observe that there is a strong, linear relationship
between the two metrics (Pearson correlation of
0.94). Notably, target languages like Chinese,
Korean, and Japanese behave differently than the
rest, yet the relationship between the two metrics
remains locally strong.

Takeaway. Overall, we conclude that spBLEU
functions fairly similarly to BLEU, especially on
languages that usually default to the moses-—
tokenizer. Moreover, spBLEU exhibits a
strong correlation to the tokenization-independent
chrF++, across a myriad of language pairs, yet
has the advantage of keeping the familiarity of
BLEU. In short, spBLEU combines the familiar-
ity of BLEU with the generalizability of chrF++.
For the vast majority of languages without custom
tokenizers, spBLEU provides the ability to quan-
tify performance in the same way, with a single
tokenization model. In the rest of the work, we
use spBLEU to evaluate model performance.

6 Evaluating Baselines on FLORrEs-101

In this section, we present the evaluation of three
baseline models on FLores-101.

531

6.1 Data Splits

FLores-101 is divided into dev, devtest, and
test. The dev set is meant to be used for hyper-
parameter tuning. The devtest is meant to be used
for testing purposes during the development phase.
The test set will not be released, but is available via
a publicly available evaluation server,!' while the
dev and devtest are publicly downloadable. The
primary motivation for keeping the test set avail-
able only through an evaluation server is to gua-
rantee equivalent assessment of models and reduce
overfitting to the test set. Further, as the dataset
is many-to-many, if the source sentences are re-
leased, the target sentences would also be released.

6.2 Baselines

We evaluate three baselines:

e M2M-124: Fan et al. (2020) created a
Many-to-Many translation model, but did not
have full coverage of FLores-101. We ex-
tended their model by supplementing OPUS
data. We trained two different sizes of models
with 615M and 175M parameters.

OPUS-100: Zhang et al. (2020) trained mul-
tilingual machine translation models on an
English-centric OPUS dataset with language-
aware layers and random online backtransla-
tion (RoBT). We evaluate the 24-layer model
with backtranslation with 254M parameters.

Masakhane: The Maskhane Participatory
Research effort, focusing on African lan-
guages, has developed and open-sourced for
the community various machine translation
models (Nekoto et al., 2020; Abbott and
Martinus, 2019).

6.3 Generation

We generate from all models with beam size 5,
setting the max generation length to 200. Given the
large number of directions covered in FLores-101,
we do not tune the beam size, length penalty, or
minimum/maximum generation length.

6.4 Results

We compare the performance of various models
across several axes, analyzing the effect of lan-
guages, data, and domain.

11https ://dynabench.org/flores.
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Num Languages: 7 6 14 10 4 9 14 5 10 4 5
Afro-Asiatic 4.20 6.82 1093 231 121 1195 343 093 11.70 3.66 273 5.44
Austronesian 639 1150 1378 348 2.08 1553 4.69 145 1495 578 4.13 7.61
Balto-Slavic 832 1229 22.81 348 325 21.67 682 0.89 21.75 731 587 1041
Bantu 3.28 5.70 629 237 1.16 7.40 216 137 7.16 277 195 3.78
Dravidian 3.04 4.56 721 144 234 7.66 3.62 039 731 273 204 3.85
Germanic 948 1425 2256 417 326 26.09 689 140 2353 798 624 1144
Indo-Aryan 3.64 5.27 856 1.60 2.01 881 370 042 8.66 326 236 4.39
Nilotic+Other AC 1.60 3.10 276 145 043 348 079 095 348 129 081 1.83
Romance 825 1274 2070 322 241 2243 6.04 1.15 2444 696 546 1035
Sino-Tib+Kra-Dai 4.68 745 1058 229 229 1084 410 0.67 11.05 5.10 3.20 5.66
Turkic 3.55 524 935 161 1.24 881 296 0.58 9.14 313 238 4.36
Avg 5.13 808 1232 249 197 13115 4.11 093 13.01 454 3.38

Table 6: Many-to-Many Performance on Family Groups. We display the spBLEU on the devtest of
FLores-101 for the M2M-124 615M parameter model. Each cell represents the average performance for
translating from all the languages in the source group (row) into the each language of the target group
(column). We highlight in gray the cells that correspond to within-group evaluation. In bold we show
the best performance per target group and underline the best performance per source group.

Very Low Low Medium High News  Junior  Voyage Avg
< 100K Tk a0y >100M Num Sentences 993 1006 1002
English 20.64 20.67 19.41 20.24
# Langs 15 40 38 6 English — 16.85  16.67 1548 | 16.33
Very Low 1.6 23 7.0 9.1 Chinese + 11.57 9.66 9.55 10.26
Low 2.0 2.74 8.5 10.3 Chinese — 10.02 9.93 9.57 9.84
Medium 3.8 5.4 19.1 23.4 Spanish + 14.91 13.80 13.23 13.98
High 4.3 5.8 217 27.3 Spanish — 11.67  10.96 10.37 | 11.00
Avg 2.9 4.1 14.1 17.6 Hindi < 14.33 14.15 13.84 14.11
Hindi — 10.88 10.86 10.11 10.62
Table 7: Many-to-Many Performance by avail- ~ Arabic < 839 823 774 | 812
able Bitext through English. We show spBLEU Arabic — 981 1031 9.54 988
on devtest for M2M-124 615M parameter model. Many-to-Many 8.56 .97 7.5

spBLEU is worse for low-resource languages
compared to high resource languages, and trans-
lating into low-resource languages is harder than
translating out of them.

6.4.1 Findings From All Directions

English-Centric Translation. Performance of
translation info English is strong, with only a few
languages with spBLEU below 10. Performance
out of English is worse. Performance is heavily
correlated with amount of training data, which
we discuss in greater detail later. We note that
the construction of FLores-101 is English-centric
in and of itself, as the same set of sentences are
translated from English into all languages. This
can affect the performance of non-English-centric
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Table 8: Many-to-Many Performance by
Domain. We show spBLEU on three partitions
of the FLorEs-101 devtest according to the origi-
nating domains. We compute the corpus spBLEU
for each language in each domain, and then
average across languages.

directions, because languages that are similar to
each other may have been translated differently
if they were not translated out of English. For
example, the sentence construction of Lao when
translating from Thai to Lao may look different
compared to English to Thai and English to Lao.

Many-to-Many Translation. Across non-English-
centric directions, performance requires improve-
ment—translation in and out of most African
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Figure 4: Comparison between OPUS-100 and M2M-124 on several one-to-many and many-to-one translation
tasks using five languages: English, Chinese, Spanish, Hindi, and Arabic. Because the open-source OPUS-100
model covers only 80 languages of FLores-101, we restrict the evaluation to only these languages.
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Figure 5: Full results of M2M-124 Models on several one-to-many and many-to-one translation tasks using five

languages: English, Chinese, Spanish, Hindi, and Arabic.

languages, for example, struggles to reach 5
spBLEU. In contrast, translation into many Eu-
ropean languages, even low-resource languages
such as Occitan, has much better performance
(over 10 spBLEU for many directions). This result
highlights the importance of both the amount of
data and transfer learning from related languages.
For instance, translation to and from Occitan can
naturally borrow from related high-resource lan-
guages like French, Italian, and Spanish. How-
ever, the same cannot be said about most African
languages, for which related languages are also
low resource and difficult to translate.

Performance by Language Family. We group
languages into eleven general families and report
in Table 6 the average spBLEU for translating
from and into each family. Our results indicate
that Bantu, Dravidian, Indo-Aryan, and Nilotic
are the language families where M2M-124 strug-
gles the most, attaining an average spBLEU be-
low 5 points. Even translation within the language
family (see values in the diagonal) is poor. In
general, Germanic, Romance, and Balto-Slavic
are the language families that yield the largest
spBLEU scores (above 10 spBLEU points in
average). Overall, many-to-many translation re-
quires improvement.
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Performance by Resource Level. Performance
is often closely tied to the amount (and quality)
of training data. Certain language families have
much less data. For example, almost every sin-
gle African language is considered a low-resource
translation direction. We classify languages into
four bins based on resource level of bitext
with English: high-resource languages, with more
than 100M sentences, mid-resource with between
1M and 100M sentences, low-resource with be-
tween 100K and 1M sentences, and finally very
low-resource with less than 100K sentences. Our
results are summarized in Table 7. As hypothe-
sized, performance increases with greater quantity
of training data, in a clear pattern. spBLEU in-
creases moving from left to right, as well as
from top to bottom. Even translation between
high-resource and low-resource languages is still
quite low, indicating that lack of training data
strongly limits performance.

Performance by Domain. We analyze whether
certain domains are more difficult to translate
than others. We report results of translating in and
out of five languages, namely, English, Chinese,
Spanish, Hindi, and Arabic, as well as the aver-
age across all of the 10,000 possible directions.
The results in Table 8 demonstrate that the factor



Masakhane M2M-124
English — Yoruba 2.04 2.17
English — Zulu 11.85 3.89
English — Swahili 22.09 26.95
English — Shona 8.19 11.74
English — Nyanja 2.19 12.9
English — Luo 5.33 3.37

Table 9: spBLEU of Masakhane-MT. We eval-
uate models on translating from English to six
different African languages. We compare against
the M2M-124 615M parameter model.

that affects quality the most is the language we
translate in and out of rather than domain. Over-
all, WikiNews is the easiest with slightly higher
spBLEU, and WikiVoyage is the hardest domain.

6.4.2 Comparison of Various Systems

Comparison with OPUS-100. We evaluate
OPUS-100 (Zhang et al., 2020) with 254M
parameters and the two versions of M2M-124
(Fan et al., 2020) with 175 and 615M parameters.
We calculate spBLEU in and out of five languages:
English, Chinese, Spanish, Hindi, and Arabic. Re-
sults are shown in Figure 4. Note that OPUS-100
only covers 80 languages in FLOREs-101, so this
figure is on the subset of 80 languages covered by
all models, for comparability. We see a consistent
trend across models and directions: The larger
M2M-124 has the best performance, followed by
the smaller M2M-124 and OPUS-100.

We display results of M2M-124 175M param-
eters and 615M parameters on the full set of
FLores-101 languages (see Figure 5). Comparing
results with Figure 4, it is evident that the average
performance in these language groupings has de-
creased, indicating that the additional languages
in FLores-101 are likely very difficult. We see the
same consistent trend that the larger M2M-124
model has stronger performance.

Comparison with Masakhane. The compari-
son with OPUS-100 compares M2M-124 with
another multilingual model. However, various
researchers in the low-resource translation com-
munity have developed models for specific lan-
guages, which could produce specialized models
with higher quality. We evaluate models from
English to the following languages: Yoruba, Zulu,
Swahili, Nyanja, Shona, and Luo. Results are
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shown in Table 9. We observe that for two
languages—Zulu and Luo—Masakhane’s open
sourced models have stronger performance on
FLores-101 than the M2M-124 model. The re-
maining languages we assess have similar or worse
performance than M2M-124.

7 Conclusion

The potential to develop translation for lan-
guages globally is hindered by lack of reli-
able, high-quality evaluation. We create and
open-source FLOREs-101, a benchmark with 101
languages. It supports many-to-many evaluation,
meaning all 10,100 directions can be evalu-
ated. Unlike many other datasets, FLores-101 is
professionally translated, including human evalu-
ation during dataset creation. Beyond translation,
FLOrES-101 can be used to evaluate tasks such
as sentence classification, language identification,
and domain adaptation.
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