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Abstract

Most widely used pre-trained language models
operate on sequences of tokens corresponding
to word or subword units. By comparison,
token-free models that operate directly on raw
text (bytes or characters) have many benefits:
They can process text in any language out of
the box, they are more robust to noise, and they
minimize technical debt by removing complex
and error-prone text preprocessing pipelines.
Because byte or character sequences are longer
than token sequences, past work on token-free
models has often introduced new model ar-
chitectures designed to amortize the cost of
operating directly on raw text. In this paper,
we show that a standard Transformer architec-
ture can be used with minimal modifications
to process byte sequences. We characterize the
trade-offs in terms of parameter count, train-
ing FLOPs, and inference speed, and show that
byte-level models are competitive with their
token-level counterparts. We also demonstrate
that byte-level models are significantly more
robust to noise and perform better on tasks that
are sensitive to spelling and pronunciation. As
part of our contribution, we release a new set
of pre-trained byte-level Transformer models
based on the T5 architecture, as well as all
code and data used in our experiments.1

1 Introduction

An important consideration when designing NLP
models is the way that text is represented. One
common choice is to assign a unique token ID to
each word in a fixed finite vocabulary. A given
piece of text is thus converted into a sequence
of tokens by a tokenizer before being fed into a
model for processing. An issue with using a fixed
vocabulary of words is that there is no obvious

∗Equal contribution.
1https://github.com/google-research/byt5.

way to process a piece of text that contains an
out-of-vocabulary word. A standard approach is to
map all unknown words to the same<UNK> token,
but this prevents the model from distinguishing
between different out-of-vocabulary words.

Subword tokenizers (Sennrich et al., 2016; Wu
et al., 2016; Kudo and Richardson, 2018) present
an elegant solution to the out-of-vocabulary prob-
lem. Instead of mapping each word to a single
token, subword tokenizers decompose words into
smaller subword units with a goal of minimizing
the total length of the token sequences for a fixed
vocabulary size. As an example, a subword tok-
enizer might tokenize the word doghouse as the
pair of tokens dog and house even if doghouse
is not in the subword vocabulary. This flexibility
has caused subword tokenizers to become the de
facto way to tokenize text over the past few years.

However, subword tokenizers still exhibit var-
ious undesirable behaviors. Typos, variants in
spelling and capitalization, and morphological
changes can all cause the token representation of
a word or phrase to change completely, which can
result in mispredictions. Furthermore, unknown
characters (e.g., from a language that was not
used when the subword vocabulary was built) are
typically out-of-vocabulary for a subword model.

A more natural solution that avoids the afore-
mentioned pitfalls would be to create token-free
NLP models that do not rely on a learned vocabu-
lary to map words or subword units to tokens. Such
models operate on raw text directly. We are not
the first to make the case for token-free models,
and a more comprehensive treatment of their vari-
ous benefits can be found in recent work by Clark
et al. (2021). In this work, we make use of the fact
that text data is generally stored as a sequence of
bytes. Thus, feeding byte sequences directly into
the model enables the processing of arbitrary text
sequences. This approach is well-aligned with the
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Figure 1: Pre-training example creation and network architecture of mT5 (Xue et al., 2021) vs. ByT5 (this work).
mT5: Text is split into SentencePiece tokens, spans of ∼3 tokens are masked (red), and the encoder/decoder
transformer stacks have equal depth. ByT5: Text is processed as UTF-8 bytes, spans of ∼20 bytes are masked,
and the encoder is 3× deeper than the decoder. 〈X〉, 〈Y〉, and 〈Z〉 represent sentinel tokens.

philosophy of end-to-end learning, which endeav-
ors to train models to directly map from raw data to
predictions. It also has a concrete benefit in terms
of model size: The large vocabularies of word- or
subword-level models often result in many pa-
rameters being devoted to the vocabulary matrix.
In contrast, a byte-level model by definition only
requires 256 embeddings. Migrating word repre-
sentations out of a sparse vocabulary matrix and
into dense network layers should allow models to
generalize more effectively across related terms
(e.g., book / books) and orthographic variations.
Finally, from a practical standpoint, models with
a fixed vocabulary can complicate adaptation to
new languages and new terminology, whereas,
by definition, token-free models can process any
text sequence.

The main drawback of byte-level models is
that byte sequences tend to be significantly longer
than token sequences. Because computational
costs of machine learning models tend to scale
with sequence length, much previous work on
character- and byte-level models has explored
ways to process long sequences efficiently using
convolutions with pooling (Zhang et al., 2015;
Lee et al., 2017) or adaptive computation time
(Graves, 2016).

In this work, we take a simpler approach and
show that the Transformer architecture can be
straightforwardly adapted to process byte se-
quences without a dramatically unfavorable in-
crease in computational cost. We focus on the

T5 framework (Raffel et al., 2020), where all
text-based NLP problems are cast to a text-to-text
format. This approach makes it simple to tackle an
NLP task by generating a sequence of bytes con-
ditioned on some input bytes. Our proposed ByT5
architecture is described in Section 3. The design
stays fairly close to mT5 (the multilingual variant
of T5 introduced by Xue et al. [2021]), with the
differences illustrated in Figure 1. Through ex-
tensive experiments on a diverse set of English
and multilingual tasks (presented in Section 4), we
show that ByT5 is competitive with a subword-
level baseline, despite being pre-trained on 4× less
text. We also confirm in Section 5 that byte-level
models are more robust to corruptions of the input
text. Throughout, we characterize the trade-offs
of our design decisions in terms of computational
cost and parameter count, discussed in more de-
tail in Sections 6 and 7. The end result is a set of
pre-trained ByT5 models that we release alongside
this paper.

2 Related Work

The early neural language models of Sutskever
et al. (2011) and Graves (2013) operated di-
rectly on character sequences. This precedent led
many to use character-level language modeling
as a benchmark to evaluate neural architectures
(Kalchbrenner et al., 2016; Chung et al., 2017;
Ha et al., 2017; Zilly et al., 2017; Melis et al.,
2018; Al-Rfou et al., 2019). Choe et al. (2019)
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showed byte language models can match the per-
plexity of word-level models when given the same
parameter budget. However, standard practice in
real-world scenarios has remained to use word- or
subword-level models.

A number of character-aware architectures
have been proposed that make use of character-
level features but still rely on a tokenizer to iden-
tify word boundaries. These approaches include
ELMo (Peters et al., 2018), CharacterBERT
(El Boukkouri et al., 2020), and many others (Ling
et al., 2015; Chung et al., 2016; Kim et al., 2016;
Józefowicz et al., 2016; Wang et al., 2020; Wei
et al., 2021). Separately, some work has en-
deavored to ameliorate issues with tokenization,
for example, by adapting vocabularies to new
languages (Garcia et al., 2021) or randomly choos-
ing different subword segmentations to improve
robustness in low-resource and out-of-domain set-
tings (Kudo, 2018). These methods do not meet
our goal of simplifying the NLP pipeline by
removing text preprocessing.

There have been a few recent efforts to develop
general-purpose token-free pre-trained language
models for transfer learning.2 Akbik et al. (2018)
show strong results on sequence labeling with
character-level pre-training and release models
covering four languages. More recently, Clark
et al. (2021) develop CANINE, which shows gains
over multilingual BERT by working with char-
acters instead of word-piece tokens, though the
‘‘CANINE-S’’ model still uses a tokenizer during
pre-training to define targets for the masked lan-
guage modeling task. Our work differs from these
in that (i) we train encoder-decoder models that
extend to generative tasks, (ii) our models work
directly with UTF-8 bytes, and (iii) we explore the
effect of model scale, training models beyond 10
billion parameters.

3 ByT5 Design

Our goal in designing ByT5 is to take an existing
token-based model and perform the minimal set
of modifications to make it token-free, thereby
limiting experimental confounds. We base ByT5
on the recent mT5 model (Xue et al., 2021), which

2Previous work has also developed token-free approaches
for specific tasks: Gillick et al. (2016) for span labeling, Li
et al. (2019) for speech recognition and synthesis, and many
authors for machine translation (Lee et al., 2017; Costa-jussà
et al., 2017; Cherry et al., 2018; Shaham and Levy, 2021).

was trained on mC4 (a large corpus of unlabeled
multilingual text data) and achieved state-of-the-
art on many community benchmarks. We release
ByT5 in five sizes analogous to T5 and mT5
(Small, Base, Large, XL, XXL). We aim for
ByT5 to cover the same use cases as mT5: It
is a general-purpose pre-trained text-to-text model
covering 100+ languages. We expect ByT5 will
be particular useful for tasks operating on short-
to-medium length text sequences (a few sentences
or less), as these will incur less slowdown in fine-
tuning and inference.

3.1 Changes from mT5

Compared to mT5, we make the following key
changes in designing ByT5. First and foremost,
we dispense with the SentencePiece (Kudo and
Richardson, 2018) vocabulary and feed UTF-8
bytes directly into the model without any text
preprocessing. The bytes are embedded to the
model hidden size using a vocabulary of 256 pos-
sible byte values. An additional 3 IDs are reserved
for special tokens: padding, end-of-sentence, and
an unused <UNK> token that we include only
for convention.

Second, we modify the pre-training task. mT5
uses the ‘‘span corruption’’ pre-training objective
first proposed by Raffel et al. (2020), where spans
of tokens in unlabeled text data are replaced with
a single ‘‘sentinel’’ ID and the model must fill in
the missing spans. Rather than adding 100 new
tokens for the sentinels, we find it sufficient to
reuse the final 100 byte IDs. While mT5 uses
an average span length of 3 subword tokens, we
find that masking longer byte-spans is valuable.
Specifically, we set our mean mask span length
to 20 bytes, and show ablations of this value in
Section 6.

Third, we find that ByT5 performs best when
we decouple the depth of the encoder and de-
coder stacks. While T5 and mT5 used ‘‘balanced’’
architectures, we find byte-level models benefit
significantly from a ‘‘heavier’’ encoder. Specif-
ically, we set our encoder depth to 3 times that
of the decoder. Intuitively, this heavier encoder
makes the model more similar to encoder-only
models like BERT. By decreasing decoder ca-
pacity, one might expect quality to deteriorate on
tasks like summarization that require generation
of fluent text. However, we find this is not the
case, with heavy-encoder byte models performing
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better on both classification and generation tasks.
We ablate the effect of encoder/decoder balance
in Section 6.

As not all byte sequences are legal according
to the UTF-8 standard, we drop any illegal bytes
in the model’s output3 (though we never observed
our models predicting illegal byte sequences in
practice). Apart from the above changes, we fol-
low mT5 in all settings. Like mT5, we set our
sequence length to 1024 (bytes rather than to-
kens), and train for 1 million steps over batches of
220 tokens.

3.2 Comparing the Models

Our goal in this paper is to show that straight-
forward modifications to the Transformer archi-
tecture can allow for byte-level processing while
incurring reasonable trade-offs in terms of cost.
Characterizing these trade-offs requires a clear
definition of what is meant by ‘‘cost’’, since
there are many axes along which it is possi-
ble to measure a model’s size and computational
requirements.

Models that use a word or subword vocabulary
typically include a vocabulary matrix that stores
a vector representation of each token in the vo-
cabulary. They also include an analogous matrix
in the output softmax layer. For large vocabu-
laries (e.g., those in multilingual models), these
matrices can make up a substantial proportion of
the model’s parameters. For example, the vocabu-
lary and softmax output matrices in the mT5-Base
model amount to 256 million parameters, or about
66% of the total parameter count. Switching to a
byte-level model allows allocating these param-
eters elsewhere in the model, for example, by
adding layers or making existing layers ‘‘wider’’.
To compensate for reduction in total parameter
count due to changing from a token-based to
token-free model, we adjust our ByT5 model hid-
den size (dmodel) and feed-forward dimensionality
(dff) to be parameter-matched with mT5, while
maintaining a ratio of roughly 2.5 between dff and
dmodel, as recommended by Kaplan et al. (2020).
Table 1 shows the resulting model architectures
across all five model sizes.

Separately, as previously mentioned, changing
from word or subword sequences to byte se-
quences will increase the (tokenized) sequence

3This is achieved with the Python bytes-decoding function
bytes.decode("utf-8", errors="ignore").

mT5 ByT5

Size Param Vocab dmodel / dff Enc/Dec Vocab dmodel / dff Enc/Dec

Small 300M 85% 512 / 1024 8/8 0.3% 1472 / 3584 12/4
Base 582M 66% 768 / 2048 12/12 0.1% 1536 / 3968 18/6
Large 1.23B 42% 1024 / 2816 24/24 0.06% 1536 / 3840 36/12
XL 3.74B 27% 2048 / 5120 24/24 0.04% 2560 / 6720 36/12
XXL 12.9B 16% 4096 / 10240 24/24 0.02% 4672 / 12352 36/12

Table 1: Comparison of mT5 and ByT5 architec-
tures. For a given named size (e.g., ‘‘Large’’), the
total numbers of parameters and layers are fixed.
‘‘Vocab’’ shows the percentage of vocabulary-
related parameters, counting both the input em-
bedding matrix and the decoder softmax layer.
ByT5 moves these parameters out of the vocab-
ulary and into the transformer layers, as well as
shifting to a 3:1 ratio of encoder to decoder layers.

length of a given piece of text. The self-attention
mechanism at the core of the ubiquitous Trans-
former architecture (Vaswani et al., 2017) has a
quadratic time and space complexity in the se-
quence length, so byte sequences can result in
a significantly higher computational cost. While
recurrent neural networks and modified atten-
tion mechanisms (Tay et al., 2020) can claim a
better computational complexity in the sequence
length, the cost nevertheless always scales up as
sequences get longer.

Thus far, we have been discussing easy-to-
measure quantities like the parameter count and
FLOPs. However, not all FLOPs are equal, and
the real-world cost of a particular model will also
depend on the hardware it is run on. One impor-
tant distinction is to identify operations that can
be easily parallelized (e.g., the encoder’s fully-
parallelizable processing) and those that cannot
(e.g., autoregressive sampling in the decoder dur-
ing inference). For byte-level encoder-decoder
models, if the decoder is particularly large, au-
toregressive sampling can become comparatively
expensive thanks to the increased length of byte
sequences. Relatedly, mapping an input token to
its corresponding vector representation in the vo-
cabulary matrix is essentially ‘‘free’’ in terms of
FLOPs since it can be implemented by addressing
a particular row in memory. Therefore, reallocat-
ing parameters from the vocabulary matrix to the
rest of the model will typically result in a model
that requires more FLOPs to process a given input
sequence (see Section 7 for detailed comparison).

Finally, we note that another important metric is
data efficiency, that is, how much data is required
for the model to reach a good solution. For NLP
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Figure 2: Per-language compression rates of the mT5 SentencePiece vocabulary, measured over the mC4
pre-training corpus. For each language, we measure the ratio of UTF-8 bytes to tokens over all mC4 data in
that language.

problems, this can be measured either in terms of
the number of tokens or the amount of raw text
seen during training. Specifically, a byte-level
model trained on the same number of tokens
as a word- or subword-level model will have
been trained on less text data. In Figure 2, we
show the compression rates of mT5 SentencePiece
tokenization, measured as the ratio of UTF-8 bytes
to tokens in each language split of the mC4 corpus
used in pre-training. This ratio ranges from 2.5
(Maltese) to 9.0 (Khmer). When considering the
mC4 corpus as a whole, sampled according to the
mT5 pre-training mixing ratios, we have an overall
compression rate of 4.1 bytes per SentencePiece
token. On the one hand, this 4× lengthening could
be seen as an advantage for ByT5: With longer
sequences, the model gets more FLOPs to spend
encoding a given piece of text. On the other hand,
given a fixed input sequence length and number
of training steps, the model will be exposed to
roughly 4× less actual text during pre-training.

With these factors in mind, we choose to fo-
cus on the following measures of efficiency in
our experiments: parameter count, inference time,
and pre-training efficiency. Parameter count is a
simple and easy-to-measure quantity that directly
relates to the amount of memory required to use a
model. Inference time is a real-world measurement
of the model’s computational cost that represents a
‘‘worst-case’’ measurement for byte-level models
given the potential additional cost of autore-
gressive sampling. Finally, pre-training efficiency
allows us to measure whether byte-level mod-
els can learn a good solution after seeing less
pre-training data.

4 Core Results

In this section, we compare ByT5 against mT5
on a wide range of tasks. We show that ByT5 is

competitive with mT5 on standard English and
multilingual NLP benchmarks and outperforms
mT5 at small model sizes. Additionally, ByT5
excels on free-form generation tasks and word-
level tasks.

For each downstream task, we fine-tune mT5
and ByT5 models for 262,144 steps, using a con-
stant learning rate of 0.001 and a dropout rate of
0.1.4 We use a batch size of 217 tokens by default,
but increased this to 220 for several tasks with
larger training sets (GLUE, SuperGLUE, XNLI,
TweetQA), and decreased to 216 for the Dak-
shina task. In all cases, we select the best model
checkpoint based on validation set performance.

4.1 English Classification Tasks

On the widely adopted GLUE (Wang et al., 2019b)
and SuperGLUE (Wang et al., 2019a) text clas-
sification benchmarks, we find ByT5 beats mT5
at the Small and Base sizes, but mT5 has the
advantage at larger sizes, as shown in Table 2.
The strong performance of ByT5 at smaller sizes
likely stems from the large increase in dense pa-
rameters over mT5. While the overall models are
parameter-matched, most of the mT5 Small and
Base parameters are ‘‘locked’’ in vocab-related
matrices and are only accessed when a particu-
lar token is present. We suspect that replacing
these with ‘‘dense’’ parameters activated across
all examples encourages more efficient parameter
usage and sharing.

4.2 English Generation Tasks

We also compare ByT5 with mT5 on three English
generative tasks. XSum (Narayan et al., 2018) is an
abstractive summarization task requiring models

4For some tasks we observed clear saturation or overfitting
on validation set metrics, and shortened the total fine-tuning
steps: 70,000 for Dakshina, 30,000 for TweetQA, and 10,000
for the SIGMORPHON tasks.
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GLUE SuperGLUE

Model mT5 ByT5 mT5 ByT5

Small 75.6 80.5 60.2 67.8
Base 83.0 85.3 72.5 74.0
Large 87.6 87.0 81.9 80.4
XL 88.7 87.9 84.7 83.2
XXL 90.7 90.1 89.2 88.6

Table 2: mT5 and ByT5 performance on GLUE
and SuperGLUE. For each benchmark, we
fine-tune a single model on a mixture of all
tasks, select the best checkpoint per task based
on validation set performance, and report aver-
age validation set scores over all tasks.

GEM-XSum TweetQA DROP
(BLEU) (BLEU-1) (F1 / EM)

Model mT5 ByT5 mT5 ByT5 mT5 ByT5

Small 6.9 9.1 54.4 65.7 40.0 / 38.4 66.6 / 65.1
Base 8.4 11.1 61.3 68.7 47.2 / 45.6 72.6 / 71.2
Large 10.1 11.5 67.9 70.0 58.7 / 57.3 74.4 / 73.0
XL 11.9 12.4 68.8 70.6 62.7 / 61.1 68.7 / 67.2
XXL 14.3 15.3 70.8 72.0 71.2 / 69.6 80.0 / 78.5

Table 3: mT5 vs. ByT5 on three English gen-
eration tasks, reporting the best score on the
validation set.

to summarize a news article in a single sentence.
For better comparison to recent work, we adopt the
version of the task defined in the GEM benchmark
(Gehrmann et al., 2021). TweetQA (Xiong et al.,
2019) is an abstractive question-answering task
built from tweets mentioned in news articles. This
tests understanding of the ‘‘messy’’ and informal
language of social media. Finally, DROP (Dua
et al., 2019) is a challenging reading comprehen-
sion task that requires numerical reasoning.

Table 3 shows that ByT5 outperforms mT5
on each generative task across all model sizes.
On GEM-XSum, ByT5 comes close (15.3 vs.
17.0) to the best score reported by Gehrmann
et al. (2021), a PEGASUS model (Zhang et al.,
2020) pre-trained specifically for summarization.
On TweetQA, ByT5 outperforms (72.0 vs. 67.3)
the BERT baseline of Xiong et al. (2019). On
DROP, ByT5 comes close (EM 78.5 vs. 84.1) to
the best result from Chen et al. (2020), a QDGAT
(RoBERTa) model with a specialized numeric
reasoning module.

4.3 Cross-lingual Benchmarks

Changes to vocabulary and tokenization are likely
to affect different languages in different ways. To
test the effects of moving to byte-level model-
ing on cross-lingual understanding, we compare
parameter-matched ByT5 and mT5 models on
tasks from the popular XTREME benchmark suite
(Hu et al., 2020). Specifically we evaluate on the
same six tasks as Xue et al. (2021). These con-
sist of two classification tasks: XNLI (Conneau
et al., 2018) and PAWS-X (Yang et al., 2019);
three extractive QA tasks: XQuAD (Artetxe
et al., 2020), MLQA (Lewis et al., 2020), and
TyDiQA (Clark et al., 2020); and one structured
prediction task: WikiAnn NER (Pan et al., 2017).

Table 4 shows that ByT5 is quite competitive
overall. On the most realistic in-language set-
ting, where some gold training data is available
in all languages, ByT5 surpasses the previous
state-of-art mT5 on all tasks and model sizes. On
the translate-train setting, ByT5 beats mT5 at
smaller sizes, but the results are mixed at larger
sizes. We report zero-shot results for complete-
ness, but emphasize that this setting is less aligned
with practical applications, as machine translation
is widely available.5

We explore per-language breakdowns on two
tasks to see how different languages are affected
by the switch to byte-level processing. One might
expect languages with rich inflectional morphol-
ogy (e.g., Turkish) to benefit most from the move
away from a fixed vocabulary. We were also cu-
rious to see if any patterns emerged regarding
language family (e.g., Romance vs. Slavic), writ-
ten script (e.g., Latin vs. non-Latin), character set
size, or data availability (high vs. low resource).

Figure 3 shows the per-language gaps between
ByT5-Large and mT5-Large on TyDiQA-GoldP
and XNLI zero-shot. One notable trend is that the
gap is fairly stable across languages. For exam-
ple, ByT5 is better in each language on TyDiQA-
GoldP, while mT5 is consistently better on XNLI.
Comparing across languages, we observe that
languages with a higher SentencePiece token com-
pression rate (e.g., Thai and Telugu) tend to favor
mT5, whereas those with a lower compression
rate (e.g., Indonesian and Vietnamese) tend to
favor ByT5. We did not observe any robust

5We ignore zero-shot QA tasks, where text-to-text models
are known to exhibit illegal predictions (Xue et al., 2021).
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Small Base Large XL XXL

mT5 ByT5 mT5 ByT5 mT5 ByT5 mT5 ByT5 mT5 ByT5

In-language multitask (models fine-tuned on gold data in all target languages)

WikiAnn NER 86.4 90.6 88.2 91.6 89.7 91.8 91.3 92.6 92.2 93.7
TyDiQA-GoldP 75.9 / 64.8 82.6 / 73.6 81.7 / 71.2 86.4 / 78.0 85.3 / 75.3 87.7 / 79.2 87.6 / 78.4 88.0 / 79.3 88.7 / 79.5 89.4 / 81.4

Translate-train (models fine-tuned on English data plus translations in all target languages)

XNLI 75.3 76.6 80.5 79.9 84.4 82.8 85.3 85.0 87.1 85.7
PAWS-X 87.7 88.6 90.5 89.8 91.3 90.6 91.0 90.5 91.5 91.7
XQuAD 71.3 / 55.7 74.0 / 59.9 77.6 / 62.2 78.5 / 64.6 81.3 / 66.5 81.4 / 67.4 82.7 / 68.1 83.7 / 69.5 85.2 / 71.3 84.1 / 70.2
MLQA 56.6 / 38.8 67.5 / 49.9 69.7 / 51.0 71.9 / 54.1 74.0 / 55.0 74.4 / 56.1 75.1 / 56.6 75.9 / 57.7 76.9 / 58.3 76.9 / 58.8
TyDiQA-GoldP 49.8 / 35.6 64.2 / 50.6 66.4 / 51.0 75.6 / 61.7 75.8 / 60.2 80.1 / 66.4 80.1 / 65.0 81.5 / 67.6 83.3 / 69.4 83.2 / 69.6

Cross-lingual zero-shot transfer (models fine-tuned on English data only)

XNLI 67.5 69.1 75.4 75.4 81.1 79.7 82.9 82.2 85.0 83.7
PAWS-X 82.4 84.0 86.4 86.3 88.9 87.4 89.6 88.6 90.0 90.1
WikiAnn NER 50.5 57.6 55.7 62.0 58.5 62.9 65.5 61.6 69.2 67.7

Table 4: ByT5 and mT5 performance on a subset of XTREME tasks. Our evaluation setup follows
Xue et al. (2021). For QA tasks we report F1 / EM scores.

Figure 3: Per-language performance gaps between
ByT5-Large and mT5-Large, as a function of each
language’s ‘‘compression rate’’. Top: TyDiQA-GoldP
gap. Bottom: XNLI zero-shot gap.

trends regarding morphological complexity, lan-
guage family, script, character set size, or data
availability.

4.4 Word-Level Tasks

Given its direct access to the ‘‘raw’’ text signal,
we expect ByT5 to be well-suited to tasks that
are sensitive to the spelling or pronunciation of
text. In this section we test this hypothesis on
three word-level benchmarks: (i) transliteration,
(ii) grapheme-to-phoneme, and (iii) morphologi-
cal inflection.

Dakshina SIGMORPHON 2020

Transliteration Grapheme-to-Phoneme Inflection
CER (↓) WER (↓) / PER (↓) Accuracy (↑)

Model mT5 ByT5 mT5 ByT5 mT5 ByT5

Small 20.7 9.8 54.0 / 10.6 14.8 / 1.8 66.5 88.3
Base 19.2 9.9 46.2 / 7.7 14.0 / 1.7 70.9 89.3
Large 18.1 10.5 43.5 / 6.7 15.4 / 1.8 75.7 89.7
XL 17.3 10.6 42.0 / 6.0 14.7 / 1.8 77.4 89.9
XXL 16.6 9.6 40.1 / 5.4 13.8 / 1.6 78.0 90.9

Table 5: mT5 vs. ByT5 on three word-level
tasks. Dakshina metrics are reported on the de-
velopment set to be comparable with Roark et al.
(2020). SIGMORPHON metrics are reported on the
test sets.

For transliteration, we use the Dakshina bench-
mark (Roark et al., 2020), which covers 12 South
Asian languages that are traditionally written with
Brahmic or Perso-Arabic scripts but may also be
written using Latin characters in informal con-
texts. The single-word transliteration task asks a
model to ‘‘translate’’ a word from Latin script
to native script and measures character error rate.
The remaining tasks are SIGMORPHON 2020 shared
tasks. Multilingual grapheme-to-phoneme conver-
sion (Gorman et al., 2020) covers 15 languages
and requires mapping a word to its pronunciation
as phonemes (e.g., cat → /kæt/). Typologically di-
verse morphological inflection (Vylomova et al.,
2020) covers 90 languages and requires generat-
ing a specific inflection of a word (e.g., eat + PAST

→ ate).
We fine-tune mT5 and ByT5 models for

each task. For simplicity, we train one multi-
lingual model per task, with a prefix indicating
the language in question. Table 5 shows that
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ByT5 outperforms mT5 by large margins across
the board.6 Although it is unsurprising that
‘‘character-aware’’ models should excel on tasks
around word-internal phenonema, we wish to
highlight that these core NLP tasks have often
been overlooked in evaluating general-purpose
NLP models.

5 Experiments on Synthetic Noise

Text on modern digital platforms is noisy and
exhibits complex character-level phenomena such
as typos, character repetitions, and non-standard
case changes (Caswell et al., 2020). Beyond these,
errors can be introduced by NLP systems such
as predictive input methods and automatic speech
recognition. We have already seen strong ByT5
performance on the ‘‘messy’’ text in TweetQA.
In this section, we move to even noisier text and
explore model performance on inputs that have
been corrupted with artificial noise of various
kinds. Across a range of noising schemes, we find
that ByT5 outperforms mT5, demonstrating higher
robustness to noise across tasks and languages.

We experiment with five noising schemes:
(1) Drop: Each character (i.e., Unicode codepoint)
has a 10% chance of being dropped. (2) Repeti-
tions: Each character has a 20% chance of being
selected for repetition. If selected, 1–3 repetitions
(with equal likelihood) are appended after the
original character. (3) Antspeak: Each character
is capitalized and padded with spaces, so ‘‘an owl’’
becomes ‘‘ A N O W L ’’. (4) Uppercase: Each
character is converted to uppercase. (5) Random
case: Each character is set to a random case (upper
or lower). For the last two noise types, we restrict
to languages whose scripts distinguish case.

We first consider the easier setting of learn-
able noise, where noise is applied during both
fine-tuning and evaluation. We evaluate on XNLI
zero-shot and TyDiQA-GoldP. For XNLI, both
the premise and hypothesis are noised, and the
model predicts an entailment label as usual. For
TyDiQA, we add noise to the question and the
context, but leave the answer unchanged. Thus,
in many cases, the model needs to first locate
the noisy answer, and then ‘‘undo’’ the noise to

6On Dakshina, ByT5 also beats the character-level Trans-
former baseline of Roark et al. (2020) (9.6 vs. 12.2). On
grapheme-to-phoneme, ByT5 beats the state-of-art model of
Yu et al. (2020) (PER: 1.6 vs. 2.8). On inflection, ByT5
matches the best single-model (Peters and Martins, 2020).

Learnable Noise Unseen Noise

XNLI TyDiQA- XNLI
Model (accuracy) GoldP (F1) (accuracy)

Clean mT5 81.1 85.3 81.1
ByT5 79.7 87.7 79.7

Drop mT5 −10.2 −24.0 −18.3
ByT5 −8.2 −19.5 −11.4

Repetitions mT5 −8.5 −9.5 −12.3
ByT5 −4.1 −3.0 −5.9

Antspeak mT5 −32.0 −27.7 −34.4
ByT5 −8.7 −4.8 −24.4

Uppercase mT5 −7.0 −8.0 −8.1
ByT5 −1.5 −0.5 −1.7

Random Case mT5 −25.7 −14.3 −19.2
ByT5 −1.5 −0.2 −5.9

Table 6: Degradation of mT5 and ByT5 under
various types of noise. ‘‘Clean’’ shows original
task performance. Subsequent rows show the delta
from ‘‘clean’’ when adding different types of
noise. Learnable noise is added in training and
eval, while unseen noise only affects eval.

produce the target. We fine-tune all models for
30,000 steps following the procedure in Section 4.

Table 6 shows the differing ability of ByT5 and
mT5 to adapt to learnable noise. We measure the
degradation of the task metric between the clean
and noisy settings. We observe that mT5 degrades
more in the presence of noise than ByT5, across
all noise conditions. In the most extreme contrast,
rANdOm CaSE (often used as an affective device
on social media7) is hugely detrimental to mT5,
with losses of −25.7 and −14.3 points, while
ByT5 only drops by−1.5 and−0.2 points. ByT5 is
also quite robust to UPPERCASE and repetitions.

We also test robustness to noise that is
unseen during training but injected during eval-
uation. This is relevant in making models more
future-proof as well as more resilient to acciden-
tal or adversarial spelling mistakes (Pruthi et al.,
2019; Sun et al., 2020). We evaluate only XNLI
and skip TyDiQA-GoldP in this setting, as it is un-
reasonable to expect a generative model that was
fine-tuned to always copy spans from the context
to spontaneously ‘‘undo’’ corruptions and predict
novel spans. The rightmost column of Table 6
shows that in this more challenging setting, ByT5
is once again more resilient to noise. While some
types of unseen noise like A N T S P E A K

7For example, see https://knowyourmeme.com
/memes/mocking-spongebob.
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Model Params Description

ByT5-Large 1.23B Baseline ByT5 model
mT5-Large 1.23B Baseline mT5 model

(a) ByT5-36/12-668M 668M encoder:36, decoder:12
(b) ByT5-24/24-718M 718M encoder:24, decoder:24
(c) ByT5-12/36-768M 768M encoder:12, decoder:36

(d) mT5-36/12-1.18B 1.18B encoder:36, decoder:12

(e) ByT5-Large-Span3 1.23B Mean noise span 3.0
(f) ByT5-Large-Span40 1.23B Mean noise span 40.0

(g) CharT5-36/12-1.23B 1.23B 47K character vocab

Table 7: Models used in our ablation study.

are highly detrimental, ByT5 sees only minor
degradations for casing noise.

Our findings echo the results of Durrani et al.
(2019), who find that character-level models are
more robust to real and synthetic noise than BPE
or word-based models, across a range of mor-
phological, syntactic, and semantic tagging tasks.
The more general conclusion that emerges is that
token-free models are more robust to noise across
many tasks.

6 Ablation Study

To better understand the importance of various
design choices, we train ablation models and
compare these against our baselines on three tasks:
XNLI zero-shot, TyDiQA-GoldP, and GEM-
XSum. Our baselines and ablations are listed in
Table 7. The baselines are the parameter-matched
ByT5-Large and mT5-Large models discussed
above.

6.1 Matched Transformer Layer Size

Model (a) ByT5-36/12-668M is identical to ByT5-
Large except that dmodel and dff are matched to
mT5-Large, giving a model with 668 million
parameters, ∼54% the size of ByT5-Large and
mT5-Large. As seen in Table 8, this model is still
competitive, and outperforms the roughly similarly
sized mT5-Base by a large margin (cf. Table 4).
This is evidence that the value of ByT5 does not
come solely from using wider transformer layers.

6.2 Encoder/Decoder Balance

To investigate the effect of decoupling encoder
and decoder depth, we train two additional ByT5

XNLI TyDiQA- GEM-XSum
Model (Accuracy) GoldP (F1) (BLEU)

ByT5-Large (1.23B) 79.7 87.7 11.5
mT5-Large (1.23B) 81.1 85.3 10.1

(a) ByT5-36/12-668M 78.3 87.8 12.3
(b) ByT5-24/24-718M 75.4 83.0 7.1
(c) ByT5-12/36-768M 73.5 83.1 8.3

(d) mT5-36/12-1.18B 81.5 87.1 10.8

(e) ByT5-Large-Span3 79.4 87.4 10.2
(f) ByT5-Large-Span40 78.9 88.3 12.6

(g) CharT5-36/12-1.23B 79.0 87.6 11.2

Table 8: Ablation model results across three tasks.

models with dmodel and dff matched to mT5-
Large: (b) ByT5-24/24-718M, a ‘‘balanced’’ model
with 24/24 encoder/decoder layers, and (c) ByT5-
12/36-768M, a ‘‘heavy decoder’’ model. As de-
coder layers have extra parameters used for
decoder-encoder attention, these models are big-
ger than our default heavy encoder setup. Yet
despite the extra parameters, these configurations
underperform on all tasks, including even the gen-
erative GEM-XSum task that we might expect to
benefit from a stronger decoder.

To test whether a heavier encoder benefits mT5
as well, we train (d) mT5-36/12-1.18B, a model
with the same configuration as mT5-Large, but
switching to 36/12 encoder/decoder layers. As
with ByT5, we observe benefits across all three
tasks. However, the gains (+0.4, +1.8, +0.7) are
much smaller than those of ByT5 (+2.9, +4.8,
+5.2).

We suspect a heavy encoder may be partic-
ularly important in vocabulary-free models as
the encoder stack must stand in for the missing
high-capacity token embedding matrix, allowing
the model to learn a ‘‘soft lexicon’’ covering po-
tentially millions of idiosyncratic mappings from
word forms to meanings. In concurrent work,
Wies et al. (2021) also observe that models with
tiny vocabularies benefit from additional depth.
One reason the decoder may not need as much
capacity is that in inference, the decoder is run au-
toregressively, using a full forward pass for every
token prediction. Given the increased resolution
of byte sequences, this means ByT5 predictions
will benefit from 2–9 times more passes through
the decoder stack depending on the language (see
Figure 2), as compared to mT5. In this light, even
a shallower byte decoder may be sufficient to
compete with a larger subword decoder.
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6.3 Masked Span Length

The T5 mean span length hyperparameter controls
the average length of the masked spans used in
the unsupervised pre-training objective. For T5
and mT5, this was 3 SentencePiece tokens. For
ByT5, we hypothesize that predicting such short
byte-spans would be too easy of a task, as this
would often just require reconstructing part of a
single word (regardless of language). Our final
ByT5 models use mean span length of 20 bytes,
which results in more challenging reconstruction
tasks. We also show ablations (e–f) with span
length 3 and 40. Table 8 shows that our baseline
with length 20 performs the best on the classi-
fication task XNLI, whereas length 40 performs
better on TyDiQA-GoldP and GEM-XSum, both
of which require generating a natural language
text output.

6.4 Character Vocabulary

A character-level vocabulary serves as an interme-
diate point between a large subword vocabulary
and a tiny byte vocabulary. As a point of com-
parison, we train (g) CharT5-36/12-1.23B: a
model with a vocabulary of 47,198 characters,
the same encoder/decoder ratio as ByT5, and the
same overall parameter count as ByT5-Large and
mT5-Large. To achieve this matched parameter
count, we set dmodel=1376 and dff=3840. The re-
sulting proportion of vocab-related parameters is
11% (compared to 42% for mT5-Large and 0.06%
for ByT5-Large). The vocabulary itself is imple-
mented using the SentencePiece library, but with
an added restriction that tokens may only repre-
sent single characters. The characters cover all
those seen in a sample of 4 million documents
taken from the mC4 pre-training corpus, mixing
languages with the ratios used during pre-training.
We use the byte-level fallback mechanism, so no
character is out-of-vocabulary.

Table 8 shows that CharT5 is fairly competitive,
but performs slightly worse than ByT5 on all
three tasks. We suspect this may be due to two
factors: (i) CharT5 reserves a capacity for rare
characters, and these parameters would be better
allocated in the transformer layers, and (ii) using
UTF-8 bytes increases the sequence length for
non-ASCII text, resulting in extra computational
budget for encoding and decoding languages with
non-Latin scripts.

sequences / sec einsum ops ×1e12

mT5 ByT5 mT5 ByT5

Small 1646 1232 (0.75×) 87 98 (1.13×)
Base 747 576 (0.77×) 168 194 (1.15×)
Large 306 232 (0.76×) 346 416 (1.20×)
XL 94 70 (0.74×) 1000 1220 (1.22×)
XXL 33 25 (0.76×) 1660 2070 (1.25×)

Table 9: Pre-training speed and computation
of mT5 vs. ByT5. Left: Sequences per second
pre-training on a TPUv3-64 device. Right: Total
einsum operations for a forward pass, as logged
by the T5 framework.

Grapheme-to-Phoneme Dakshina

mT5 ByT5 mT5 ByT5

Small 1223 1190 (1.0×) 9483 6482 (1.5×)
Base 726 932 (0.8×) 7270 4272 (1.7×)
Large 387 478 (0.8×) 4243 2282 (1.9×)
XL 280 310 (0.9×) 2922 1263 (2.3×)
XXL 150 146 (1.0×) 1482 581 (2.6×)

XNLI GEM-XSum

mT5 ByT5 mT5 ByT5

Small 8632 1339 (6.4×) 750 202 (3.7×)
Base 5157 687 (7.5×) 450 114 (3.9×)
Large 1598 168 (9.5×) 315 51 (6.2×)
XL 730 81 (9.0×) 162 25 (6.4×)
XXL 261 33 (8.0×) 61 10 (6.3×)

Table 10: Average inference examples per sec-
ond on the test sets of word-level tasks (top)
and sentence- or document-level tasks (bottom).
We use a TPUv3-128 for GEM-XSum, and a
TPUv3-32 elsewhere.

7 Speed Comparisons

Table 9 compares the pre-training FLOPs of ByT5
vs. mT5, as well as the pre-training speed on
fixed hardware, as sequences per second with
sequence length of 1024. Across all model sizes,
ByT5 requires ∼1.2× more operations, resulting
in ∼0.75× as many sequences per second.

Table 10 compares the inference speed of ByT5
and mT5 by measuring the average number of
inference predictions per second across four tasks.
On word-level tasks, ByT5 is fairly competi-
tive: on SIGMORPHON 2020 Grapheme-to-Phoneme,
where targets are written using the International
Phonetic Alphabet, ByT5 and mT5 have simi-
lar inference speed; on Dakshina transliteration,
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ByT5 is 1.5 to 2.6 times slower. On tasks with
longer input sequences, the slowdown is more
pronounced: On GEM-XSum8 (document sum-
marization), ByT5 is 3.7 to 6.4 times slower
than mT5, while on XNLI zero-shot classifica-
tion it is 6.4 to 9.5 times slower. More generally,
we observe that—as expected due to its deeper
encoder and shallower decoder—ByT5 achieves
more competitive inference speed (relative to
mT5) on tasks with short inputs and/or long tar-
gets. In this light, XNLI represents something of
a worst-case, where inputs are sentence pairs and
labels are single digits {0, 1, 2}.

The time required for fine-tuning is also variable
across tasks. When holding batch size constant at
a fixed number of tokens, we find that ByT5
typically takes more fine-tuning steps than mT5
to reach optimal performance on a holdout set.
For example, ByT5-Large took 1.2× as many
steps as mT5-Large to reach peak validation
performance on XNLI zero-shot, 2.6× as many
steps for TyDiQA-GoldP, and 4.5× as many for
GEM-XSum. This overall trend is expected, in
that fewer labeled examples fit into each ByT5
fine-tuning batch. However, on tasks that strongly
favor byte-level representations, ByT5 reaches
peak performance in fewer fine-tuning steps,
suggesting that the model can generalize bet-
ter from a small number of training examples.
For example, ByT5-Large took 2.5× fewer steps
than mT5-Large to reach peak performance on
Dakshina.

Overall, we believe that the additional pre-
training cost (roughly +33% wall time) and the
additional fine-tuning cost (for some tasks) is
justified in non-latency-sensitive applications by
the benefits of reduced system complexity, bet-
ter robustness to noise, and improved task per-
formance on many benchmarks.

8 Conclusion

In this work, we presented ByT5, a token-free
variant of multilingual T5 (Xue et al., 2021) that
simplifies the NLP pipeline by doing away with
vocabulary building, text preprocessing and tok-
enization. On downstream task quality, ByT5 is
competitive with parameter-matched mT5 models

8To stay within reasonable memory requirements for the
XXL models, we filter out GEM-XSum examples with inputs
longer than 8192 characters (less than 1% of the data).

that rely on SentencePiece vocabulary. Specifi-
cally, ByT5 outperforms mT5 in any of these five
scenarios: (1) at model sizes under 1 billion param-
eters, (2) on generative tasks, (3) on multilingual
tasks with in-language labels, (4) on word-level
tasks sensitive to spelling and/or pronunciation,
and (5) in the presence of various types of noise.

While beating mT5 in many cases, ByT5
slightly underperformed in certain conditions—
most notably, on English classification tasks for
model sizes over 1 billion parameters. In future
work, it will also be important to evaluate token-
free approaches on a more diverse set of tasks,
especially those where character-based models
have traditionally struggled. These include word
similarity tasks (Hiebert et al., 2018), syntactic and
semantic tagging tasks (Durrani et al., 2019), and
machine translation from a non-English source
into English (Shaham and Levy, 2021).

Through ablations, we showed that byte-level
encoder-decoder models benefit from a ‘‘heavier’’
encoder (decoupling encoder and decoder depth),
and that the pre-training task benefits from mask-
ing longer ID sequences. We also showed that
for fixed parameter count, character-level models
give similar but somewhat worse results.

Interestingly, the gains we observe with ByT5
are achieved despite the model being pre-trained
on 4× less text than mT5. This suggests that byte-
level models may be more data efficient learners.

These gains in design simplicity, task quality
and data efficiency come at the cost of additional
computation. Our ‘‘hands-off’’ approach of feed-
ing raw UTF-8 bytes directly into the Transformer
costs +33% pre-training time, as well as longer
inference time (up to 10× slower in the worst
case). As such, there is significant room for im-
provement. We believe techniques such as hash
embeddings, local attention and down-sampling
(Clark et al., 2021), as well as sparse computation
(Fedus et al., 2021) can help address latency is-
sues, removing the remaining barriers to a token-
free future.
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