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Introduction

It is our great pleasure to welcome you to the third edition of SustaiNLP: Workshop on Simple and Effi-
cient Natural Language Processing.

The Natural Language Processing community has, in recent years, demonstrated a notable focus on im-
proving higher scores on standard benchmarks and taking the lead on community-wide leaderboards
(e.g., GLUE, SentEval). While this aspiration has led to improvements in benchmark performance of
(predominantly neural) models, it has also came at a cost, i.e., increased model complexity and the ever-
growing amount of computational resources required for training and using the current state-of-the-art
models. Moreover, the recent research efforts have, for the most part, failed to identify sources of em-
pirical gains in models, often failing to empirically justify the model complexity beyond benchmark
performance.

Because of these easily observable trends, we organized the SustaiNLP workshop with the goal of pro-
moting more sustainable NLP research and practices, with two main objectives: (1) encouraging develo-
pment of more efficient NLP models; and (2) providing simpler architectures and empirical justification
of model complexity. For both aspects, we encouraged submissions from all topical areas of NLP.

Besides the original research papers (short and long), we encouraged cross-submissions of work that
has been published at other events as well as extended abstracts of work in progress that fit the scope
and aims of the workshop (only the original research papers, however, are included in these workshop
proceedings).

This year, we received 17 submissions from ARR, proposing a multitude of viable resource-efficient
NLP methods and spanning a wide range of NLP applications. We have selected 8 submissions for pre-
sentation at the workshop, yielding an acceptance rate of 47%.

Many thanks to the ARR program committee and our senior area chairs for their thorough and thoughtful
reviews. We would also like to thank to our panelists and invited speakers whose discussions and talks
we strongly believe will make the workshop exciting and memorable.

We are looking forward to the third edition of the SustaiNLP workshop!

SustaiNLP Organizers
November 2022
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Efficient Two-Stage Progressive Quantization of BERT

Phuoc-Hoan Charles Le, Arash Ardakani, Amir Ardakani, Hang Zhang, Yuyan Chen,
James J. Clark, Brett H. Meyer, Warren J. Gross

McGill University
Montreal, Canada

Abstract

The success of large BERT models has raised
the demand for model compression methods
to reduce model size and computational cost.
Quantization can reduce the model size and
inference latency, making inference more ef-
ficient, without changing its stucture, but it
comes at the cost of performance degradation.
Due to the complex loss landscape of ternar-
ized/binarized BERT, we present an efficient
two-stage progressive quantization method in
which we fine tune the model with quantized
weights and progressively lower its bitwidth,
and then we fine tune the model with quantized
weights and activations. At the same time, we
strategically choose which bitwidth to fine-tune
on and to initialize from, and which bitwidth
to fine-tune under augmented data to outper-
form the existing BERT binarization methods
without adding an extra module, compressing
the binary model 18% more than previous bi-
narization methods or compressing BERT by
31x w.r.t. to the full-precision model. Without
data augmentation, we can outperform existing
BERT ternarization methods.

1 Introduction

BERT (Devlin et al., 2019) models have demon-
strated remarkable performance on NLP tasks.
However, their memory and high computational
cost make it difficult to fit them onto edge devices
with limited resources for inference.

Recently, a number of methods have been devel-
oped to reduce the number of trainable parameters
of BERT such as (Sun et al., 2020; Jiao et al., 2020).
However, some edge devices require low-precision
models for deployment due to the structure of
their arithmetic units (Cortex-M, 2020). There-
fore, quantization of BERT-based models is needed
to avoid/minimize costly floating-point operations.

Previous works have tried to quantize BERT
models. TernaryBERT (Zhang et al., 2020) used
knowledge distillation to transfer the knowledge

(a) Full-precision BERT (b) 8 Bit BERT

(c) 4 Bit BERT (d) Ternary BERT

Figure 1: Loss landscape of the BERT model on the
MRPC dataset with different weight bits.

of the full-precision BERT to a BERT model with
weights that are ternarized into {−1, 0, 1} using 2
bits. BinaryBERT (Bai et al., 2021) binarized the
weights into {−1, 1} using 1 bit by exploiting the
adaptive width property of DynaBERT (Hou et al.,
2020) using a method called ternary weight split-
ting. BiBERT (Qin et al., 2022) managed to outper-
form (Bai et al., 2021) when binarizing acitvations
and binarizing weights. However, there is always a
performance loss associated with all the aforemen-
tioned methods when using ternary weights and to
keep competitive performance, data augmentation
from (Jiao et al., 2020) is needed, requiring up to
60x more data as shown in Table 8. For binary
weights, the architecture is also modified and an
extra module is added and with BiBERT’s method
alone it cannot reach the full precision performance.
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More details will be explained on Appendix E on
the BiBERT on non binary activations and weights.

A binarized/ternarized BERT has a lot more com-
plex landscape than a full-precision BERT (Bai
et al., 2021) as shown in Figure 1, so training
ternary/binary model from scratch could cause the
model to get trapped in a poor local minima. There-
fore, we use a two-stage progressive quantization
method inspired by (Zhuang et al., 2018). In the
first stage, we progressively lower the bitwidth
of weights, and subsequently fine-tune the model.
More specifically, the model with a larger bitwidth
is used to initialize the model for fine-tuning on
a smaller bitwidth of weights. After reaching the
best performance with quantized weights (e.g., bi-
nary weights), the BERT model is then fine-tuned
with quantized activations as the second stage of
the quantization method. Activations are also pro-
gressively quantized until the desired quantization
bitwidth in a similar fashion.

However, for example, applying the method
from (Zhuang et al., 2018) to ternarize BERT,
naively, costs too much time (or up to 1.67x longer
than necessary) with data augmentation used for
every bitwidth of weights, with no performance
gain as shown in Table 3. We therefore propose
an efficient two-stage progressive quantization (ET-
SPQ) method in which we choose which bitwidth
to progressively fine-tune on and which bitwidth
to fine-tune under augmented data to save training
time and achieve the best possible performance.

We are the first to ternarize the weights of BERT,
compressing it by 14.9x while outperforming the
full-precision model performance across nearly all
GLUE datasets and without data augmentation it
can outperform existing BERT ternarization meth-
ods. Also, we outperform the state-of-the-art BERT
binarization in performance without adding an ex-
tra module, compressing the model 18% more than
(Bai et al., 2021).

2 Preliminaries

A quantized model has a set of full precision
weights, w. For the forward pass, a quantization
function from (Li et al., 2016) is used to ternarize
each element wi in the weight matrix w into ŵt

i by

ŵt
i =

{
α(sign(wi)), |wi| ≥ ∆

0, |wi| < ∆
(1)

where ∆ = 0.7
n ∥w∥1, α = 1

|I|
∑

i∈I |wi|, and I =

{i|wi ̸= 0}. α is a scaling factor that is multiplied
by ternary values.

For binarization, wi is binarized into ŵb
i dur-

ing inference using the binarization method from
(Rastegari et al., 2016) by

ŵb
i = α(sign(wi)) (2)

where α = 1
n∥w∥1. α is a scaling factor that is

multiplied by binary values. The activations x are
quantized into x̂ using the quantization function

x̂ = round((x− xmin)/s) · s+ xmin. (3)

where s = (xmax − xmin)/(2
bitwidth − 1)

For training, we calculate the gradient of the
distillation loss from Eq. 16 w.r.t the quantized
weights and update the full-precision weight of the
quantized model. Since the quantization function
in Eq 1, 2, and 3 are not differentiable, a straight-
through estimator adopted by (Courbariaux et al.,
2015) is used to back propagate through the quan-
tization function 1, 2, and/or 3. With this, the gra-
dient ∂x̂

∂x is approximated as an identity, so ∂L
∂x can

be calculated as

∂L

∂x
=

∂L

∂x̂

∂x̂

∂x
(4)

In our work, we use the knowledge distillation
method from (Zhang et al., 2020; Bai et al., 2021)
during fine-tuning as shown in Eq. 16. Which
parts of the BERT are quantized can be seen on
Appendix A.

3 Efficient Two Stage Progressive
Quantization Method

With the complex loss landscape of binary/ternary
models, training with binary/ternary weights and
with quantized activations directly could lead the
BERT model to converge to a poor local mini-
mum. Therefore, we use an efficient two-stage
progressive quantization (ETSPQ) method. The
details of the ETSPQ method are provided in Alg
1. In the first stage, we progressively lower the
bitwidth of weights down to binary (or to our de-
sired bitwidth) while fine-tuning it on the target
downstream task. The first stage allows us to have
a good starting point as we are going to use our bi-
narized/ternarized model weights to then fine-tune
the model with quantized activations. In the 2nd

stage, with our binarized/ternarized model weights,
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Model W-A Size (MB) FLOPs (G) CoLA SST2 MRPC STS-B QNLI QQP MNLI-m RTE avg
Full precision 32-32 417.6 22.5 59.9 93.6 87.3 89.6 91.8 91.4 84.7 72.9 83.9
TernaryBERT 2-8 28.0 6.4 55.7 92.8 87.5 87.7 91.5 90.1 83.5 72.2 82.6

ETSPQ w/o aug. 2-8 28.0 6.4 55.4 93.2 87.7 89.3 91.8 91.4 84.8 74.0 83.1
ETSPQ 2-8 28.0 6.4 58.8 93.9 88.0 89.8 92.0 91.4 84.8 76.9 84.5

BinaryBERT 1-8 16.5 3.1 55.5 93.2 86.0 89.2 91.6 91.2 84.2 74.0 83.1
ETSPQ 1-8 13.4 3.1 55.6 93.9 88.2 89.6 91.6 91.3 84.2 74.7 83.6

BinaryBERT 1-4 16.5 1.5 53.3 93.7 86.0 88.6 91.4 91.2 83.9 71.5 82.6
ETSPQ 1-4 13.4 1.5 56.2 93.0 88.2 88.9 90.6 91.0 83.6 74.7 83.2

Table 1: Quantization performance for GLUE dev dataset. W-A stands for the bit width of weights and activations.

we then progressively lower the activation bits.

However, to save training time at the same time
getting the best possible performance, we choose
which bitwidth to finetune on and to initialize from
and which bitwidth to fine-tune under augmented
data based on the performance of BERT under that
bitwidth, unlike (Zhuang et al., 2018).

Algorithm 1: Two-stage progressive quan-
tization

Input: Train/Dev data or Aug train data;
32-bit teacher model; Student model
initialized from the teacher model

Output: student model with k-bit weights
and p-bit activations

/* Progressively reduce
bitwidth of weights */

1 wbits = [32, 8, 2, 1]; abits = [32, 8, 4]
2 for k in range(1,4) do
3 -Initialize the student model weights

from a model with wbits[k-1] bit
weights

4 -Use augmented data if wbits[k] ≤ 2,
else use non-augmented data

5 for epoch=1,...,max epoch do
6 for t=1,...,data size do
7 train student and quantize

student with wbits[k] bit
weights and save the best
student model

/* Progressively reduce
bitwidth of activations */

8 for p in range(1,3) do
9 -Initialize the student model weights

from a model with wbits[k] bit weights
and abits[p-1] bit activations

10 for epoch=1,...,max epoch do
11 for t=1,...,data size do
12 train the quantized student

model with abits[p] bit
activations and wbits[k] bit
weights and save the best
student model

3.1 Selective Bitwidth Finetuning

Rather than progressively quantizing
weights/activations i.e., 32-bit→16-bit→8-
bit→4-bit→2-bit→1-bit as in (Zhuang et al.,
2018) for each stage, we progressively quantizes
the weights, i.e., 32-bit→8-bit →2-bit→1-bit,
in the first stage, and then the activations, i.e.,
32-bit→8-bit→4-bit, in the second stage, as we
found that for BERT, the performance doesn’t
change a lot if we fine-tune for more different
bit-widths as shown in Table 2. From (Bai et al.,
2021), the performance doesn’t drop until weights
are ternarized and there is no point in fine-tuning
a 16-bit BERT model since an 8-bit BERT model
could reach the same performance as the full
precision.

Also, the performance barely changes when us-
ing a 4-bit BERT model as a starting point versus
using a 8-bit BERT model as a starting point when
finetuning a 2-bit BERT model, so we just use an
8-bit BERT model as a starting point.

3.2 Selective Data Augmentation

Data augmentation was used on BERT with ≤ 2
bit weights. Applying data augmentation for ≥ 8
bit BERT model is not necessary since the perfor-
mance doesn’t drop w.r.t to the full-precision BERT
as shown in Table 5, meaning that it is able to find
the optimal point without data augmentation.

4 Experiments

We measure the performance of ETSPQ on GLUE
(Wang et al., 2018) and compare ETSPQ with the
latest ternarization/binarization methods.

Using the V100 GPU, we fine tune with a batch
size of 16 for CoLA, and 32 for other datasets and
we use AdamW (Loshchilov and Hutter, 2019) with
weight decay of 0.01 and learning rate of 5e-5 with
a linear learning rate scheduler for five epochs.

3



4.1 Results
The GLUE benchmark consists of different natu-
ral language tasks. We evaluate the performance
on Table 1 on the dev set, using Matthews corre-
lation for CoLA (Warstadt et al., 2019); accuracy
for SST2 (Socher et al., 2013), QNLI (Rajpurkar
et al., 2016), MNLI (Williams et al., 2018), and
RTE (Bentivogli et al., 2009); accuracy for MRPC
(Dolan and Brockett, 2005) and QQP (Chen et al.);
and, Spearman correlation for STS-B (Cer et al.,
2017). Also, the average performance for all dev
datasets is reported in the last column of Table 1.

Table 1 shows using our method we can ternar-
ize BERT, compressing it by 14.9x and get a
performance greater than or equal to that of the
full-precision model on all GLUE development
datasets, except for CoLA while using data aug-
mentation and 8-bit activations. ETSPQ method
still achieves a better performance on average com-
pared to TernaryBERT even without data augmen-
tation.

With binary weights and 8-bit activations, we
outperform BinaryBERT (Bai et al., 2021) on all
GLUE development sets. With binary weights and
4-bit activations, our ETSPQ on average outper-
forms BinaryBERT. At the same time, we get a
reduction of 18% w.r.t (Bai et al., 2021) model size
because (Bai et al., 2021) has an embedding layer
twice the size as BERT embedding layer.

Ternarizing the weights and quantizing the acti-
vations to 8 bits allows us to reduce the inference
flops by at least 7x while binarizing the weights
and quantizing the activations to 4 bits allows us
to reduce the flops by 15x. Therefore, 7x and 15x
speedup will be gained for inference, respectively
on CPU.

4.2 Ablation Studies
In this section, we test the performance of data
augmentation under certain bitwidth settings and
test the performance of different bit reduction set-
tings. For all different cases, knowledge distillation
method from (Zhang et al., 2020) is applied during
fine-tuning.

4.2.1 Importance of bit reduction settings
In this section, we test out the performance of cer-
tain bit reduction settings, unlike (Zhuang et al.,
2018) without using data augmentation. We test
these settings on a BERT model with ternary
weights and full precision activations with the same
hyperparameters as before. For example, "32→2"

Setting CoLA SST2 MRPC STS-B QNLI
32→16→8→4→2 55.4 93.2 88.0 89.3 91.9

32→16→8→2 53.4 93.2 87.0 89.1 91.5
32→16→2 53.6 93.1 87.0 89.2 91.4

32→8→4→2 53.7 93.1 88.0 89.3 91.9
32→8→2 55.2 93.2 87.7 89.3 91.8
32→4→2 54.7 93.2 87.7 89.3 91.8

32→2 52.7 92.8 87.0 88.6 91.4

Table 2: Results of different progressive quantization
settings

Setting CoLA SST2 MRPC STS-B QNLI
32→16→8→4→2 50 205 21 36 510

32→16→8→2 40 168 16 29 403
32→16→2 30 125 12 20 303

32→8→4→2 39 170 15 28 405
32→8→2 29 123 12 21 301
32→4→2 30 124 12 20 302

32→2 20 80 8 14 203

Table 3: Runtime for different progressive quantization
settings in minutes.

means fine-tuning the ternary model with the ini-
tialization of the full-precision finetuned BERT.

From Table 2, we can see that fine-
tuning for more bitwidths doesn’t necessar-
ily get us more performance. For example,
"32→8→4→2" has almost the same performance
as "32→16→8→4→2" with "32→16→8→4→2"
outperforming only on CoLA and on SST-2.
"32→8→2" also has almost the same performance
as "32→16→8→4→2", but "32→8→2" only falls
behind on MRPC, CoLA, QNLI by at most 0.3
points.

Therefore, the full-precision model is a good
initialization point when fine-tuning an 8 bit model.
When the 8 bit model reaches the optimal point, the
8 bit model will also be a good intialization point
when fine-tuning a 2 bit model and the resulting
2 bit model will also have a good performance.
Therefore, to get the best tradeoff in terms of speed
and performance, it is better to use the bit reduction
setting, "32→8→2".

4.2.2 Progressively Quantize Weights First or
Activations First?

Setting CoLA SST2 MRPC STS-B QNLI
32→8→2→2+8 55.4 93.2 87.7 89.3 91.8

32→32+8→8+8→2+8 55.3 93.2 87.8 89.0 91.5

Table 4: Performance of progressively reducing weight
bitwidth first vs activation bitwidth first.

We also evaluate whether it is better to first pro-
gressively reduce the bitwidth of activations or to
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first progressively reduce the bitwidth of weights
while fine-tuning. As seen in Table 4, there is negli-
gible performance drop when trying to first progres-
sively reduce the bitwidth of activations. Results in
Table 4 are recorded using a ternary BERT with 8
bit activations, using weight bit reduction settings,
"32→8→2".

4.2.3 Importance of selective Data
Augmentation

CoLA MRPC SST2
Weight Bits -aug +aug -aug +aug -aug +aug

16 62.0 61.5 88.1 87.9 93.6 93.8
8 62.3 62.9 88.0 88.0 94.3 94.4
4 59.0 58.5 88.0 88.0 93.9 93.7
2 54.1 58.5 87.7 88.2 93.1 93.9
1 47.2 52.6 84.5 87.3 92.4 93.5

Table 5: Results of data augmentation on different
weight bitwidths.

In this section, we evaluate the importance of
applying data augmentation under certain bitwidths.
This helps us to determine which bitwidth to train
with data augmentation to get the best performance
which will then be used as initialization point when
fine tuning the lower bitwidth model. From Table
5, using data augmentation for an ≥ 8 bit BERT
does not improve the performance by a lot as we
can see that 8 and 16 bit BERT has almost the
same performance. Therefore, data augementation
is best when fine-tuning on a ≤ 2 bit BERT.

5 Conclusion

In this work, we introduced an efficient two-stage
progressive quantization method to solve the prob-
lem of irregular and complex landscape of BERT
incurred by the binarization/ternarization of its
weights and to reduce the training burden of pro-
gressive quantization. We are the first to out-
perform the state-of-the-art binarization method
of BERT model without adding an extra module.
Moreover, our ternary BERT can outperform the
performance of its full-precision counterpart. Also,
we can outperform the state-of-the-art BERT model
with ternary weights on almost all GLUE datasets
without the use of data augmentation.
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A Bert Quantization:

BERT contains N identical transformer encoder
layers with the same architecture but with different
parameters. A transformer layer usually contains a
Multi-Head Attention (MHA) module and a Feed-
Forward Network (FFN) module. Before the input
goes through the transformer layers, the input first
gets processed at the embedding layer as

H1 = EMWE (z) + EMWS (z) + EMWP (x) (5)

where EM is the embedding function that uses the
indices z to extract the word, segmentation and po-
sition embeddings from the WE , WS , WP lookup
tables, respectively. WE , WS , WP are learnable
parameters. Then the output of the embedding
layer H1 becomes the input for the first transformer
layer.

In the l-th Transformer layer, the input Hl ∈
Rn×d where n and d are the sequence length and
hidden state size, respectively, first goes through
the MHA module. In the MHA module with NH

attention heads, the head contains the parameters,
WQ

h , WK
h , WV

h ∈ Rd×dh where dh = d
NH

. Using
the dot product of queries and keys from the input,
the attention scores are calculated as:

Ah = QK⊤ = HlWQ
h (HlWK

h )⊤ (6)

The softmax function is then applied on the at-
tention scores to get the output of each head, headh
as

headh = Softmax(
Ah√
d
)HlWV

h (7)

The output of the multi-head attention is calculated
as:

MHA(Hl) = Concat(head1, ..., headNH
)WO

(8)
A layer normalization is then applied on the out-

put of MHA plus the input of the MHA as shown
below

Xl = LN(MHA(Hl) + H1) (9)

Then the output of that layer-normalization, Xl,
is then inputed into the FFN layer which has two
linear layers containing the parameters, WInt ∈
Rd×4d and WOut ∈ R4d×d. The output of FFN

can be calculated as

FFN(Xl) = GeLU(XlWInt + bInt)WOut + bOut

(10)
Then, a layer normalization is then applied on

the output of FFN plus the input of the FFN as
shown below

Hl+1 = LN(FFN(Xl) + X1) (11)

Following (Zafrir et al., 2019; Zhang et al., 2020;
Bai et al., 2021), we quantize the weights WE from
eq. 5, WQ, WK , WV from eq. 6 and 7, WO from
eq. 8, WInt and WOut from eq. 10 and also quan-
tize the inputs which will be multiplied by these
weights. WS , WP and the biases are not quantized
as told in (Zhang et al., 2020; Bai et al., 2021),
because these parameters’ sizes are negligible and
operations in the softmax, layer normalization and
the task specific layer are kept in full precision
because the parameters in these operations are neg-
ligible and quantizing them can significantly hurt
the performance.

(Zhang et al., 2020) proposed TernaryBERT to
ternarize the weights and quantized the activations
to 8 bits using layer wise knowledge distilation
from (Jiao et al., 2020) to transfer the knowledge
of a full precision model to a ternary model by min-
imizing the mean-squared error (MSE) between the
teacher embedding output HT

1 and the student em-
bedding output HS

1 as shown in Eq. 12; between the
teacher multi-head attention (MHA) scores AT and
the student MHA output AS as shown in Eq. 14;
and between teacher feed-forward network (FFN)
HT

l and the student FFN output HS
l as shown in Eq.

13. And by minimizing the soft cross-entropy loss
between the student’s logit yS and the teacher’s
logit yT as shown in Eq. 15.

Lemb = MSE(HS
1 ,HT

1 ) (12)

Ltrm =

L∑

l=1

MSE(HS
l ,HT

l ) (13)

Latt =
L∑

l=1

MSE(AS
l ,AT

l ) (14)

Lpred = SCE(yS , yT ) (15)

L = Lpred + Lemb + Ltrm + Latt (16)

7



Model W-A Size (MB) CoLA SST2 MRPC STS-B QNLI QQP MNLI-m RTE avg
Full precision 32-32 417.6 51.1 92.8 88.1/83.3 87.0/85.8 90.8 71.2/89.2 84.5 70.2 81.6
TernaryBERT 2-8 28.0 47.8 92.9 87.5/82.6 84.3/82.7 90.0 70.4/88.4 83.0 68.4 80.1

ETSPQ 2-8 28.0 50.8 93.1 88.1/83.7 86.3/85.2 90.9 71.4/89.3 84.3 70.0 81.5
BinaryBERT 1-8 16.5 51.6 91.9 85.9 82.3 89.8 89.0 84.1 67.3 80.2

ETSPQ 1-8 13.4 50.0 93.0 87.6 84.8 90.1 89.1 83.9 67.5 80.8
BinaryBERT 1-4 16.5 47.9 93.1 86.6 82.9 89.7 89.0 83.6 65.8 79.8

ETSPQ 1-4 13.4 46.9 93.0 87.0 84.5 89.3 89.0 83.5 68.0 80.2

Table 6: Quantization performance for GLUE test dataset. For binary weights, we only compare accuracy for QQP,
F1 for MRPC, and Spearman Correlation for STS-B because in (Bai et al., 2021), results are only represented in
these metrics.

Model W-A SQuAD2.0
Full precision 32-32 75.2/77.9
TernaryBERT 2-8 73.3/76.6

ETSPQ 2-8 74.5/77.5
BinaryBERT 1-8 73.6/76.5

ETSPQ 1-8 73.9/76.8
BinaryBERT 1-4 72.5/75.4

ETSPQ 1-4 72.1/75.2

Table 7: Our performance vs state of the art methods for
SQuAD datasets.

B GLUE Test Results

On GLUE test set, we can also achieve a compara-
ble performance w.r.t. the full-precision baseline,
only losing around 0.1 % of the full precision aver-
age performance with ternary weights and 8-bit ac-
tivations according to Table 6. With binary weights
and 8-bit activations, we outperform BinaryBERT
(Bai et al., 2021) on all GLUE test set except for
MNLI and CoLA.

C SQuAD 2.0 Results

We also perform experiments to measure the perfor-
mance of ETSPQ on SQuAD 2.0 (Rajpurkar et al.,
2016) datasets and compare with state-of-the-art
quantized models. From Table 7, using ternary
weights we outperform the performance of (Zhang
et al., 2020). With binary weights, we can outper-
form the performance of (Bai et al., 2021) for 8 bit
activations, but for 4 bit activations we achieved a
comparable performance.

D Further Analysis

In this section, we study the real impact of data
augmentation and Two-Stage Progressive Quanti-
zation (TSPQ) on the performance of quantized
BERT with binary weights and 4-bit activations by
plotting the performance on the dev set over the
number of iterations for the case “Augmentation”

Task -aug +aug
CoLA 8.5k 220k
SST2 67k 1135k

MRPC 3.7k 226k
STS-B 5.7k 327k
QNLI 108k 4278k
RTE 2.5k 147k

Table 8: Size of the dataset for each task with and with-
out data augmentation from (Jiao et al., 2020)

Task -aug +aug
CoLA 2.2 52
SST2 8.0 129

MRPC 1.1 52
STS-B 1.4 75
QNLI 20 403
RTE 0.6 30

Table 9: Runtime in minutes for one epoch for each task
with and without data augmentation from (Jiao et al.,
2020)

where we use only data augmentation and use the
full precision fine-tuned model initialization; for
the case “TSPQ” where we use the slightly higher
precision quantized fine-tuned model initialization;
and for the case “Baseline” where we only use the
full precision fine-tuned model initialization.

Fine-tuning with data augmentation for one
epoch takes longer and takes more iterations than
fine-tuning without data augmentation for five
epochs on a GLUE task due to the larger size of
the augmented data.

Therefore, the model running with more epochs
has more opportunities to adjust its weights prop-
erly under the quantization constraint and it is un-
fair to just compare the effects of using data aug-
mentation for one epoch vs five epochs without
data augmentation as previous works did.

As a result of that, we made sure that the quan-
tized model is being fine-tuned for the same num-
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(a) CoLA (b) MRPC

(c) RTE (d) STS-B

Figure 2: Performance over training iterations on CoLA
(a), MRPC (b), RTE (c), and STS-B (d) on dev set for
binary weights and 4 bit activations.

ber of iterations and not necessarily the same num-
ber of epochs for all three cases as illustrated in
Figure 2. Knowledge distillation from (Zhang et al.,
2020) and activation quantization function from Eq.
3 is used in all 3 cases

Figure 2 shows that the use of data augmen-
tation is not beneficial across all datasets unless
fine-tuning the model for a large number of itera-
tions. For instance, the performance increase for
data augmentation is a lot more progressive for
RTE and CoLA datasets. In this case, fine-tuning
can be performed for the non-augmented datasets
with significantly fewer iterations to reach optimal
performance. On the other hand, the use of data
augmentation helps to improve the performance of
MRPC and STS-B datasets when fine-tuning the
model for a larger number of iterations.

Using ETSPQ, we get a good initial performance
for the target bit precision, whereas training it nor-
mally would need a few more iterations to approxi-
mately match the performance. Figure 2 shows that
the trajectory of fine-tuning the quantized BERT
using ETSPQ is similar to the Baseline at the later
iterations and the curve from ETSPQ is generally
above or at a equal height as the curve of the Base-
line.

E Comparing with BiBERT

Due to limited space, we do not include BiBERT’s
results into the main results section. Also BiB-

Task DMD MSE
CoLA 52.1 52.3
SST2 92.8 92.5

MRPC 86.5 87.0
STS-B 88.8 88.6
QNLI 91.4 91.4

Table 10: Performance of using Direction Mismatch
Distillation (DMD) versus using Mean Square Error
(MSE) Distillation.

ERT’s method deals with the problems of binariz-
ing activations and weights by replacing the soft-
max function with a boolean function and by re-
placing the mean square error (MSE) distillation
with the direction mismatch distillation (DMD) for
the distillation of the attention scores.

However, using a boolean function does not
work when the output of the softmax is supposed
to be ≥ 1 bit. Therefore, this is also one of the
reasons it wasn’t included in the main results and
we only compare the performance of using DMD
with the performance of using MSE distillation in
Table 10.

In Table 10, we can see that the performance
doesn’t change a lot when using DMD compared
to using MSE distillation. Results obtained in the
table is obtained using the full-precision BERT as
the starting point and finetuning a BERT model
with ternary weights and 8 bit activations.

9



Proceedings of The Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 10 - 16
December 7, 2022 ©2022 Association for Computational Linguistics

KGRefiner: Knowledge Graph Refinement for Improving Accuracy of
Translational Link Prediction Methods

Mohammad Javad Saeedizade1 Najmeh Torabian2 Behrouz Minae-Bidgol1
1 School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

2 Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
saeedizade74@gmail.com

najmeh.torabian@gmail.com
b_minaei@iust.ac.ir

Abstract

Link Prediction is the task of predicting miss-
ing relations between knowledge graph(KG)
entities. Recent work in link prediction mainly
attempted to adapt a model to increase link pre-
diction accuracy by using more layers in neural
network architecture, which heavily rely on
computational resources. This paper proposes
the refinement of knowledge graphs to perform
link prediction operations more accurately us-
ing relatively fast translational models. Transla-
tional link prediction models have significantly
less complexity (faster) than deep learning ap-
proaches but are less accurate; this motivated us
to improve their accuracy. Our method uses the
ontologies of knowledge graphs to add informa-
tion as auxiliary nodes to the graph. Then, these
auxiliary nodes are connected to ordinary nodes
of the KG that contain auxiliary information in
their hierarchy. Our experiments show that our
method can significantly increase the perfor-
mance of translational link prediction methods
in Hit@10, Mean Rank, and Mean Reciprocal
Rank, with the same complexity as translational
models.

1 Introduction

Knowledge graphs (KGs) represent a set of inter-
connected descriptions of entities, including ob-
jects, events, or concepts. These graphs are struc-
tures by which knowledge is captured in the form
of triplets. These triplets consist of three parts:
head, relation, and tail. The relation (edge) deter-
mines the type of relationship between head and
tail nodes.

Despite many efforts to build KGs, they are far
from completeness. One of the developing fields in
completing KGs is link prediction (LP). LP tries to
embed entities and relations in a small continuous
vector space to predict missing links in KGs. In
the last few years, deep learning approaches have
significantly outperformed other methods in LP,
but this accuracy came at the cost of computational

complexity.
Translational LP models, such as TransE (Bor-

des et al., 2013), TransH (Wang et al., 2014),
TransD (Ji et al., 2015), RotatE (Sun et al., 2019b),
and HAKE (Zhang et al., 2020), generally use a
straightforward function over head and relation vec-
tors to predict the tail based on distance (Rossi
et al., 2021) (Wang et al., 2021). One advantage
of translational methods over deep learning tech-
niques is that their score function is considerably
faster (Sun et al., 2019a). Since these models are
less complex and more efficient, we tried to im-
prove only these translational methods in this work.

Ontologies are concepts or properties to describe
an object 1. Wordnet contains hierarchical ontol-
ogy only for its entities. Some work tried to use
ontology components of Wordnet to boost LP mod-
els. For example, GrCluster (Ranganathan et al.,
2020) treated ontology components as paths. It
defined path similarity over entities in Wordnet and
slightly improved LP accuracy. Nonetheless, Gr-
Cluster only improved WNNH and WN18, which
are not standard LP datasets (Dettmers et al., 2018).
Additionally, this work is limited to Wordnet.

Freebase (Bollacker et al., 2008) does not have
any hierarchical path for its entity. On the other
hand, its relations have a path hierarchy to explain
edges. SACN (Shang et al., 2019) exploited ad-
ditional information of FB15k-237 as auxiliary
nodes and created FB15k-237-Attr. Nevertheless,
it added numerous nodes to the KG, which makes
the method for creating FB15k-237-Attr inefficient
for more extensive graphs. Likewise, this method
can only be applied to Freebase.

Translational LP models, such as TransE, Ro-
tatE, or TransD, when trying to learn the relation
between Paris and France, neglect that Paris is a
city and France is a country. We introduce ontol-
ogy components as auxiliary nodes. These aux-
iliary nodes are connected to related entities that

1https:en.wikipedia.orgwikiOntology_(information_science)
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have these components in their hierarchy. For ex-
ample, we added an extra node “country” to KG
and connected it to all the countries in the KG. Our
contributions are as follows:

Firstly, we presented a method for refining KGs
that have ontology. Our approach adds auxiliary
nodes and embeds similar nodes closer in the em-
bedding space, which increases the accuracy of
translational link prediction with the same time
and space complexity of translational models. Sec-
ondly, we used state-of-the-art translational mod-
els to evaluate our method on two FB15k-237 and
WN18RR. The results showed that accuracy in link
prediction was significantly increased on H@10,
MRR, and MR, especially on WN18RR.

2 Related Work

We divided related work into four categories.
First, translational models, such as TransE (Bor-

des et al., 2013), TransH (Wang et al., 2014),
TransD (Ji et al., 2015), HAKE (Zhang et al., 2020),
are distance-based algorithms that use a straight-
forward operation over head and relation (mainly
summation and/or a projection into a secondary
space) to measure the distance to the tail entity.
Some work has been introduced over these fast
translational models to improve their performance
by using hierarchical information. TKRL (Xie
et al., 2016) used components of hierarchical struc-
ture as a transition to transform KG nodes into
secondary space and then performed LP. GrCluster
(Ranganathan et al., 2020) used path similarity over
entities in Wordnet and slightly improved link pre-
diction accuracy. SACN (Shang et al., 2019) pro-
posed FB15k-237_Attr that has external resources
as triplets (new nodes and edges) to improve the
result.

GrCluster could not improve the WN18RR, and
it is limited to KGs that have ontology for their
entities. SACN improved FB15k-237 by creat-
ing FB15k-237_Attr, but it added many nodes and
edges. Nonetheless, the SACN attribute creator
could not be applied to WN18RR. TransC (Lv et al.,
2018) brought similar entities closer in the embed-
ding space and improved LP in YAGO, but experi-
ment results show no improvements on Wordnet or
Freebase. Our work is similar to this category; It
is fast and uses translational models as a core. We
pushed the limitation of TransC to have a better LP
result on Freebase and Wordnet.

Second, mostly deep models adapt an architec-

ture and rarely use anthologies in their main model.
For example, ConvE (Dettmers et al., 2018) used
2D convolution, BERT-ResNet (Lovelace et al.,
2021) and KG-BERT (Yao et al., 2019) employed
BERT, SACN (Shang et al., 2019) utilized WGCN
in its architecture. These models are more accurate
but computationally costly.

Thirdly, KG refinement is a sub-field of KG
enhancement. Refinement can be done by either
adding information to the graph or removing incor-
rect data (Paulheim, 2017). BioKG (Zhao et al.,
2020) worked on medical KGs and has tried to
provide a method for removing the inaccurate in-
formation in these graphs. In this work, like SACN,
we added auxiliary nodes to KGs. These nodes are
extracted from ontology hierarchy levels of nodes
and edges of KGs.

Lastly, some works introduced similarities over
entities or relations. For example, HRS (Zhang
et al., 2018) presented relation-cluster and sub-
relations in the scoring function of translational
models. It created sub-relations and relation-
clusters based on clustering results of TransE rela-
tions; however, it cannot utilize ontology nor im-
prove WN18RR results. For entity similarity, ETE
(Moon et al., 2017) considered that if two entities
are embedded closely in the embedding space, they
are similar and assigned classes to entities based
on closeness. Unlike ETE, our hypothesis is that if
two entities use the same relation type in the graph
or have common elements in their hierarchies, they
are related. We exploited these affiliations (share
hierarchical components) by connecting ordinary
nodes to their auxiliary nodes if a node has the aux-
iliary node in its ontology components.

The main distinctions between our work and re-
lated work are: First, our method works with any
KG with ontology, and it does not matter if it has
the hierarchical ontology for nodes or edges. Sec-
ond, it uses translational models; therefore, it has
high speed and less time to train these models (see
Table 3).

3 KGRefiner

In this work, we propose a method that uses ontol-
ogy as an auxiliary node, which refines the KG and
increases LP accuracy. These auxiliary nodes can
be obtained from the edges of KG or its nodes. For
example, in FB15k-237, we do this refinement by
using hierarchies of relations, and in WN18RR, we
use hierarchies of entities. We add repetitive com-
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ponents of hierarchies to KGs as new (auxiliary)
nodes. Then, we introduce a few new relations to
connect these auxiliary nodes to other KG nodes.

These auxiliary nodes operate like a magnet for
similar entities; They drag similar entities (those
entities that share ontology components) together
in the embedding space. This closeness of similar
entities causes the translational models to prioritize
their search for a specific place in the embedding
space ( e.g., searching between countries when
asked what country’s capital city is Paris, in evalu-
ation). The rest of this section is dedicated to the
proof of this assertion.

Translational link prediction methods, such as
TransE, create transition property in their embed-
dings. For example, in TransE, embeddings are
made as e⃗s + r⃗ ≈ e⃗o. This means the tail entity
should be close to the sum of head and relation in
embedding space. Let us consider n entities share
an ontology component O in their hierarchy. If
we add O to the KG and connect the O to those n
entities, the following optimization will happen in
TransE:

E⃗1 + ⃗RelatedTo ≈ O⃗

E⃗2 + ⃗RelatedTo ≈ O⃗

...

E⃗n + ⃗RelatedTo ≈ O⃗

The loss function minimizes the distance between
two sides of equations:

Loss = ||E⃗1+ ⃗RelatedTo− O⃗||+
||E⃗2+ ⃗RelatedTo− O⃗||+

...

||E⃗n+ ⃗RelatedTo− O⃗||
In the implementation, they are optimized batch-
wised. Also, assume it uses the L1 norm as a dis-
tance measure. Therefore, the batch loss will be:

Loss =

n∑

n=
1

Distance(E⃗i + ⃗RelatedTo, O⃗)

=

n∑

n=
1

Distance(E⃗i, O⃗ − ⃗RelatedTo)

=
n∑

n=
1

||E⃗i, O⃗ − ⃗RelatedTo||1

Since (O⃗ − ⃗RelatedTo) can be considered con-
stant, all E⃗i will be dragged to where (O⃗ −

⃗RelatedTo) is located in the embedding space.
For example, if we connect all KG countries to
an ontology node "country", then all countries will
be embedded closer.

3.1 Refinement of FB15k-237

In FB15k-237, graph relations reflect infor-
mation about entities. For example, in (Paris,
national_capital, France), national_capital has
hierarchy of “entity→ physical_entity→ object→
location→ region→ area→ center→ seat→
capital→ national_capital”. This hierarchy is a
relationship between countries and their capitals,
and nodes on one side of relationships (e.g. left
side of triplet) can be considered similar (e.g.
they are countries). Moreover, higher hierarchy
levels usually have more abstract information
about objects, but the lower ones are more specific.
Therefore, we extracted the last three levels of
hierarchies from each relation in this KG to use
hierarchy components. Then, for each sub-relation
(component), we counted the number of their
repetitions in the KG training section triplets.
Then, we removed those components with less
than 100 repetitions to reduce the number of these
components; the number 100 is arbitrary. Finally,
285 sub-relations remained, and we added them to
the set of entities in this KG (as auxiliary nodes).
We defined two new relations, “RelatedTo” and
“HasAttribute”, to connect these relation-nodes
(auxiliary nodes) to the KG entities. For each
triplet, if the entity is the triplet’s head, we link
it to the auxiliary node by “RelatedTo”, and if
it is the tail of the triplet, we use “HasAttribute”
to establish these connections. For example, to

Algorithm 1: Refinement of FB15k-237

Input (TrainTriplets,Hierarchies,MinRep. =
100)

Hierarchies← LastLevels(Hierarchies, 3)

Hierarchies←
Repetitives(Hierarchies,MinRep)

NewEdges = []
for all (h, r, t) in TrainTriplets do

for all H in Hierarchies do
NewEdges←
NewEdges+ (h,HasAttribute,H)

NewEdges←
NewEdges+ (t, RelatedTo,H)

return TrainTriplets+NewEdges
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refine relation between Paris and France, (Paris,
entity→ physical_entity→ object→ location→
region→ area→ center→ seat→ capital→
national_capital, France), “capital” has repetition
over 100, so the following triplets were added to
the graph:

(France,HasAttribute, capital)

(Paris,RelatedTo, capital)

3.2 Refinement of WN18RR

To refine this graph, we use the hierarchy of enti-
ties. In Freebase, we used relationships, but rela-
tionships do not give us information about entities
in Wordnet. France, for example, has a hierarchy
of “existence → place → region → region →
administrative region → country”. This hierarchy
gives us good information about France. We ex-
tract the last three levels of entities. Among these
levels, we hold those with more than an arbitrary
number of 50 repetitions among entities to reduce
the number of auxiliary nodes. As a result, 207
levels remained. We add these levels as new nodes
to the KG training section and connect them to en-
tities that have these components in their hierarchy
with a new type of connection “HasAttribute”. For
example, France and Iran have a “country” in their
hierarchical structure. Then, the following triplets
were added to the training section of the graph:

(France,HasAttribute, country)

(Iran,HasAttribute, country)

Algorithm 2: Refinement of WN18RR

Input
(TrainTriplets,Hierarchies, Entities,MinRep. =
50)

Hierarchies← LastLevels(Hierarchies, 3)

Hierarchies←
Repetitives(Hierarchies,MinRep)

NewEdges = []
for all e in Entities do

for all H in Hierarchies do
if H IsComponentOf e then

NewEdges← NewEdges+
(e,HasAttribute,H)

return TrainTriplets+NewEdges

3.3 New Relations
We introduce new edge types to connect auxiliary
nodes to the KG to make them distinguishable from
original relation types. Since in WN18RR it is only
one relation is needed, we introduce "HasAttribute"
to say this node has this ontology attribute in its
hierarchy. However, in FB15k-237, only edges
have ontology components. Therefore, we need to
know on which side of the edge an entity is located
(head or tail). Therefore, we introduced two new
relations: "HasAttribute" and "RelatedTo".

4 Exprement

4.1 Datasets
We evaluated our work on popular benchmarks:
FB15k-237 and WN18RR. In addition, we built
two other datasets with KGRefiner: FB15k-237-
Refined and WN18RR-Refined from those datasets.
The details of the datasets are available in appendix
in Table 4.

4.2 Baselines
To demonstrate the effectiveness of our models, we
compare results with the original translational mod-
els TransE (Bordes et al., 2013), TransH (Wang
et al., 2014), RotatE (Sun et al., 2019b), and HAKE
(Zhang et al., 2020), with fair setting (see Section
4.4 and Appendix A). In addition, we used FB15k-
237-Attr (Shang et al., 2019) to compare our work
with other data augmentation methods as base mod-
els plus attributes.

For WN18RR, GrCluster (Ranganathan et al.,
2020) tried to improve link prediction on Word-
net by using hierarchical data using path similarity.
Nevertheless, their report did not show improve-
ment in WN18RR.

4.3 Experimental Results
Table 1 and 2 compares the experimental results of
our KGRefiner plus translational models and with
previously published results. Results in bold font
are the best results in the group, and the underlined
results denote the best results in the column. KGRe-
finer with TransH obtains the highest H@10 and
MRR on FB15k-237, and also KGRefiner with Ro-
tatE reached the best MR and H@10 in WN18RR.

In tables, results of TransE is taken from
(Nguyen et al., 2018), TransH from (Zhang et al.,
2018). For other rows, we used OpenKE (Han
et al., 2018) and original HAKE implementation to
get the scores.
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Baseline H@10 MR MRR
TransE 50.1 3384 22.6

TransE + KGRefiner 53.7 1125 22.2
TransH 42.4 5875 18.6

TransH + KGRefiner 51.4 1534 20.8
HAKE 52.2 4433 40.0

HAKE + KGRefiner 53.8 2125 25.0
RotatE 54.7 4274 47.3

RotatE + KGRefiner 57.0 683 44.8

Table 1: Link prediction results on WN18RR and its
refined version.

Baseline H@10 MR MRR
TransE 45.6 347 29.4

TransE + Attribute 47.6 221 28.8
TransE + KGRefiner 47 203 29.1

HAKE 40.8 282 23.8
HAKE + Attribute 38.4 287 21.7

HAKE + KGRefiner 39.0 267 21.4
RotatE 47.4 185 29.7

RotatE + Attribute 43.8 218 27.3
RotatE + KGRefiner 43.9 226 27.9

TransH 36.6 311 21.1
TransH + Attribute 47.7 237 28.2

TransH + KGRefiner 48.9 221 30.2

Table 2: Link prediction results on FB15k-237 and its
refined version. The "+ Attribute" is the refined version
produced by (Shang et al., 2019)

4.4 Speed of Models

The training time of translational models is much
less than deep learning approaches such as ConvE,
SACN, ConvKB, etc. The complexity of scoring
function and neural network layers in their architec-
ture reduces training speed in deep learning meth-
ods. Table 3 compares the time that each model
needs to be trained for one epoch on FB15k-237.
We ran models on Nvidia K80. For fair comparison
embedding dimension for all models is 200. It can
be observed that the runtime difference between
our best result with KGRefiner (TransH + KGRe-
finer ) and BERT-ResNet (Lovelace et al., 2021)
for a small dataset FB15k-237 is around 9.6×105s.
In other words, our method is 100 times faster. In
terms of their accuracy (H@10, MRR, MR), BERT-
ResNet scores are ( 0.514, 0.346, 186) but TransH
+ KGRefiner are ( 0.489, 0.302, 221). The scores
are slightly lower, but speed is uncomparable.
Apart from that, according to table 4, KGRefiner
adds triplets to the training section of these KGs.
Therefore, it only increases the training time of
WN18RR and FB15k-237 by a factor of 2.65 and
2.02, respectively. It does not increase other mea-
surements’ complexity because it adds few nodes
to the KGs. Consequently, the training cost of the

translational models with KGRefiner is still much
cheaper than deep learning techniques.

Model Time to train Time to train
with KGRefiner

TransE [⊕] 2.8× 102 s 5.6× 102 s
TransH [⊕] 5.2× 102s 1× 103s
TransD [⊕] 5.2× 102s 1× 103s
RotatE [⊕] 5× 102s 1× 103s
HAKE [⊕] 1.5× 104s 3× 104s
ConvE [⊖] 2.7× 105s -
ConvKB [⊖] 4× 104s -
BERT-ResNet [⊖]
(Lovelace et al., 2021) 9.7× 104s -

Table 3: Comparison between translational technique
and deep learning methods in training time on the small-
standard Freebase sub-graph (FB15k-237) . [⊕]: These
models are implemented by OpenKE (Han et al., 2018)
and [⊖] are produced by their original implementations.

5 Conclusion and Future work

In this work, we propose KGRefiner, a KG refine-
ment method that alleviates the limitations of trans-
lational models by capturing additional informa-
tion in knowledge graph hierarchies. We used hi-
erarchy components as auxiliary nodes. Refined
KG comes by connecting these auxiliary nodes to
proper entities. Our empirical results show that our
KGRefiner outperforms other state-of-the-art trans-
lational models and data augmentation methods on
WN18RR. Some models’ performance improved
on FB15k-237 but was not as good as WN18RR.
Furthermore, it is the first augmentation method
that works with both Wordnet and Freebase, while
old methods only perform only on one dataset.

In our work, we had to manually determine the
depth cut of hierarchy and minimum repetition for
ontology components extraction. In future works,
we will automate these two elements, so the model
determines each component. Additionally, KGRe-
finer cannot improve the accuracy of deep learning
methods; therefore, another study is needed to en-
hance deep models by using ontological informa-
tion.
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Dataset FB15k-237 FB15k-237-Refined WN18RR WN18RR-Refined FB15k-237-Attr
Entities 14541 14826 40943 41150 14744
Relations 237 239 11 12 484
Train Edges 272115 550998 86835 230135 350449
Val. Edges 17535 17535 3034 3034 17535
Test Edges 20466 20466 3134 3134 20466

Table 4: Statistics of the experimental datasets. The refined version represents that graph has some auxiliary nodes.
These auxiliary nodes are extracted from entities hierarchy in the original knowledge graph.

A Hyperparameter Settings

We employed the implementation of baselines by
OpenKE (Han et al., 2018), and HAKE (Zhang
et al., 2020) to produce the result.

To have a fair comparison between translational
models, we used an embedding dimension of 200
for all models (to produce the same result as in their
paper, some models need more than 1000 dimen-
sions for entity embedding). Also, we removed
self adversarial negative sampling from TransE,
RotatE, and HAKE and replaced it with typical
negative sampling. Moreover, we tried {200, 500,
1000, 2000} epochs, and we picked the best one
according to MRR on the validation set for final
comparison. Other hyperparameters of the models
are those mentioned in OpenKE and HAKE. Hyper-
parameters for FB15k-237 and FB15k-237-Refined
and also WN18RR and WN18RR-Refined are the
same. Interestingly, HAKE heavily relied on 1000
embedding dimensions to reproduce the result on
its paper.

B Limitations

KGRefiner needs a KG that has ontology for either
its nodes or edges. Therefore, in other developing
KGs, KGRefiner cannot be applied. In addition,
since it brings similar entities closer, this can only
improve distance-based models (translational).
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Abstract

Neural language models have seen a dramatic
increase in size in the last years. While many
still advocate that ‘bigger is better’, work in
model distillation has shown that the number of
parameters used by very large networks is actu-
ally more than what is required for state-of-the-
art performance. This prompts an obvious ques-
tion: can we build smaller models from scratch,
rather than going through the inefficient process
of training at scale and subsequently reducing
model size? In this paper, we investigate the
behaviour of a biologically inspired algorithm,
based on the fruit fly’s olfactory system. This
algorithm has shown good performance in the
past on the task of learning word embeddings.
We now put it to the test on the task of seman-
tic hashing. Specifically, we compare the fruit
fly to a standard binary network on the task
of generating locality-sensitive hashes for text
documents, measuring both task performance
and energy consumption. Our results indicate
that the two algorithms have complementary
strengths while showing similar electricity us-
age.

1 Introduction

In 2022, the vast majority of state-of-the-art NLP
systems are implemented as deep neural models,
that is, neural networks with complex architectures
which can contain hundreds of billions of param-
eters. Such models have become so expensive to
train that most institutions cannot afford anymore
to generate them from scratch. They have also been
shown to generate non-negligible amounts of CO2

emissions (Strubell et al., 2019).
An active research area focuses on model distil-

lation (e.g. Sanh et al., 2019), that is, the process
of pruning pretrained large models to only retain
the weights truly essential to the system’s perfor-
mance. The result of distillation is a much smaller
architecture, faster to run, and less memory-hungry.

*Equal contribution

However, training a large model to then reduce
its size seems to be a waste of resources. Ideally,
we would make the right design choices to directly
implement a model with a reasonable number of pa-
rameters. With this goal in mind, the present paper
looks at a biologically-inspired architecture which
have shown potential as a ‘small model’ for lan-
guage processing: The Fruit Fly Algorithm (FFA).

The FFA is inspired by the olfactory system of
the fruit fly, Drosophila melanogaster. It algorith-
mically describes how the fly encodes smells in
its environment into a binary pattern of activations,
using just two layers of neurons. The usefulness
of the biological algorithm for computer science
was first noted by Dasgupta et al. (2017), who mod-
eled the mechanism as a kind of local-sensitivity
hashing relying on random projections, and used
it to hash pre-trained document and image vectors.
Preissner and Herbelot (2019, 2020) ported the
original algorithm to a Natural Language Process-
ing setting and made the fly learn word embeddings.
Liang et al. (2021) also applied the FFA to the task
of creating word embeddings, serving downstream
tasks such as word-sense disambiguation and docu-
ment classification.

The FFA produces word embeddings of a qual-
ity comparable to that of traditional, classic meth-
ods such as GLOVE (Pennington et al., 2014) and
Word2Vec (Mikolov et al., 2013). While it lags
behind the performance of large language models
like BERT (Devlin et al., 2019), it consumes only
a fraction of inference time as well as computing
power (Liang et al., 2021). Moreover, the FFA is
an explainable model, thanks to a shallow archi-
tecture and sparse, binary feature representations.
Taken together, these features promise to allevi-
ate the drawbacks of mainstream giant language
models, such as the need for expensive comput-
ing resources, environmental concerns and lack of
interpretability.

In our work, we aim to take the FFA one step
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further and use it to perform semantic hashing,
that is, the task of learning locality-sensitive, bi-
nary vectors for various types of text input. In the
general area of computational efficiency, semantic
hashing is an extremely useful task: it generates
meaningful vector representations at a low number
of bits (typically between 8 and 128). The produced
hashes can be stored very efficiently and similarity
computations can be performed extremely fast over
them, using hamming distance.

In the present paper, we provide a comparison of
the FFA with another efficient hashing algorithm,
namely the Binary Neural Network (BNN) (Hubara
et al., 2016). Both techniques are very different in
terms of architecture and training regime. In the
spirit of increasing ‘algorithmic diversity’ (Preiss-
ner and Herbelot, 2020), we think it worthwhile to
investigate the respective benefits of the two meth-
ods, and we pitch them against each other on the
tasks of document classification and information
retrieval. Our results show that the two techniques
are complementary in strength while both satisfy-
ing requirements of energy efficiency.

2 Related work

Semantic hashing The task of semantic hash-
ing comes from the area of information retrieval,
where it is crucial to be able to cluster documents
according to their semantic similarity, in order to
retrieve documents given a query. One way of go-
ing about this problem is to assign a code, hash or
vector representation to each document. The more
similar the hash of two given documents, the more
semantically related they are. These representa-
tions should be storable in a fixed number of bits so
that the retrieval of documents – through hamming
distance – is fast and computationally efficient.

Models for semantic hashing vary, from very
simple methods involving counts or tf-idf values
(Salton and Michael, 1986), to more complex ones
involving deep learning. The current unsupervised
state-of-the-art systems rely on heavy machinery
such as generative models with variational autoen-
coders (Chaidaroon and Fang, 2017; Zhang and
Zhu, 2019; Hansen et al., 2020), which are capable
of reducing the high-dimensional data into a low
latent space.

Document classification The task of document
classification is a traditional one in NLP, and like
many other tasks, it has become associated with
more and more complex architectures. A few years

ago, classification used to be tackled using different
architectures of neural network such as CNNs (Liu
et al., 2017) and biLSTMs (Adhikari et al., 2019b)
with static word embeddings. Nowadays, the pre-
ferred method is to input the entire document into
a large language model (LLM), retrieve its repre-
sentation, and feed it into a fully connected layer or
a linear classifier. LLMs are based on Transform-
ers and have a massive amount of parameters, (e.g.
170 billion in GPT-3: Brown et al., 2020). They
have fostered substantial progress in search engines
in the last few years1 and indeed create excellent
text representations. But they also have the many
pitfalls mentioned in our introduction, from low in-
terpretability to high computational cost, as well as
erroneous filtering of content in the pretraining pro-
cess, disfavouring minority groups (Dodge et al.,
2021; Bender et al., 2021).

From a purely engineering point of view, the
drawbacks of LLMs have prompted the publica-
tion of various papers trying to tackle core is-
sues in the models. For instance, Adhikari et al.
(2019a) implement knowledge distillation as com-
pression technique in the BERT-large model to
deal with the problem of run-time memory caused
by these large systems. Another known issue is
that standard LLMs such as BERT (Devlin et al.,
2019) can only take up to 512 tokens input due
to their self-attention mechanisms. Therefore,
dealing with long documents can still be a chal-
lenge. Researchers have dealt with it by creat-
ing Transformer-based models that can take even
longer texts as input (Beltagy et al., 2020).

Our own stance is that, beside improving LLMs,
our community should experiment with more di-
verse computational architectures to solve the out-
standing problems. As Bender et al. (2021) point
out, we should be careful not to focus only on state-
of-the-art architectures and encourage instead re-
search efforts and funding into diversifying natural
language processing models.

3 Datasets

Six datasets were used to evaluate our algorithms:
20 Newsgroups2 (20news) (Lang, 2008), Agnews3

1https://blog.google/products/search/
search-language-understanding-bert/

2qwone.com/~jason/20Newsgroups/
20news-bydate.tar.gz

3groups.di.unipi.it/~gulli/AG_corpus_
of_news_articles.html
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(Zhang et al., 2015), Reuters4 (Lewis, 1997), TMC5

(Oza, 2010), Wikipedia (Wiki), and Web of Sci-
ence6 (WoS) (Kowsari et al., 2017). Statistics and
short descriptions of all datasets can be found in
Table 1.

All datasets are available to download, except
Wiki, which we collected by scraping English
Wikipedia pages. For the 20news dataset, we used
the specific version sorted by date. For Reuters,
we used the version ModApte R(90). For WoS,
we used the medium-size version. Three datasets
(20news, Agnews, and Reuters) had already been
provided separate train and test sets. Thus we kept
these test sets intact for the purpose of comparison,
and further split the train sets to extract validation
sets.

3.1 Pre-processing
All datasets are lowercased and tokenized with a
SentencePiece7 model, generated from the train
split. Using this tokenization method makes our
system ready to be used with languages other than
English. SentencePiece transforms the data into
tokens belonging to a vocabulary of d wordpieces,
with d set here at 10, 000. It also returns the log-
probabilities of each token in the training data. We
will write li to refer to the log-probability of token
i in the SentencePiece model.

After this initial pre-processing, each dataset is
vectorized. For a dataset of n documents, we obtain
a matrix of size n× d, where each row represents
a document and each column a token in our vo-
cabulary of word pieces. Each cell in the matrix
shows the normalized frequency of a token in the
document, reweighted by lpi , where p is an expo-
nent used to increase or decrease the effect of li.
The reason for weighing frequencies in this way,
rather than using a conventional measure such as
tf-idf, is that it allows the system to be incremental
at test stage. That is, any new document seen by the
model can be vectorized without needing access to
the entire document collection.

Finally, we experiment with keeping only the
top t words in each (reweighted) document vector,
which lets us optimize the number of infrequent
and/or uncharacteristic words seen by the system.

4Downloaded from nltk library.
5catalog.data.gov/dataset/

siam-2007-text-mining-competition-dataset
6data.mendeley.com/datasets/

9rw3vkcfy4/6 under the license CC BY 4.0
7https://github.com/google/

sentencepiece

That is, before feeding the input to the system, we
zero out the d− t cells with lowest weights in each
row of the matrix.

4 Models

4.1 The Binary Neural Network (BNN)

BNN (Hubara et al., 2016) is an example of a
light and efficient model, which bridges the gap
between production in industry and research. Thus,
the model provides an ideal comparison for our
FFA. BNNs have a reduced cost of computation
with respect to continuous neural networks because
weights and activations are binarized at run-time,
as well as during gradient computation, with +1
and -1 values. Weights and activations undergo a
deterministic binarization step:

xb = Sign(x) =

{
+1 if x ≥ 0,

−1 otherwise

where x is the continuous variable and xb is the
binarized value. The Stochastic Gradient De-
scent, however, is computed with the accumulated
continuous-valued weights in order to have high
precision.

Our BNN has one input layer, one hidden layer
and one output layer. It is trained to predict which
class(es) a certain document belongs to. The input
is a matrix Rn×d with the pre-processed documents
(cf. 3.1) where n is the number of documents in
the batch and d is 10,000. The output layer is a bi-
nary vector representation of dimensionality Rh×l

where h is the number of neurons in the hidden
layer and l is the number of labels in the dataset.
Cross Entropy loss is computed for single label
documents whereas in the multilabel classification
the loss combines a sigmoid layer and Binary Cross
Entropy.

We experiment with three sizes of hidden layers
(32, 64 and 128) and two different learning rates
(0.01 and 0.001). The training batch size is kept at
32 across datasets. Training is run for 50 epochs
with early stopping after 5 epochs. The number of
epochs of each final model varies between 6 and
42.

While the BNN is trained on a classification task,
it can also be used for semantic hashing. To get
an unseen document’s hash, we feed it into the
neural network and extract the hidden layer before
the classification layer as the representation of the
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Dataset Multi-class Classes Num docs Train-val-test
split (%) Topics

20news No 20 18846 42-18-40 Newsgroups, such as motorcycles,
computer, politics, etc

Agnews No 4 127600 75-19-6 News articles about the world, sports,
business, and science/tech

Reuters Yes 90 10788 56-16-28 News articles on various topics, such as
jobs, gas, housing, wheat, etc

TMC Yes 22 28596 60-15-25 Air traffic reports

Wiki No 15 29924 60-20-20 Wikipedia pages in categories,
such as music, football, law, etc

WoS No 35 11967 60-20-20 Scientific papers’ abstracts in different fields,
such as biochemistry, psychology, etc

Table 1: Statistics and description of datasets

Figure 1: FFA architecture (figure adapted from Preiss-
ner and Herbelot (2020).

document. Since the activations of the hidden layer
are already binarized, the representation naturally
implements binary hashing.

4.2 The Fruit Fly Algorithm (FFA)

The Fruit Fly Algorithm (FFA) takes inspiration
from the fruit fly’s olfactory system. Specifically,
the fruit fly’s brain is composed of sparse connec-
tions between only two layers of neurons which can
assign binary activations to a particular smell (de-
fined as a combination of different types of chemi-
cals). These patterns of activations allow the fruit
fly to ‘conceptualise’ the environment and react to
new smells by comparing them to previous smells
the fly has been exposed to. Dasgupta et al. (2017)
first proposed an implementation of FFA to hash
existing pretrained embeddings. In our work, we
extend the FFA to learn binary document embed-
dings from scratch, with low energy consumption.

Following the implementation of (Dasgupta
et al., 2017), the FFA model consists of a small
feedforward architecture which transforms a doc-
ument to a binary vector to represent the hash of

the document (Fig 1). The input layer, the pro-
jection neuron layer or PN layer, is a vector of d
elements {x1...xd}, generated by the vectorization
process described in §3.1. Next, this input layer is
multiplied by a random projection matrix to form
the input to the second layer. The second layer,
(Kenyon Cell layer or KC layer), is represented as
a vector of k elements {y1...yk}, which is larger
than the PN layer (k >> d) and is kept at fixed
size. The projection matrix is sparse, that is, PN
and KC layers are not fully connected. Each KC
is connected with a constant number i of nodes in
the PN layer, and these connections are randomly
allocated at initialization time. The activation value
of each KC cell is then simply the sum of i activa-
tions from the PN layer. Note that although these
connections are uniformly distributed, certain allo-
cations will result in better performance. Finally,
hashing is done by a winner-takes-all (WTA) func-
tion that sorts the activations in the KC layer, then
takes only a small percentage of the most activated
values to produce a compact representation of the
document. Specifically, WTA(yi) = 1 if yi is one
of the k top values in y and 0 otherwise.

Moreover, we include a Locality Sensitive Hash-
ing (LSH) algorithm as a simple baseline. It is a
vanilla random projection method with one non-
binary weight matrix, followed by a binarization
step to achieve hash values. Random projection
LSH is similar to FFA, as the two are from the
random projection group of algorithms.

5 BNN and FFA comparison

Our two algorithms have many differences, from
their architecture to their optimization regime. We
will highlight those differences here to make our
experimental results more interpretable.

First, the BNN is a supervised method while
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the FFA is in essence unsupervised. This means
that when training and optimizing the BNN, we are
looking for the best network weights and ideal hy-
perparameters (for both pre-processing and training
regime). In contrast, the FFA does not require train-
ing of weights, since the projections are random,
but still requires hyperparameter setting (including
pre-processing and fly-specific features such as the
number of random projections per KC or the WTA
rate). Note that the BNN uses backpropagation
while the FFA only performs forward propagation.

Second, the BNN’s natural training grounds is
the classification task, which allows us to use a
straightforward and efficient objective function.
The FFA being unsupervised, it can be optimized
on any task that can make direct use of its binary
embeddings. In practice, we found that optimizing
the FFA’s hyperparameters on Prec@k gave us bet-
ter performance than the classification task, so the
results we report are based on this choice.

Finally, we should note that the task of this
paper, learning binary representations at low-
dimensionality, is a natural setting for the BNN
but actually challenges the FFA. The strength of
the FFA is the massive expansion in dimension-
ality at the level of the KC layer. Through this
mechanism, an actual fruit fly transforms a per-
ceptual input in 50 dimensions into a conceptual
representation contained in 2000 neurons. That
40-fold expansion in dimensionality allows the fly
to capture many latent features of the perceptual
data, some of which, presumably, end up being
useful for classification.8 But our task requires in-
stead that the document features be compressed
in at most 128 dimensions (down from 10,000 in
input). As we will see later, this will necessitate
some adjustments to the original FFA.

5.1 Evaluation
Classification Classification is simply the pro-
cess of predicting a class for a given document.
The accuracy for multi-label and single-label docu-
ments is computed as the sum of all true positives
and negatives divided by the sum of all true and
false positives and negatives from the dataset.

Prec@k Precision at k is a typical information
retrieval task. Given some document representa-
tion v, the k nearest neighbours of v are computed.

8In that sense, one might argue that the natural fruit fly
implements the kind of ‘wastefulness’ we criticised in Large
Language Models – but only across two partially connected
layers, and without backpropagation.

Precision is then given as the number of nearest
neighbours that have the same class as v, divided
by k. All datasets are evaluated with a k value
of 100. In the case of multi-label documents, the
precision is counted as correct if at least one of the
labels is retrieved.

Carbon footprint Aside from task performance,
we also measure how the algorithms compare in
terms of energy use. For each system, and for each
dataset, we compute electricity use in kWh. Since
optimization happens differently in the BNN and
the FFA, and involves different numbers of hyper-
parameters, we report the average consumption of
a single run (one given set of hyperparameters) for
each architecture. In order to show the environmen-
tal advantage of the BNN and FFA algorithms, we
also report the consumption of a pretrained BERT
model for comparison. We use the CodeCarbon
library (Schmidt et al., 2021) to measure the elec-
tricity consumption.

6 Experimental Design

We implement a BNN and an FFA9 with the aim of
generating document hashes at 32, 64 and 128 bits.
To evaluate the respective strengths of the two sys-
tems, we compare the two architectures according
to the two methods described above: precision at k
(prec@k) and classification (acc).

Further, we divide our evaluation of the FFA into
three different settings, to investigate how the rela-
tion between the dimensionality of the input of the
size of the KC layer affects results. Recall that the
original FFA expects an expansion in dimension-
ality which is undesirable from the point of view
of the task at hand, where we seek to obtain 32-64-
128 bits hashes. To alleviate this issue, we attempt
to combine the original architecture with a dimen-
sionality reduction step implemented as Principle
Component Analysis (PCA). We apply this step
in two different conditions. In the first one (subse-
quently referred to as PCA+FFA), we apply PCA to
the input matrix and feed the first c principal com-
ponents to the FFA, where c is a hyperparameter to
optimize. In the second one (FFA+PCA), we apply
PCA ‘inside’ the FFA, just before the WTA step, in
effect reducing the size of the KC layer. As control
condition, we also show the results of the original
FFA without intervention (henceforth ‘Raw FFA’).

9Our code is freely available at https://github.
com/minimalparts/SemanticHashingFFA.
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Bits
Eval
mode

BNN LSH
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.31 0.08 0.25 0.30 0.25
acc 0.45 0.17 0.38 0.45 0.48

64
pre@k 0.31 0.09 0.25 0.35 0.29
acc 0.48 0.25 0.41 0.55 0.56

128
pre@k 0.32 0.11 0.27 0.39 0.29
acc 0.54 0.38 0.48 0.61 0.59

Table 2: Results for 20news dataset

Bits
Eval
mode

BNN LSH
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.79 0.27 0.31 0.62 0.62
acc 0.75 0.33 0.42 0.73 0.78

64
pre@k 0.80 0.27 0.64 0.69 0.59
acc 0.81 0.37 0.43 0.80 0.80

128
pre@k 0.80 0.28 0.67 0.72 0.54
acc 0.86 0.41 0.45 0.84 0.80

Table 3: Results for Agnews dataset

To perform classification with the FFA represen-
tations, we feed a simple Logistic Regression10

model with the documents’ hashes, as generated by
the fly, and perform one-vs-rest classification.

For all settings, we tune the values of the two
hyperparameters of the pre-processing stage: the
log-probability exponent p and the number t of top
words considered for each document (see §3.1).
For the BNN, we also investigate the learning rate
of the network. For the FFA, we tune the projection
size and WTA rate, as well as the number of princi-
pal components retained from the PCA, wherever
applicable. For the LSH, there is no tuning.

Since the FFA generates random projections for
each fly it creates, we run it 10 times for each
combination of dataset and hyperparameters, and
select the instance with the best performance on
the train set. (Recall that the FFA is unsupervised,
so we simply compute Prec@k on the n documents
seen in training.) We also run 10 times for LSH and
average the results. All results reported in §7 are
for the best models obtained from the optimization
process.

7 Results

7.1 Task performance
Our results are reported in Tables 2 to 8. We pro-
vide the best hyperparameter sets in the appendix,

10Implementation from scikit-learn: https:
//scikit-learn.org/stable/modules/
generated/sklearn.linear_model.
LogisticRegression.html.

Bits
Eval
mode

BNN LSH
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.61 0.25 0.50 0.58 0.54
acc 0.99 0.45 0.49 0.62 0.56

64
pre@k 0.68 0.27 0.50 0.64 0.54
acc 0.99 0.58 0.48 0.66 0.59

128
pre@k 0.70 0.29 0.49 0.66 0.50
acc 0.99 0.74 0.50 0.68 0.61

Table 4: Results for Reuters dataset

Bits
Eval
mode

BNN LSH
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.53 0.24 0.41 0.56 0.58
acc 0.89 0.42 0.06 0.19 0.20

64
pre@k 0.58 0.24 0.4 0.61 0.56
acc 0.91 0.43 0.11 0.22 0.20

128
pre@k 0.59 0.25 0.43 0.64 0.53
acc 0.91 0.46 0.14 0.25 0.21

Table 5: Results for TMC dataset

Bits
Eval
mode

BNN LSH
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.67 0.14 0.19 0.55 0.43
acc 0.82 0.33 0.34 0.73 0.70

64
pre@k 0.70 0.18 0.21 0.63 0.45
acc 0.84 0.46 0.43 0.81 0.79

128
pre@k 0.69 0.24 0.27 0.68 0.40
acc 0.85 0.62 0.54 0.86 0.81

Table 6: Results for Wiki dataset

Bits
Eval
mode

BNN LSH
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.20 0.07 0.27 0.35 0.15
acc 0.51 0.22 0.45 0.58 0.46

64
pre@k 0.22 0.09 0.28 0.37 0.14
acc 0.56 0.35 0.46 0.64 0.51

128
pre@k 0.22 0.10 0.26 0.40 0.13
acc 0.58 0.60 0.50 0.71 0.54

Table 7: Results for WoS dataset

for reproducibility purposes. It emerges that the
BNN and the FFA complement each other, with one
or the other algorithm taking the lead in particular
combinations of datasets and tasks. We summa-
rize the main trends in our results below, starting
with a description of each experimental setting in-
dividually and then highlighting their respective
strengths.

BNN baseline: The BNN performs generally
very well on the classification task, which is to be
expected since it is specifically optimized for that
task. It reaches accuracies over 90% on Reuters and
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TMC, at all hash sizes. At 128 bits, it also achieves
over 85% for Agnews and Wiki. Its performance
is somewhat more disappointing on 20news and
WoS (54% and 58% respectively). The results on
prec@k are more variegated and, interestingly, do
not fully follow the classification patterns. The best
performance is on Agnews (around 0.8) followed
by Reuters and Wiki (around 0.7 at 64 and 128 bits).
TMC only reaches 0.59 while the performance on
20news and Wos is again lower (around 0.3 and
0.2 respectively).

Raw FFA: Results with the raw FFA are consis-
tently low, although this setting surprisingly out-
performs the BNN on WoS against the prec@k
measure. This result is not entirely surprising, as
the natural fly has a dramatic expansion factor of
40, projecting 50 PN neurons to 2000 KC cells. In
our setting, conversely, the PNs get projected onto
a lower number of KCs.

FFA with PCA postprocessing: Integrating a
PCA dimensionality reduction step within the FFA,
just before the WTA function, only occasionally
improves performance. In some cases, it actually
degrades the score of the Raw FFA.

FFA with PCA preprocessing: Out of all FFA
settings, this is the one with the best performance.
For classification, it does best on Wiki (86%)
and WoS (71%), followed by Reuters (68%) and
20news (61%). For prec@k, the best results are ob-
tained on Wiki, Reuters and TMC (0.68, 0.66 and
0.64 at 128 bits), followed by 20news and WoS
(around 0.40).

LSH: It gets lowest scores for all datasets be-
cause it is the simplest algorithm, which serves as
a good sanity check.

When comparing both algorithms, we see that
for classification, PCA+FFA clearly outperforms
the BNN on 20news and WoS, while very much fail-
ing to encode TMC and lagging behind on Reuters.
Performance is comparable on the Wiki dataset and
Agnews. As far as prec@k is concerned, PCA+FFA
outperforms the BNN again on 20news and WoS,
as well as TMC. The two algorithms have more
comparable results on Reuters and Wiki, especially
at higher hash sizes. The BNN obtains the highest
results on Agnews.

7.2 Energy consumption
Table 9 shows energy consumption for the BNN
and the PCA+FFA model, measured on a 32-core

Linux machine using CPUs only (model AMD
Opteron(TM) Processor 6272), with 32GB RAM.
For comparison purposes, we also report the con-
sumption of a fine-tuning procedure over a pre-
trained BERT model, for the classification task. It
is run parallel on a 4 x Nvidia GeForce GTX 1080
Ti, 12 GB. The table reports average figures for
single optimization steps with an intuitive measure
of electricity usage, by showing how many min-
utes one could run a single 40W light bulb for the
same consumption. The results concerning the ex-
act kWh consumption can be found in Table 1 of
appendix A.1. While for the FFA, we give results
for the overall consumption as well as a breakdown
showing the individual demands of the PCA and
the actual fruit fly, the results for BERT represent
the fine-tuning of the model run once with the same
hyperparameters across datasets 11. Note that the
values of consumption for BERT in the table only
consider the fine-tuning of the model for the classi-
fication task, refer to Strubell et al. (2019) for more
information about the pre-training consumption.

8 Discussion

8.1 Task performance

We first remark that as far as classification is con-
cerned, it is possible to obtain high accuracies on
nearly all datasets with at least one of our two
lightweight algorithms: results at 128 bits range
from 80% to 99% for Agnews, Reuters, TMC and
Wiki. The more ‘difficult’ datasets are 20news and
WoS, and interestingly, those are the ones where
the FFA outperforms the BNN. As far as prec@k is
concerned, a very similar picture emerges. Agnews,
Reuters, TMC and Wiki reach between 0.69 and
0.80 precision, while 20news and WoS lag behind.
Here again, the FFA outperforms the BNN by a
very substantial margin.

One notable aspect of our results is that perfor-
mance in classification does not necessarily trans-
fer to prec@k, and vice-versa. The BNN achieves
good classification accuracies on TMC but rather
low prec@k, while the FFA behaves in exactly the
opposite manner. Further, results vary widely de-
pending on datasets, with the BNN and the FFA
respectively leading the game on Reuters and WoS
for both performance metrics. This seems to in-
dicate that particular data distributions might be

11lr=3e-05, seed=42, number of training epochs=3, maxi-
mum sequence length=512, batch size for training and validat-
ing=8
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Similarity search Classification
dataset prec@100 KC size proj size WTA Acc. KC size proj size WTA
20news 0.12 14896 10 45 0.69 14239 2 100
agnews 0.32 14885 10 80 0.91 9106 2 100
reuters 0.48 4462 10 62 0.73 14033 2 100
tmc 0.46 14866 10 94 0.22 8233 2 57
wiki 0.24 13848 10 35 0.92 14336 2 100
wos 0.15 2337 7 3 0.82 11236 2 100

Table 8: Bayesian Optimization on the raw FFA, with (nearly) unlimited KCs.

dataset LSH BNN PCA+Fly = FFA (Overall) BERT Diff. BERT
20news 19 13 2+18 = 20 548 31x
agnews 34 41 87+81 ≈ 169 20153 247x
reuters 8 27 1+7 = 8 288 7x
tmc 18 16 4+16 = 20 1076 25x
wiki 31 21 6+22 ≈ 27 1281 48x
wos 11 11 1+9 ≈ 11 320 12x

Table 9: Energy consumption of the models in minutes run in a 40W lightbulb (more info about the kWh consumption
in appendix A.1). Figures represent one complete run of the models with one pre-determined set of hyperparameters.
Values in red and green are the models spending the most and least energy respectively. Diff. BERT represents the
number of times BERT consumes more over the avg. of all tiny models.

better captured by one or the other algorithm.
Unlike the BNN, the FFA demonstrates a consis-

tent improvement as the hash size increases. This is
not surprising, as we mentioned earlier that the FFA
is in some sense designed to work at high dimen-
sionality. We investigated this effect further and
performed Bayesian Optimization12 on the FFA’s
hyperparameters, this time allowing the size of the
KC layer to grow up to 15,000 bits. Results are
shown in Table 8. Against expectation, a higher
KC size does not necessarily translate into better
prec@k. And while the higher size does make a
substantial difference to the classification task, we
note that this is obtained with very low projection
sizes, meaning that the algorithm reverts to looking
at single words in the output.

An inspection into the hashes shows that the rep-
resentation derived from the FFA is able to create
a distinctive semantic space between documents
from different labels. Fig. 2 shows a 2D represen-
tation of four randomly-chosen classes in WoS and
20news.

8.2 Energy efficiency

Both the BNN and FFA algorithms prove to be
very energy efficient. In table 9, we see that a
single run of the BNN is equivalent to running the
light bulb between 11 and 41 minutes, depending
on the size of the dataset being processed. The FFA
itself (without PCA pre-processing) has a wider
range, from 7 to 81 minutes, but still remains very

12Library from github.com/fmfn/BayesianOptimization

(a) neighbors=50, dist=0.1

(b) neighbors=15, dist=0.8

Figure 2: Dimensionality reduction of the 128 dimen-
sion vector from FFA with UMAP. Classes are randomly
selected.
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affordable.
We note that the main cost of the FFA is of

course evaluation. We are optimizing the algorithm
on Prec@k, which is an expensive function to run,
as it involves a computationally-intensive nearest
neighbour computation. As we pointed out previ-
ously, optimizing on classification did not seem to
give the best possible results for the FFA. But this
aspect would require further investigation, since it
is the main efficiency bottleneck for the algorithm.

We also note that when including PCA pre-
processing, large datasets like agnews become
more expensive to run: the highest overall con-
sumption in the tiny models in the table comes
from to the PCA on agnews (81 minutes). This
is a substantial cost in getting the best out of the
FFA, and one that could potentially be reduced. In
particular, we are experimenting with computing
dimensionality reduction on a restricted subset of
our data and subsequently learning a regression
function from high- to low-dimensional space to
‘simulate’ the effect of the PCA. Preliminary results
are encouraging, with limited loss in task perfor-
mance.

Lastly, the discrepancy of energy consumption
is striking between our tiny models and BERT as
observed in columns BERT and Diff. BERT of
table 9. The latter requires a considerable larger
amount of resources because of the millions of pa-
rameters being updated during fine-tuning. Across
datasets, it consumes 61 times more than the aver-
age consumption of all our tiny models in a single
run. Note that the difference increases according
to the size of the dataset. For instance, the smallest
datasets Reuters and WoS consume 7 and 12 times
more than the tiny models respectively, while the
largest dataset (agnews) consumes 247 times more.
These results highlight the importance of putting
more effort in developing smaller models because
of the high energy costs of solely fine-tuning these
huge models.

9 Conclusion

This paper set out to compare the respective
strengths of two lightweight binary hashing algo-
rithms, the binary neural network (BNN) and the
fruit fly algorithm (FFA), on the task of generat-
ing highly-compressed document representations.
We adapted the original FFA to this new context
by prepending a dimensionality reduction step to
the architecture, implemented with PCA. We found

that the two methods display different strengths and
achieved their top performance on different tasks
and datasets. Both are energy-efficient, with the
FFA’s consumption being mostly taken by evalua-
tion at optimization stage.

Both BNNs and biologically-inspired algorithms
are relatively new in NLP, and therefore require a
lot of community efforts to fully understand their
respective behaviours. As immediate further work,
we would perform an in-depth analysis on our
datasets’ distributions to understand better why
some data seem more suited to one or the other
algorithm, and why discrepancies emerge in the
way that classification and precision at k are tack-
led. From an efficiency point of view, we will also
further investigate how to reduce the cost of the
dimensionality reduction step before applying the
FFA.

One of the main strengths of both models is their
low running costs. All steps can be run in a CPU or
even on a mobile phone – as in the case of the BNN.
This is a crucial point when it comes to providing
high quality systems based on artificial intelligence
models for low-resource communities. As an exam-
ple application, we have integrated the PCA+FFA
pipeline to the PeARS search engine.13 PeARS
implements local Internet search by allowing users
to index and search Web documents on their home
machine. It requires an indexing method that is as
lightweight as possible for users with limited hard-
ware resources. The FFA is a natural choice here,
with its good performance on the Prec@k metric.
We hope that the work presented in this paper will
inspire other researchers to invest effort in devel-
oping lightweight techniques to solve core NLP
problems, and share them with the communities
that benefit from them.
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A Appendix

A.1 Energy consumption

dataset LSH BNN PCA+Fly = FFA (Overall) BERT
20news 0.013 0.009 0.001+0.012 = 0.14 0.365
agnews 0.022 0.028 0.058+0.054 = 0.112 13.435
reuters 0.005 0.018 0.001+0.005 = 0.006 0.192
tmc 0.012 0.011 0.003+0.011 = 0.014 0.717
wiki 0.021 0.014 0.004+0.015 = 0.018 0.854
wos 0.008 0.007 0.001+0.006 = 0.007 0.213

Table 1: Energy consumption of the models in minutes run in kWh. Figures are averages for single optimization
steps. Values in red and green are the models spending the most and least energy respectively.

A.2 Model hyperparameters
SentencePiece was run with default hyperparameters and a vocabulary size of 10, 000. For the BNN, the
best log-probability exponent p varied depending on the dataset: 3 for Reuters, Agnews and TMC, 4 for
20news and WoS, 5 for Wiki. For the FFA, p = 4 emerged as the best choice for all datasets. The number
of top words t gave optimal results at t = 300 for most datasets, apart from WoS (t = 500).

Tuning the learning rate for the BNN did not result in any statistically significant changes, so all results
are reported for lr = 0.01.

For the FFA, we tuned the projection size from 4 to 16 and the WTA rate from 10 to 70. The best
hyperparameter combinations for each pair of hash size and dataset are included in the table below. The
Logistic Regression classifier used the default sklearn hyperparameters, in multiclass mode.

32 bits 64 bits 128 bits
dataset WTA proj size WTA proj size WTA proj size
20news 16 70 16 50 16 50
agnews 8 50 8 30 4 50
reuters 4 50 4 50 4 50
tmc 4 50 8 50 12 30
wiki 8 50 8 30 8 30
wos 8 70 8 50 4 70

Table 2: Hyperparameters table.
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Abstract

With 84.75 million Filipinos online, the abil-
ity for models to process online text is crucial
for developing Filipino NLP applications. To
this end, spelling correction is a crucial prepro-
cessing step for downstream processing. How-
ever, the lack of data prevents the use of lan-
guage models for this task. In this paper, we
propose an N-Gram + Damerau-Levenshtein
distance model with automatic rule extraction.
We train the model on 300 samples, and show
that despite limited training data, it achieves
good performance and outperforms other deep
learning approaches in terms of accuracy and
edit distance. Moreover, the model (1) requires
little compute power, (2) trains in little time,
thus allowing for retraining, and (3) is easily
interpretable, allowing for direct troubleshoot-
ing, highlighting the success of traditional ap-
proaches over more complex deep learning
models in settings where data is unavailable.

1 Introduction

Filipinos are among the most active social media
users worldwide (Baclig, 2022). In 2022, roughly
84.75M Filipinos were online (Statista, 2022a),
with 96.2% on Facebook (Statista, 2022b). Hence,
developing language models that can process on-
line text is crucial for Filipino NLP applications.

Contractions and abbreviations are common in
such online text (Salvacion and Limpot, 2022).
For example, dito (here) can be written as d2, or
nakakatawa (funny) as nkktawa, which are abbre-
viated based on their pronunciation. However, lan-
guage models like Google Translate remain limited
in their ability to detect and correct such words, as
we find later in the paper. Hence, we aim to im-
prove the spelling correction ability of such models.

In this paper, we demonstrate the effectiveness
of a simple n-gram based algorithm for this task,
inspired by prior work on automatic rule genera-
tion by Mangu and Brill (1997). Specifically, we
(1) create a training dataset of 300 examples, (2)

automatically generate n-gram based spelling rules
using the dataset, and (3) use the rules to propose
and select candidates. We then demonstrate that
this model outperforms seq-to-seq approaches.

Ultimately, the paper aims to highlight the use
of traditional approaches in areas where SOTA lan-
guage models are difficult to apply due to limita-
tions in data availability. Such approaches have the
added benefit of (1) requiring little compute power
for training and inference, (2) training in very little
time (allowing for frequent retraining), and (3) giv-
ing researchers full clarity over its inner workings,
thereby improving the ease of troubleshooting.

2 Related Work

The problem of online text spelling correction is
most closely related to spelling normalization – the
subtask of reverting shortcuts and abbreviations
into their original form (Nocon et al., 2014). In this
paper, we will use correcting to mean normalizing
a word. This is useful for low-resource languages
like Filipino, wherein spelling is often not standard-
ized across its users (Li et al., 2020).

Many approaches have been tried for word
normalization in online Filipino text: (1) pre-
determined rules using commonly seen patterns
(Guingab et al., 2014; Oco and Borra, 2011), (2)
dictionary-substitution models for extracting pat-
terns in misspelled words (Nocon et al., 2014), or
(3) trigrams and Levenshtein or QWERTY distance
to select words which share similar trigrams or are
close in terms of edit or keyboard distance (Chan
et al., 2008; Go et al., 2017).

Each method has its limitations which we seek
to address. Predetermined rules must be manually
updated to learn emerging patterns, as is common
in the constantly evolving vocabulary of online Fil-
ipino text (Salvacion and Limpot, 2022; Lumabi,
2020). Dictionary-substitution models are limited
by the constraint of picking mapping each pattern
to only a single substitution, whereas in reality, dif-
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ferent patterns may need to be applied to different
words bearing the same pattern (Nocon et al., 2014).
Trigrams and distance metrics alone may be suc-
cessful in the context of correcting typographical
errors for which the model was developed (Chan
et al., 2008), but may not be as successful on in-
tentionally abbreviated words. Our work uses a
combination of these methods to develop a model
that can be easily updated, considers multiple possi-
ble candidates, and works in the online text setting.

The task is further complicated by the lack of
data, which hinders the use of large pretrained lan-
guage models. Previous supervised modeling ap-
proaches require thousands of labeled examples
(Etoori et al., 2018), and even unsupervised ap-
proaches for similar problems required vocabulary
lists containing the desired words for translation
(Lample et al., 2018a,b). Since such datasets are
not available, our paper revisits simpler models,
and finds that they exhibit comparable performance
to that of much larger SOTA models.

3 Data

We use a dataset consisting of Facebook comments
made on weather advisories of a Philippine weather
bureau in 2014. We identified 403 distinct abbrevi-
ated and contracted words, and had three Filipino
undergraduate volunteers write their “correct” ver-
sions. To maximize the data, we removed hyphens
and standardized spacing, then filtered out candi-
dates where all annotators gave different answers.

We obtained 398 examples (98.7%) with 83.8%
inter-annotator agreement. We then created a 298-
100 train-test split; we selected test examples that
used spelling rules present in the training set to test
the ability of our n-gram model to extract and apply
such rules. To test generalizability, we also perform
cross-validation. The data and code for our experi-
ments are available at the following repository. 1

4 Model

Automatic Rule Generation We extract spelling
rules from pairs (w, c), where w is a misspelled
word, and c is its corrected version. The rule gener-
ation algorithm slides a window of length k over w
and c, and records w[i : i+ k]→ c[j : j + k] as a
rule (i, j are pointers); it returns a dictionary map-
ping each substring to a list of “correct" substrings
(See Appendix 1 for algorithm and example).

1https://github.com/ljyflores/
Filipino-Slang

We test substrings of length 1 to 4, and find that
lengths 1 / 2 work best. This makes sense as many
Filipino words are abbreviated by syllable, which
typically have 1-2 letters. This is similar to Indone-
sian (Batais and Wiltshire, 2015) and Malay (Ramli
et al., 2015), suggesting possible extensions.

We further filter candidates to words present in
a Filipino vocabulary list developed by Gensaya
(2018) (MIT License), except for when none of
the candidates exist in the vocabulary list, in which
case we use all the generated words as candidates.

Candidate Generation We recursively generate
candidates by replacing each substring with all pos-
sible rules in the rule dictionary. If the substring
is not present, we keep the substring as is. An
example can be found in Appendix D.

We find that rules involving single letter sub-
strings often occur at the end of a word. Hence, we
test candidate generation algorithms which either
allow single letter rules to be used anywhere when
generating (V1), or only for the last letter of a word
(V2). We also vary the # of candidates kept at each
generation step (ranked by likelihood, see Eq 2).

Ranking Candidates We explore two ways of
ranking candidates: (1) Damerau-Levenshtein Dis-
tance we rank candidates based on their edit dis-
tance from the misspelled word using the pyxdam-
eraulevenshtein2 package with standard settings,
and (2) Likelihood Score we compute the likeli-
hood of the output word c given misspelled word
w as the product of probability the rules used to
generate it, where the probability of a rule is the
number of occurrences of a → b divided by the
number of rules starting with a (See Eqs 1, 2).

P (a→ b) =
|{a→ b}|
|{a→ c}∀c| (1)

P (w → c) =

len(w)−k∏

i=1

P (w[i : i+ k]→ c[i : i+ k]) (2)

5 Evaluation

5.1 Comparison to Language Models

We benchmark the performance of our models
against two seq-to-seq models on the same dataset:
(1) ByT5 (Xue et al., 2022): a character-level T5
model (Raffel et al., 2020) trained on cross-lingual

2https://github.com/lanl/
pyxDamerauLevenshtein
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Figure 1: Π-Model Architecture (Laine and Aila, 2017)

tasks, shown to be robust to misspellings, and
(2) Roberta-Tagalog (Cruz and Cheng, 2021): a
BERT (Devlin et al., 2019) model trained on large
Filipino corpora for masked language modeling.
We performed hyperparameter tuning using an 80-
20 split of the training data.

For inference, we obtain the top five candidates
for each misspelled word by selecting the highest
scoring candidates using beam search.

5.2 Augmentation Techniques
Since deep learning models perform poorly on
small datasets, we use two techniques to improve
performance to achieve more quality benchmarks.

First, we use Π-model (Laine and Aila, 2017)
(Fig 1), a semi-supervised technique which mini-
mizes the mean-squared distance between the pre-
dicted corrections for two versions of a misspelled
word, where the weight is a hyperparameter.

Then, we use autoencoding augmentation (AE)
(Bergmanis et al., 2017), where we iteratively train
a seq2seq model on the original spelling normal-
ization task and an autoencoding task, where the
model is trained to reproduce the same word.

5.3 Comparison to Google Translate
We also benchmark using Google Translate’s
model. We input each word and check if the model
outputs a valid translation or suggests a correc-
tion (i.e. “Did you mean X?"). A correct transla-
tion/correction means the model was able to correct
(and thus translate) the misspelled word.

5.4 Evaluation
We evaluate the models with two metrics: (1) Ac-
curacy @ k: % of observations where the tar-
get is present among the top-k candidates, and (2)
Damerau-Levenshtein Distance (DLD): Best, av-
erage, and worst-case DLD of the top 5 candidates.

6 Results

6.1 Results from Evaluation Metrics
We train our models and show the results on the test
set in Table 1 (See Appendix 3 for hyperparameter

details). To test generalizability, we perform 5-fold
cross-validation (See Appendix 2).

The N-Grams + DLD V1 algorithm performs
best in terms of accuracy and best-case DLD. It
achieves an improvement of 32% from the next
best model (DLD) for accuracy @ 1, which we
consider most important, as real-world spellcheck-
ers usually suggest one word. In addition, the ByT5
+ Π-Model exhibits the best average DLD; hence
it generates many candidates which resemble the
target, though not achieving the correct output.

Also, N-Grams + Likelihood performs much
worse than with DLD, despite using the same can-
didate generation procedure. This was because the
dictionary also had irrelevant rules which muddled
the estimates; these can be filtered out with heuris-
tics, though at the expense of generalizability.

Moreover, the Π-model results in small improve-
ments over the original ByT5 across all metrics;
this illustrates the impact of semi-supervised ap-
proaches over supervised approaches in settings
with limited data, albeit with limited success.

6.2 N-Gram Algorithm Runtime

Though N-Grams + DLD V1 achieves the best
performance, it performs inference in 2.781s on
average. N-Grams DLD V2 achieves significantly
faster performance (0.0086s) with a marginal de-
crease in performance (See Appendix C). It is
worth noting that all N-Gram models train in under
a second on a local CPU, whereas most language
models required at least 20 minutes on a GPU.

6.3 Analysis of Errors: N-Gram + DLD V1

We analyze the examples in which the N-Gram
+ DLD did not select the correct word as the top
choice (i.e. error at k = 1). The N-Gram + DLD
model produced errors on 23 observations (out of
100); we separate these errors into those where the
target was and was not in the candidate list.

Errors with Target in the Candidates There
were 9 (out of 23) errors wherein the target was
not among the candidates. In such cases, the DL
score selected candidates which closely resembled
the input, but were wrong; the correct choices were
ranked in the top 12.65% of candidates on average
(median of 8.57%). Given the difficulty in distin-
guishing between words with similar spellings, con-
text may be required (e.g. words surrounding the
misspelled words, likelihood of word occurring).
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Type Model Accuracy @ k (%) DLD
k = 1 k = 3 k = 5 Min Mean Max

N-Gram Based N-Grams + DLD V1 0.77 0.82 0.85 0.46 2.91 4.73
N-Grams + DLD V2 0.67 0.74 0.74 1.03 2.96 4.59
N-Grams + Likelihood V1 0.17 0.38 0.58 1.22 3.50 5.29
N-Grams + Likelihood V2 0.47 0.61 0.64 1.30 3.06 4.65

ByT5 Model Only 0.31 0.42 0.49 0.98 2.71 4.38
Model + Π-Model 0.37 0.58 0.66 0.57 2.06 3.41
Model + AE 0.04 0.04 0.04 4.28 6.69 10.2

Roberta-Tagalog Model Only 0.00 0.00 0.00 5.79 15.3 56.7
Model + Π-Model 0.00 0.00 0.00 5.69 16.5 69.2
Model + AE 0.00 0.00 0.00 9.44 42.8 81.7

Baselines DLD 0.45 0.67 0.72 0.59 2.28 3.32
Google Translate 0.44 - - - - -

Table 1: Performance of Spelling Normalization Models on Test Set, see Appendix 3 for hyperparameter settings

Errors with Target not in the Candidates
There were 14 (out of 23) errors with targets not in
the candidate list; here, the rule dictionary lacked
at least one rule that was necessary to correct each
of the misspelled words. Upon adding these rules
to the dictionary, the model correctly predicted all
but five observations. In those five cases, the tar-
get was in the candidate list but not selected as the
top result, suggesting the need for better ranking
methods as discussed in the previous section.

As demonstrated by this section, a benefit of the
N-Gram + DLD model is that it allows access to the
collected rules, allowing researchers to understand
the cause of such errors, and hence directly make
tweaks (e.g. by adding rules, tweaking substring
length k) to improve the model. In contrast, ex-
plainability remains a challenge for language mod-
els, thereby reducing their ease of troubleshooting.

7 Conclusion

In this study, we propose an N-Gram + DLD model
for spelling normalization of Filipino online text,
and compare it to deep learning benchmarks. The
N-Gram + DLD V1 model achieves the best accu-
racy and best-case DLD, with a 32% improvement
in accuracy @ 1 over the next best model (DLD).
This shows the potential of simpler techniques, es-
pecially when data is scarce.

Besides improved performance, the N-Gram +
DLD model requires little compute power and
memory for training and inference. This allows
for frequent retraining of the model and addition
of new spelling rules as new words emerge. The

model also allows researchers to understand how
predictions are made, and make appropriate tweaks
to the spelling rules, candidate sorting method, or
hyperparameters used (e.g. length of substrings).

This work has limitations which suggest areas
for improvement. First, the current work uses a
small dataset limited to the weather domain. Us-
ing more diverse datasets can improve the com-
prehensiveness of the rule dictionary. Also, more
complete dictionaries containing Filipino words
and their conjugations can help filter down valid
candidates before running DLD.

Second, the candidate ranking method can be
improved, especially in cases where the target and
selected words are similar, as discussed in the sec-
tion 6.3. For example, words can be ranked by how
common they are, or by inferring the correct choice
from the context. This has the added benefit of re-
ducing the candidate pool, requiring fewer DLD
calculations and hence reducing inference time.

Finally, we only explore correcting misspelled
words; combining it with misspelling detection can
further boost the practical applications of this work.

Ultimately, the development of such models will
pave the way for improvements in Filipino NLP,
and enable the development of more applications
that can serve the wider online Filipino community.
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Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. ByT5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291–306.

A Cross Validation Results

The cross validated results are shown in Table 2.
While the metrics dropped from that in Table 1, the
models still exhibit the same order of performance
in terms of accuracy.

B Algorithms

Algorithm 1 Automatic Rule Generation
Input w (wrong word), r (right word)
Output d (rule dictionary)

1: k, d← {}, ptrw = 0, ptrr = 0
2: while ptrw < len(w) & ptrr < len(r) do
3: substrw ← w[ptrw : ptrw + k]
4: substrr ← r[ptrr : ptrr + k]
5: if substrw = substrr then
6: ptrw ← ptrw + k
7: ptrr ← ptrr + k
8: else
9: ptrw ← ptrw + 1

10: ptrr ← ptrr + k
11: end if
12: Append substrr to key substrw in d
13: end while
14: Return d

Figure 2: Example of a generated rule dictionary

C Runtime Performance

We plot accuracy @ 1 and runtime in Figures 3
and 4 respectively, and find that using a cutoff of
100 and 30 for N-Grams + DLD and N-Grams +
Likelihood respectively achieve the best tradeoff
between runtime and performance.

D Example

Figure 5 shows a rule dictionary and how the rules
are used to normalize “2loy” to “tuloy”.

Figure 3: N-Gram Cutoff vs. Test Set Accuracy @ 1
(%), k is the maximum length of substring considered

Figure 4: N-Gram Cutoff vs. Inference Time (s), k is
the maximum length of substring considered

Figure 5: Example Inference for “2loy”

E Computational Details

We use one RTX 3090 (24GiB) GPU to perform
training for the language models, and we used a
total of six GPU hours across finetuning and hyper-
parameter selection. We note that ByT5 consists of
300 million parameters.

F Hyperparameter Settings

We train all models with the Adam optimizer, with
a starting learning rate of 5e−5 and stability of
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Model Accuracy @ k (%) DLD
k = 1 k = 3 k = 5 Min Mean Max

RT 0.0 ± 0.00 0.0 ± 0.00 0.0 ± 0.00 6.06 ± 0.55 12.0 ± 2.85 46.2 ± 20.0
RT + Π 0.0 ± 0.00 0.0 ± 0.00 0.0 ± 0.00 6.08 ± 0.56 15.3 ± 2.77 61.7 ± 17.5
RT + AE 0.0 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 7.38 ± 1.53 21.3 ± 6.92 54.9 ± 8.10
BT 0.32 ± 0.06 0.52 ± 0.05 0.59 ± 0.07 0.77 ± 0.15 2.31 ± 0.16 3.76 ± 0.26
BT + Π 0.40 ± 0.06 0.57 ± 0.03 0.65 ± 0.03 0.53 ± 0.05 1.75 ± 0.07 2.83 ± 0.12
BT + AE 0.02 ± 0.03 0.02 ± 0.03 0.02 ± 0.03 4.05 ± 0.41 6.33 ± 0.38 9.45 ± 0.71
NG + DLD 0.53 ± 0.02 0.63 ± 0.04 0.65 ± 0.06 1.49 ± 0.11 2.93 ± 0.07 4.18 ± 0.11
NG + Lik. 0.35 ± 0.07 0.47 ± 0.08 0.49 ± 0.07 1.69 ± 0.26 2.95 ± 0.11 4.13 ± 0.16

Table 2: Five-fold cross validation results for models on joint train and test set, within one standard deviation
Legend: RT (Roberta-Tagalog), BT (ByT5), NG (N-Grams)

1e−8. Hyperparameters were finetuned using Ray
Tune, and models were selected based on the lowest
validation loss, as shown in Table 3.

Model Batch Epochs MSE Weight

RT 8 10 -
RT + Π 8 30 0.2
RT + AE 4 70 -
BT 1 50 -
BT + Π 1 70 0.2
BT + AE 4 70 -

Table 3: Hyperparameter settings for best models, fine-
tuned using the Ray Tune Python library; We tried 10,
30, 50, 70 epochs, and batch sizes of 1, 2, 4, 8, and
16; Legend: RT (Roberta-Tagalog), BT (ByT5), NG
(N-Grams)
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Abstract

Mixture of Experts (MoE) models with con-
ditional execution of sparsely activated lay-
ers have enabled training models with a much
larger number of parameters. As a result, these
models have achieved significantly better qual-
ity on various natural language processing tasks
including machine translation. However, it
remains challenging to deploy such models
in real-life scenarios due to the large mem-
ory requirements and inefficient inference. In
this work, we introduce a highly efficient in-
ference framework with several optimization
approaches to accelerate the computation of
sparse models and cut down the memory con-
sumption significantly. While we achieve up to
26x speed-up in terms of throughput, we also
reduce the model size almost to one eighth of
the original 32-bit float model by quantizing ex-
pert weights into 4-bit integers. As a result, we
are able to deploy 136x larger models with 27%
less cost and significantly better quality com-
pared to the existing solutions. This enables a
paradigm shift in deploying large scale multi-
lingual MoE transformers models replacing the
traditional practice of distilling teacher models
into dozens of smaller models per language or
task.

1 Introduction

Transformer models are getting larger and better on
a continuous basis. The largest transformer mod-
els scale up to hundreds of billions of parameters,
(Smith et al., 2022) resulting in high training and in-
ference costs. This makes it difficult to deploy such
models in any real-life scenario with reasonable
latency and throughput. Mixture of Experts (MoE)
models offer a more cost-effective method to scal-
ing model sizes by using sparsely activated com-
putations. More specifically, feed forward layers
can be easily enlarged by replicating the original

weights E times where E is the number of experts.
Each of these replicas is referred to as an expert,
and tokens get routed to these experts depending on
a gating function. Transformer models have a much
larger number of parameters when utilizing these
MoE layers. However, the number of flops remains
comparable to their dense counterparts thanks to
sub-linear scaling in computation costs (Shazeer
et al., 2017). Recently, the Mixture of Experts
(MoE) architecture has been successfully utilized
to scale massive large scale multilingual models
(Lepikhin et al., 2020)), NLU tasks (Fedus et al.,
2021; Zoph et al., 2022) and multilingual multitask
models (Kim et al., 2021).

MoE offers the benefits of scaling the model to
gain better accuracy without paying the huge com-
pute cost of massive dense models. However, large
scale MoE models bring their own set of unique
challenges to get efficient training and inference
methods. Most of the previous work focused on
improving training efficiency and throughput (Fe-
dus et al., 2021; Kim et al., 2021). In this work,
we focus on optimizing MoE models inference and
latency since it is crucial to harvest the benefits of
such models in real-life scenarios.

Production-scale Multilingual Machine Transla-
tion systems: in this work, we explore deploying
MoE models for large scale Multilingual Machine
Translation systems to benefit from large language
models, while maintaining reasonable serving cost.
Multilingual large scale systems are already very
attractive due to multiple aspects. First, they benefit
modeling since they allow better accuracy, espe-
cially through transfer learning across languages.
Additionally, they improve deployment and serv-
ing since we can replace dozens of models with a
single model that is able to serve many languages
at the same time. Nevertheless, we need the infer-
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ence to be highly optimized to make inference cost-
efficient. Despite these benefits, shipping such mul-
tilingual models brings a new challenge, because
they usually require a much larger model capacity
in terms of the number of parameters and the com-
putation. The MoE model architecture could be a
promising solution given its sub-linear or constant
FLOPs increase in terms of the number of model
parameters. But, the large memory consumption
issue still remains.

In this work, we show how to enable deploying
a single MoE model that can serve many languages
replacing dozens of traditional models while im-
proving accuracy and maintaining latency, through-
put and cost efficiency. We set the goal for this
work to match latency and throughput of a distilled
small model deployed on CPU while achieving
better serving cost.

It is worth noting that while the optimizations
presented here are applied to MoE encoder-decoder
architecture for multilingual machine translation
task, they are applicable to other architectures and
tasks without any loss of generality. Given the
recent success of MoE models on wide set of NLU
and NLG tasks (Fedus et al., 2021; Zoph et al.,
2022), we believe the optimization presented in
this work will be equally enabling to other tasks as
it is for machine translation.

2 Challenges and Contributions

2.1 MoE Inference challenge

Even though the MoE architecture in theory re-
quires much less computation with larger number
of parameters, it adds several computations such as
token routing and all-to-all communication which
could be a significant hit to the training throughput
as much as 12% for a single node as shown in (Liu
et al., 2022). In addition, it significantly increases
the amount of memory traffic in the MoE layers. So
far, previous studies focused more on the training
efficiency of those MoE models and there has not
been a solution to deploy this kind of models into
the real-time applications. At inference time, we
have observed the naive implementation of MoE
models could be up to 30 times slower than its
dense counterpart with the same embedding and
hidden dimensions. To achieve a reasonable de-
ployment cost, it is critical to lower the inference
cost by increasing throughput and reducing the la-
tency. Since MoE layers are not widely optimized
for the inference scenarios, it is challenging to build

efficient runtime environment in terms of computa-
tion and memory consumption.

Recently, (Rajbhandari et al., 2022) introduced
several approaches to improve inference of MoE
models focusing on very large scale models larger
than 100B parameters and decoding on multiple
GPUs. When the model size increases beyond the
memory limit of a single GPU, multiple GPUs can
be used together for a single inference by splitting
the model weights across different GPUs. While
multi-gpu can reduce latency and is required to
serve extremely large models, it introduces signifi-
cant communication overhead and makes it more
difficult to scale up and down the number of in-
stances based on traffic. Therefore, even though
multiple GPUs could bring much larger models into
production, we focus on the single GPU inference
scenario due to its cost efficiency with reasonably
sized models. It is worth noting that the optimiza-
tion we are presenting here for single GPU can be
utilized for larger models on several GPUs as well.
However, this is beyond the scope of this paper.

2.2 Inference Optimization Contributions

In this paper, we show how to reduce the memory
requirements to deploy largest possible model on a
single GPU, which avoids costly all-to-all collec-
tives. In addition, we optimized routing efficiency
for GPUs and implemented batch pruning. We
describe how we extend NVIDIA’s FasterTrans-
former1 inference framework to support the MoE
model architecture in a real world deployment sce-
nario:

• We present how we utilize the parallel primi-
tives in the CUTLASS2 and CUB 3 libraries
to efficiently express token routing and the
batched matrix multiply required for MoE.

• We propose a new GEMM (GEneral Ma-
trix Multiply) which can consume 4-bit/8-bit
quantized weights and perform float math.
The new GEMM works as drop-in replace-
ments of normal feedforward layers without
having additional logic to handle quantiza-
tion/dequantization of activations. We also
show that 4/8 bit weight-only quantization
preserves the accuracy without any additional
algorithms.

1https://github.com/NVIDIA/FasterTransformer
2https://github.com/NVIDIA/cutlass
3https://github.com/NVIDIA/cub
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• We implement an effective batch pruning al-
gorithm for MoE layers to make the search
algorithm on the decoder very efficient.

2.3 FasterTransformer overview
We build our MoE optimization over NVIDIA’s
FasterTransfomer, a highly optimized open source
inference engine for transformer models. Faster-
Transformer implements a highly optimized trans-
former layers for both the encoder and decoder for
inference which is built on top of CUDA, cuBLAS,
cuBLASLt and C++. FasterTransformer supports
seamless integration with Triton Inference server 4

which enabled us to deploy our models in scalable
large scale cloud environment.

We have extended FasterTransformer to support
DeepSpeed MoE models(Kim et al., 2021) and
added support for Transformer with Untied Posi-
tional Encoding (TUPE) (Ke et al., 2020) attention,
gate routing and efficient computation of MoE lay-
ers, including batch pruning in those layers.

3 MoE Inference Optimizations

3.1 Model architecture
MoE showed tremendous success with encoder-
decoder model architecture in Multilingual Ma-
chine Translation (Lepikhin et al., 2020; Kim et al.,
2021), and in Natural Language understanding (Fe-
dus et al., 2021; Zoph et al., 2022). Therefore, in
this work we focus on the encoder-decoder archi-
tecture without loss of generality since the opti-
mization is directly applicable to encoder-only and
decoder-only models as well.

We train an encoder-decoder model for machine
translation with deep encoder and shallow decoder
architecture as proposed in (Kim et al., 2019; Ka-
sai et al., 2020). For a given batch of input sen-
tences, the encoder is executed only once while the
decoder is executed multiple times with a beam
search algorithm per token. The auto-regressive ex-
ecution of the decoder is usually the performance
bottleneck. Therefore, utilizing a shallow decoder
partially mitigates that effect. Empirically, we have
found that using half number of decoder layers than
the number of encoder layers gives a good trade-
off between quality and performance. For the most
efficient MoE layer execution, we use top-1 gating
algorithm proposed in Switch transformers (Fedus
et al., 2021). At every other layer, MoE layer is
used instead of the plain feedforward layer.

4https://github.com/triton-inference-server/server

We use embedding dimension of 1024, the po-
sitional and word correlations are computed sepa-
rately and added together in the self attention mod-
ule (TUPE) (Ke et al., 2020). The feed-forward
hidden dimension is 4096 with 24 encoder layers
and 12 decoder layers as proposed in (Kim et al.,
2021). This model configuration satisfies the deep
encoder and shallow decoder design and the model
weights fit well into the GPU memory without ten-
sor slicing model parallelism (Shazeer et al., 2018).
The tensor slicing approach increases communi-
cation overheads and could potentially introduce
training instability issues. In the production set-
ting, we choose a model building pipeline which
could minimize such instability. On the other hand,
expert parallelism is preferred over tensor slicing
model parallelism because an atomic layer opera-
tion such as a feedforward layer is executed inside
one GPU. Therefore, we increase the number of
model parameters by adding more experts. With
the size of the layers and the number of layers,
the total number of parameters is roughly 5 billion
when 32 experts are used in the MoE layers. With
half precision floating point (fp16), this is about 10
GB which can fit on a single 16 GB GPU.

3.2 Multilingual Machine Translation Model

The traditional Machine Translation deployment
paradigm generally follows the teacher-student
model. Where several teachers are being distilled
into a very small student model that get deployed
on CPU (Kim et al., 2019). For instance, deploying
100 languages translation system, would require
training, distilling and deploying at least 200 of
such models. Each model is trained individually
for a particular language pair. This is not scalable
since each individual model needs to go through
various model compression steps to be deployed
on CPUs with relatively low FLOPs numbers. This
not only hinders scalable model building, but also
knowledge sharing and transfer between different
language pairs and tasks. Multilingual training ap-
proaches have been utilized to overcome this prob-
lem. However, shipping these multilingual models
brings a new challenge since such models usually
require much larger capacity in terms of the number
of parameters and the computation.

In this work, we use a multilingual MT system
trained on 10 language pairs and can be used in
place of individual systems per language pair. The
model is trained using production scale training
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Figure 1: Shows the computation performed by CUT-
LASS Grouped GEMM. Each color is a sub-matrix for
a particular expert, with the matrix multiplies for each
expert happening in parallel. If the yellow sentence was
finished, it would be omitted from the computation with
batch-pruning enabled. This would completely remove
the need to load the weight matrix for the yellow expert.

data of up to ∼ 4B training sentence pairs with a
vocabulary of 128K using Sentence Piece 5

3.3 Optimized GPU kernel design

One key factor to get an optimal performance with
massive CUDA cores is to have efficient parallel al-
gorithms for various additional operations for MoE.
In MoE layers, each row in the input activation
must get routed to a specific expert weight matrix,
depending on a top-k gating function. We imple-
ment this routing as a GPU friendly radix sort using
NVIDIA’s highly efficient CUB library.

In this case, each row in the activation matrix is
a token to be translated. The top-k gating function
outputs a list with k (expert_scale, expert_idx)
tuples for each input token. Thus, for top-1 gating
(as is done in our case), the function outputs a
single tuple for every row of the activation matrix.

In order to perform the routing, we first append
the index for each row to the end of the tuple giving
a tuple of (expert_scale, expert_idx, row_idx).
Then, we sort the tuple using expert_idx as the
keys in order to group all rows that will be pro-
cessed by the same expert_idx together. The
row_idx entry from the sorted tuples are then used
to permute the original activation matrix in global
memory to a layout where all rows routed to the
same expert are laid out contiguously in memory.

In order to finalize the routing, we view each
group of rows assigned to a particular expert as its
own sub-matrix and compute pointers to the start of
these sub-matrices. We then pair each sub-matrix
pointer with pointers to the weights and biases for
the expert they are routed to, and use CUTLASS

5https://github.com/google/sentencepiece

Grouped GEMM to compute all of these matrix
multiplies in parallel using a single kernel. Figure
1 shows the computation performed by CUTLASS.

Finally, we un-permute the rows to their original
ordering and apply the expert_scale to each row
before passing the output of the MoE module to
the other parts of the network.

3.4 Expert quantization with 4-bit and 8-bit

We quantize the MoE weights for two reasons:

1. MoE weights are extremely large which lim-
its the size of the models that can fit on the
common 16 GB inference cards such as T4.

2. MoE matrix multiplies require loading the
weights for several different experts which
results in them being memory bound.

We do not use Quantization Aware Training
(QAT) (Wu et al., 2020), because our quantiza-
tion approach does not degrade model performance.
QAT is usually used when there exists a noticeable
performance degradation from quantization. Also,
we focus on quantizing expert weights only, be-
cause they are contributing to more than 90% of
entire model weights thanks to the special property
of MoE model size scaling. We get much larger
model mostly from the expert parameters in MoE
layers (Shazeer et al., 2017).

Algorithm 1: Weight dequantize
Input :E - Number of Experts
Input :W - quantized weights of shape (E,M,N)
Input :S - FP16 scales of shape (E, 1, N)
Output :FP16 dequantized weights

1 Wdq ← NewMatrix(E,M,N)
2 for e← 0 to E − 1 do
3 for m← 0 to M − 1 do
4 for n← 0 to N − 1 do
5 f = IntToFloat(W [e,m, n])
6 Wdq[e,m, n] = f ∗ S[e, n]
7 end for
8 end for
9 end for

10 return Wdq

All activations and biases are kept as FP16 and
only the expert weight matrices are quantized. As
a result, we do not require any post-training cali-
bration (because we don’t need scales for the acti-
vations) which makes this recipe easy to apply to
several language families. We perform symmetric,
range-based per-channel quantization on each ex-
pert weight. This means that for expert weights of

39



shape (E,M,N) where E is the number of experts
and M and N are arbitrary dimensions, we produce
scales of shape (E, 1, N). The same quantization
method is used for int4 and int8. During inference,
we dequantize the weights to FP16 and perform our
matrix multiplies using floating point computations.
Algorithm 1 shows the dequantization performed
during inference.

One option for implementing the GEMM + De-
quantize would be to write a separate kernel to
dequantize the weights before the MoE GEMM.
However, this would actually increase the amount
of memory traffic as we would add a read of W
and a write to Wdq as shown in Algorithm 1. As
a result, we decided to take advantage of the flex-
ibility of CUTLASS and fuse the dequantize step
into the GEMM kernel. After profiling, we real-
ized that the conversion from int to float (line 5 in
Algorithm 1) was slower than anticipated. In order
to improve this, we replaced the native int to float
conversion (I2F) with a series of high throughput
ALU and FP16 instructions which improved the
performance of our fused GEMM + Dequantize.

3.4.1 Quantization Optimization

The conversion optimization mentioned above pro-
duces exact results to the native I2F conversions. It
relies on two key observations.

1. For any FP16 number X where 1024 ≤ X <
2048, 1024 will be represented exactly in the
exponent bits and int(X − 1024) will be di-
rectly stored in the mantissa. For example,
FP16 representation of 1027 (represented as
0x6403) has the integer 3 stored directly in
the mantissa bits of its representation.

2. For any integer 0 ≤ Y < 1024, we can con-
struct the FP16 representation of Y + 1024
by setting the exponent to 1024 and storing Y
in the FP16 mantissa. This is easily done by
performing 0x6400 | Y , since 0x6400 is the
hex representation of 1024 in FP16.

Our optimization exploits these observations to
quickly convert int4s or int8s and FP16. After we
quantize the weights, we add 128 to int8 weights
and 8 to int4 weights to make them all unsigned.
We refer to these weights as W+. This is not strictly
necessary, but removes the need to perform sign
extension logic.

3.4.2 Optimized 8-bit Dequantize
In order to best utilize the hardware, we convert
int8s to FP16s two at a time, leveraging the fact
that 2 FP16 elements can fit in a 32-bit register.
This is done as follows:

1. We load 4 int8 values, [e0, e1, e2, e3] from
W+ into a single 32-bit register.

2. We then create a second 32-bit register, R1,
that stores the FP16 representation of [e0 +
1024, e1 + 1024] leveraging observation (2).

3. Next, we use float math to subtract
[1152, 1152] from R1. This subtraction is due
to the fact that we must subtract 1024 from
each number in R1 convert e0 and e1 to FP16.
Then, we must further subtract 128 from each
number to obtain the float representation of
the original, signed integer.

4. Lastly, we repeat steps 2 and 3 for e2 and e3.

3.4.3 Optimized 4-bit Dequantize
We change the layout of the weights to reduce the
number of logic instructions needed to construct
the FP16s [ei+1024, ei+1+1024] . Thus, for int4,
we change the layout of W+ to reorder groups of 8
elements as follows:

[e0, e1, e2, e3, e4, e5, e6, e7]→ [e0, e2, e4, e6, e1, e3, e5, e7]

With this new layout, the idea for int4 is similar to
what was previously described for int8. Of course,
we must now subtract [1032, 1032] to recover the
original, signed integer as fp16. We must also
iterate 4 times since 1 32-bit register holds 8 int4s
and conversion happens 2 at a time.

3.5 MoE Batch Pruning

Batch pruning refers to the act of removing sen-
tences from a batch dynamically as soon as they
are done translating. We observed that this speeds
up MoE layers as it can prevent the loading of entire
expert weights, reducing the amount of memory
traffic required in these memory bound layers.

In order to implement batch pruning in the MoE
layers, we make a simple modification to the gat-
ing function so that it assigns a large expert_idx
to all finished sentences. This causes all finished
sentences to be moved to the end of the permuted
activation matrix in the routing step. To complete
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Table 1: Throughput of quanitzed MoE GEMMs nor-
malized against the throughput of the FP16 MoE Gemm.
The number of active experts is the number of experts
that receive tokens from routing. The matrix shapes for
the GEMM C = A @ B are A=mx1024, B=1024x4096,
where m is different for each expert. The total num-
ber of tokens is set to 40 since this is close to what the
decoder computes in our inference environment.

Active Experts FP16 Int8 native I2F Int8 optimized I2F Int4 optimized I2F

1 1 1.05 1.28 1.24

4 1 1.01 1.21 1.28

8 1 1.34 1.21 1.57

16 1 1.40 1.39 1.73

24 1 1.40 1.49 1.78

32 1 1.46 1.59 1.85

GEOMEAN 1 1.26 1.35 1.56

the pruning, we simply keep track of the total num-
ber of active tokens and only process the first ac-
tive_tokens rows of the permuted activation matrix
mentioned in section 3.3.

4 Results and discussion

All experiments in this section are run on a single
NVIDIA PCIE V100 running inside a docker con-
tainer running Ubuntu 20.04 and CUDA 11.6. All
code is compiled with nvcc and gcc/g++ 9.3.

We run our experiments considering an encoder-
decoder MoE model with 32 experts with TUPE
(Ke et al., 2020), similar to the setup in (Kim et al.,
2021) but with a vocabulary size of 128k. All
throughput metrics measure the time to translate
1000 tokenized English sentences (∼ 40K tokens)
to German (en-de) or vice-versa (de-en) and record
the total number of input tokens translated per sec-
ond. BLEU metrics are reported on the same data
set.

4.1 Speed-up and Cost-Effectiveness

We measure the improvement of our batch prun-
ing optimization by comparing the throughput with
and without that optimization. We found that we
achieve up to 1.14× speed up relative to our opti-
mized baseline without batch pruning.

INT8/INT4 GEMM Performance. First, Table
1 shows a performance comparison for the FP16
GEMM compared to fused GEMM + Dequantize
with native I2F and our optimized I2F sequence for
INT8. Our INT4 implementation only supports the
optimized I2F sequence. Depending on the number
of experts, INT8 and INT4 could accelerate MoE
computation up to 59% and 85%, respectively.

INT8/INT4 Quality Impact. We also consider
the impact of INT8 and INT4 expert quantization
on BLEU scores, we observe negligible transla-
tion quality degradation when quantizing model
weights. Table 2 shows the change in BLEU com-
pared to FP16 after applying quantization.

End-to-end Performance Improvements. Ta-
ble 3 shows our machine translation experiments
for EN-DE, with different batch sizes and different
quantization schemes and reports both the through-
put of our PyTorch and Faster Transformer imple-
mentations. Compared to the Torch-FP16 base-
lines, the optimizations applied achieve significant
speed-up across different settings.

Cost Comparison. Table 4 shows the deploy-
ment cost comparison between the MoE models
and smaller models optimized for CPU deployment
(Kim et al., 2019). The cost of deploying MoE
models which are 136x larger on CPU is more than
100 times of the cost of deploying smaller models
on CPU. However, the optimized large MoE mod-
els on GPU cost less than the current CPU model
deployment with smaller models.

Table 2: BLEU differences from INT8 and INT4 weight-
only compared to the FP16 baseline.

Language Pair
Beam 1 ∆ BLEU

INT8 INT4

EN-DE (Beam 1) -0.028 -0.052

EN-DE (Beam 2) 0.051 -0.180

DE-EN (Beam 1) -0.084 0.044

DE-EN (Beam 2) -0.027 -0.031

Avg. of 10 language pairs (Beam 2) -0.007 -0.167

5 Conclusions and Future Work

This paper describes how to make large MoE mod-
els cost-efficient on a single GPU in a real-world
inference environment. The final implementation
achieves a speedup of up to 26X over PyTorch base-
line. Our GPU MoE implementation allows serving
much larger and higher-quality models compared
to dense models on CPUs without increasing the
cost of serving. We consider two main avenues
for future work. We are currently working on im-
proving our fused GEMM + Dequantize kernel to
enable the use of fully vectorized 16 byte loads
on the weight matrix. In addition, we plan to ex-
plore deploying even larger models with distributed
inference in the future in a cost-efficient way.
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Table 3: Throughputs for beam=1 and beam=2 for varying batch sizes. Throughput is measured as input tokens
processed per second. The precisions (FT-INT8 and FT-INT4) in the table refer to the quantization applied to the
MoE weights. Torch-FP16 columns show the throughput numbers when we run the model with PyTorch v1.10
using FP16 model weights.

Batch Size
Beam=1 Input tokens processed/sec Beam=2 Input tokens processed/sec

Torch-FP16 FT-FP16 FT-INT8 FT-INT4 Torch-FP16 FT-FP16 FT-INT8 FT-INT4

1 16 388 401 400 14 351 361 361

8 70 1594 1639 1662 65 1453 1507 1518

20 150 3025 3178 3247 139 2571 2719 2803

32 214 4008 4264 4379 202 2960 3137 3239

64 379 5371 5706 5935 349 4333 4578 4746

96 485 6689 7101 7483 440 5062 5384 5605

Table 4: Deployment cost comparison. We show the most cost-effective throughputs under our 1s latency budget.

Hardware Parameters Batch size Price (East US) Latency (ms) Throughput (words/sec) Monthly USD/token

CPU (AVX512) 0.04 B 1 $587.65 (F16s) 75 351 0.209

CPU (AVX512) 5.32 B 1 $587.65 (F16s) 1080 26 22.602

NVIDIA T4 5.32 B 20 $390.55 421 1565 0.250(NC4as T4 v3)

NVIDIA T4 5.32 B 64 $390.55 824 2560 0.153(NC4as T4 v3)
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Abstract

Document retrieval is a core component of
many knowledge-intensive natural language
processing task formulations such as fact ver-
ification and question answering. Sources
of textual knowledge, such as Wikipedia arti-
cles, condition the generation of answers from
the models. Recent advances in retrieval use
sequence-to-sequence models to incrementally
predict the title of the appropriate Wikipedia
page given a query. However, this method re-
quires supervision in the form of human an-
notation to label which Wikipedia pages con-
tain appropriate context. This paper introduces
a distant-supervision method that does not re-
quire any annotation to train autoregressive re-
trievers that attain competitive R-Precision and
Recall in a zero-shot setting. Furthermore we
show that with task-specific supervised fine-
tuning, autoregressive retrieval performance for
two Wikipedia-based fact verification tasks can
approach or even exceed full supervision using
less than 1/4 of the annotated data indicating
possible directions for data-efficient autoregres-
sive retrieval.

1 Introduction

Conditioning answer generation on knowledge
from textual sources is a common component of
many well-studied natural language processing
tasks. For example, in the SQuAD (Rajpurkar
et al., 2016) question answering task, a passage
of text is used as a source of information to gen-
erate this answer. To enable machine-reading at
scale, recent studies combine retrieval with reason-
ing (Chen et al., 2017; Roller et al., 2021) mandat-
ing that systems select appropriate passages from
a corpus, such as Wikipedia, to condition answer
generation. Furthermore, tasks such as fact verifi-
cation (Thorne et al., 2018; Wadden et al., 2020;
Diggelmann et al., 2020) use evidence retrieved

https://github.com/j6mes/
sustainlp2022-deardr

Previous Work: FEVER Dataset

Input: Keanu Reeves is an American Actor
Output: Keanu_Reeves

185,000 instances. Manually labelled

This Work: Sentences from Wikipedia

Input: Born in Beirut and raised in  
Toronto, Reeves began acting...

Outputs: Keanu_Reeves, Beirut, Toronto
5M+ available pages. No manual labels.

Figure 1: We present a distantly supervised pre-training
objective for autoregressive information retrieval. Only
using sampled sentences from Wikipedia, without labels,
competitive scores can be attained for entity retrieval.

from a corpus and consider both the label and the
retrieved passages for evaluation.

Recent advances have been made in neural re-
trieval models, exploiting the structure of these
tasks. De Cao et al. (2020) model retrieval as en-
tity grounding (Bunescu and Paşca, 2006; Le and
Titov, 2018): the retriever is trained to predict the
title of the Wikipedia document for a given input
and is built on a seq2seq architecture. Even though
GENRE (De Cao et al., 2020) yields improvements
for many retrieval-oriented NLP tasks in the KILT
benchmark (Petroni et al., 2021), the model re-
quires supervision during training with labeled data
that contains the document titles for a given input.

In this paper, we present a method for training a
high-precision and high-recall retrieval system on
Wikipedia data in a self-supervised manner. Our
system can be trained in less than 6 hours on a
single GPU without human-annotated data. The
recall far exceeds conventional retrieval methods
such as TF-IDF and BM25. Compared to GENRE
(De Cao et al., 2020), which is trained with 11
annotated datasets for thousands of GPU-hours,
our self-supervised approach for Data Efficient
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AutoRegressive Document Retrieval, DEARDR,
performs within an R-Precision that is 6.36% lower
and a Recall@10 that is 0.91% lower for the
FEVER Shared Task. We additionally show that
with task-specific fine-tuning, DEARDR can attain
precision and recall exceeding a fully supervised
baseline for FEVER (and on-par with GENRE),
with just 16K annotated instances rather than 109K
in the full dataset. Similar findings are observed for
the HoVer fact verification task (Jiang et al., 2020).

2 Background

Conventional information retrieval methods, such
as TF-IDF and BM25, have been applied many
knowledge-intensive NLP tasks (Chen et al., 2017;
Thorne et al., 2018), with reasonable success.
These methods do not require supervision: instead,
query-document similarity is estimated based on
token-level frequency information from observa-
tions on a fixed corpus. At test time, sparse discrete
vector encodings of documents and the query are
compared to return documents with the highest sim-
ilarity to the query. While this aids application to
new tasks and settings, recall can be low, especially
when there are variations in phrasing due to the
sparse encoding of which tokens (or variants con-
sidering n-grams or subtokens) are present. Neu-
ral retrieval (Hanselowski et al., 2018; Karpukhin
et al., 2020) in contrast, uses neural networks to
generate dense encodings of the query and pas-
sages. These models are trained with supervision:
the training data contains lists of appropriate pas-
sages for a given query, but typically does not con-
tain negative instances. How negative instances
are sampled in training influences the suitability of
the retrieved documents for the downstream task
(Cohen et al., 2019; Karpukhin et al., 2020). Vari-
ants of training regimes for dense retrieval also use
Cloze-task (Lee et al., 2019), Wikipedia revision
information (Chang and Kao, 2012), contrastive
(Izacard et al., 2021) learning, or multi-task learn-
ing (Maillard et al., 2021) to improve performance.

2.1 Autoregressive Document Retrieval

In contrast to the previous approaches, where the
content of a passage is scored for a query us-
ing it’s content, autoregressive document retrieval
(De Cao et al., 2020) uses a seq2seq model that is
trained to predict a relevant document title, such
as a Wikipedia page. Tokens are decoded incre-
mentally left to right where the and scored with

p(y|x) =
∏

i=1 p(yi|y<i,x) where the decoded
document title ŷ ∈ E exists in a corpus E . To
ensure this constraint is satisfied, constrained de-
coding sets p(yi|y<i,x,x) = 0 for token sequences
(y1, . . . yi) that do not occur in the index. In prac-
tice this works well in the Wikipedia domain where
document titles are simple canonical descriptors
of an entity or concept. An extension, mGENRE
(Cao et al., 2021), has been trained for multi-lingual
entity linking using Wikipedia hyperlinks and inter-
nationalized versions of the pages from the Wiki-
data graph as supervision targets in other languages.
This has not been applied to an entity linking task,
but not evaluated for document retrieval.

Similarly, GENRE did use hyperlink-based infor-
mation by incorporating data from BLINK during
training. However, its contribution to system perfor-
mance appears low (De Cao et al., 2020, Table 8),
warranting further investigation. While the use of
pre-training with hyperlink information in retrieval
has shown promise (Ma et al., 2021) in other formu-
lations, the use of distant-supervision in autoregres-
sive retrieval, using the article titles and hyperlinks
in training is emerging and has been studied in con-
temporaneous work (Chen et al., 2022). Lee et al.
(2022) train autoregressive models for multi-hop
retrieval, with a data augmentation strategy. Al-
ternative autoregressive retrieval formulations are
designed to predict document sub-strings (Bevilac-
qua et al., 2022): this obviates the need to have
unique document identifiers.

3 Data Efficient Document Retrieval

The primary objective of this paper is to reduce
the dependency on supervised instances and ex-
ploit distant supervision to train an autoregressive
document retrieval system. Distant supervision
for DEARDR exploits the structural aspects of the
Wikipedia corpus: specifically, the page titles (de-
noted PT) and hyperlinks (denoted HL) from sen-
tences to other pages. Sentences from Wikipedia
documents are sampled from the corpus as input
and DEARDR is trained to decode the page title or
hyperlinks, or both (denoted PTHL).

Even though the DEARDR has only been pre-
trained with distant supervision without exposure
to annotated training data for a knowledge intensive
NLP task, we hypothesize that training to predict a
Wikipedia page title or hyperlinks acts a a reason-
able analog that simulates a common component of
many retrieval oriented tasks. This should be suffi-
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cient to allow zero-shot application to retrieve rele-
vant documents without the need for human annota-
tions enabling application of knowledge-intensive
NLP tasks to new domains or languages. In con-
trast, the GENRE model (De Cao et al., 2020)
is trained with data from eleven Wikipedia-based
NLP tasks with millions of annotated instances.

Constrained decoding At test time, a result set
is decoded by aggregating the results from a beam
search (Sutskever et al., 2014) with constrained de-
coding (De Cao et al., 2020). However, in contrast
to GENRE, which predicts a single entity per beam,
DEARDR is trained to predict a sequence of all the
hyperlinked page names (illustrated in Figure 1).

Self-supervised vs task-specific retriever Once
the DEARDR retriever has been pre-trained with
self-supervision on Wikipedia data, it can be ap-
plied in a zero-shot setting to the knowledge-
intensive task of fact verification. Some aspects
of the test-task formulation, may have patterns that
differ to what DEARDR is exposed to during the
pre-training. Using small numbers of task-specific
training data, the pre-trained DEARDR will be fine-
tuned evaluated on downstream tasks. We hypothe-
size that the pre-training regimen for DEARDR will
reduce the number of instances needed to train the
system and attain similar performance to a system
with full supervision.

4 Experimental Setup

Three different pre-training regimens for DEARDR,
based on page title (PT), sentence hyperlinks (HL)
and a combination of both (PTHL), are performed
using the snapshot of Wikipedia from June 2017.
This was the snapshot used for the FEVER shared
task. Document-level retrieval for two fact verifica-
tion tasks will be evaluated: FEVER (Thorne et al.,
2018) and HoVER (Jiang et al., 2020).

Zero-Shot Document Retrieval: Without expo-
sure to the underlying test task, DEARDR will
be pre-trained using unlabeled instances from En-
glish Wikipedia articles (pre-trained with PT, HL
or PTHL), and then applied to instances from these
retrieval-based NLP tasks. From Wikipedia, we
generate 16.8M distant-supervision instances.

Data-Efficient Document Retrieval: The
DEARDR model will be fine-tuned using a low
number of labeled instances from the target task.
During training, we sample instances uniformly

at random. We optimize training for Recall with
early stopping. This occurred after 12,500 steps
(100K instances in total).

Supervised Baseline: For a controlled baseline
system that DEARDR can be compared against, we
train a document retriever for the target task using
all available data in a fully supervised setting.

Previous Work: We compare to GENRE
(De Cao et al., 2020) which was trained with data
from eleven retrieval tasks. We also compare to
sparse-vector retrieval methods such as BM25 and
TF-IDF. Finally, for dense-vector retrieval, we com-
pare against DPR (Karpukhin et al., 2020). Be-
cause contrastive retrieval (Izacard et al., 2021)
does not offer significant advantages over BM25
for FEVER, we do not evaluate against it.

4.1 Evaluation

Document retrieval is evaluated using two perfor-
mance evaluation metrics: R-Precision and Re-
call@k. R-Precision is the precision of retrieved
documents@R where R is the number of expected
elements labeled for the instance. If the test set only
specifies 1 valid document, this is equivalent to Pre-
cision@1. However, datasets sometimes require
a multi-hop combination of pages for inference,
requiring multiple documents to be considered for
evaluation. Recall@k is the proportion of the gold
documents present in the first k elements predicted
by the model. This metric is a useful indicator
of potential upper-bound system performance for
some tasks, such as FEVER, which considers up to
5 retrieval results for scoring claim veracity. Where
multiple answer sets are present for instances, we
consider each answer set independently and return
the max score over all the sets to allow comparison
to the KILT methodology (Petroni et al., 2021).

4.2 Implementation

We use the HuggingFace (Wolf et al., 2020) imple-
mentation of T5-base (Raffel et al., 2020). This is
fine-tuned using data as outlined in the previous
section. We optimize hyper-parameters by sweep-
ing the learning rate and scheduler (documented
in Appendix A.2) and maximizing R-Precision on
the dev split. The index for constraining decoding
is constructed from all subtokens generated by the
T5 Tokenizer for article titles from the Wikipedia
version for the test task.
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Trainer R-Precision (%) Recall@10 (%)

Page Link Page Link

GENRE 26.51 38.45 36.28 55.31

PT 33.12 21.10 40.04 29.95
HL 2.65 71.91 17.49 84.35
PTHL 33.17 38.91 37.70 84.89

Table 1: R-Precision and Recall of page titles (page),
and hyperlink destinations (link) of sentences sampled
from Wikipedia using our training approaches (PT, HL,
PTHL) compared to a contemporary supervised ap-
proach which only underwent task-specific traiing and
did not undergo the pre-training.

5 Results and Discussion

5.1 Pre-training Intrinsic Evaluation

DearDr was optimized by selecting the model with
the highest R-precision on the FEVER shared task.
For the R-Precision on the PT and HL components
of the pre-training task, we provide the following
intrinsic evaluation listed in Table 1 to evaluate
the pre-training objectives. Without pre-training
on hyperlinks, recall is low indicating that hyper-
link pre-training may be beneficial to multi-entity
retrieval needed for some FEVER instances.

5.2 Downstream Extrinsic Evaluation

FEVER: For the FEVER shared task, we
trained DEARDR with instances sampled from the
Wikipedia snapshot for the task without using any
human-annotated data. Table 2 highlights the re-
triever’s R-Precision and Recall@10 in comparison
to a fully supervised system showing that in the
zero shot setting (without exposure to any labeled
data) document retrieval scores are adequate and far
exceed retrieval from token-based similarity meth-
ods such as TF-IDF and BM25. Because FEVER
is a claim verification task, the claims are simi-
lar in nature to sentences sampled from Wikipedia
pages. The similarity between the claims and the
Wikipedia sentences the zero-shot system was ex-
posed to during training mean that this system is
able to apply well to this task.

While GENRE was trained on 11 tasks with over
100K fact verification instances and over 500K
question answering instances, the R-Precision of
our zero-shot system is only 6.36% lower with Re-
call@10 less than one percent lower. Given that
most modern fact verification approaches perform

Approach FEVER Retrieval (%)

R-Prec Recall@10

DEARDR (PT) ZS 77.66 91.95
DEARDR (HL) ZS 56.55 89.94
DEARDR (PTHL) ZS 75.89 88.18

DEARDR (PT) 16K 82.49 94.85
Supervised 81.36 94.28

GENRE (11 tasks) 84.02 92.86
TF-IDF 29.89 68.57
BM25 40.42 70.58
DPR 55.98 77.53

Table 2: Without exposure to training instances from
the FEVER task, DEARDR attains high recall and R-
Precision (R-Prec) for document retrieval for FEVER
in a zero-shot (ZS) setting and can be further improved
with fine-tuning on 16K (16,000) data.
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Figure 2: Learning curve showing greater R-Precision
when training with fewer instances using DEARDR pre-
training compared to conventional supervised training

supervised re-ranking of sentences from these doc-
uments, we do not foresee this lower precision hav-
ing such a large impact on the final task score.

With full supervision from the FEVER task,
our control model for comparison attains an R-
Precision of 81.36%. However, with small num-
bers of instances for fine-tuning on FEVER, higher
recalls can be attained. With 16,384 instances (less
than 1/8 of the dataset), an R-Precision and Re-
call@10 exceeding this supervised baseline can be
achieved. Furthermore, with only 2048 instances
(2% of the dataset), an R-Precision of at least 80%
is attained. In contrast, without pre-training R-
Precision for both of these models with the same
number of data is less than 30%. Learning curves
are plotted in Figure 2.

HOVER: The multi-hop nature of HoVer
presents more complex reasoning challenges than
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Approach HOVER Retrieval (%)

R-Prec Recall@10

GENRE (Transfer) 43.28 49.41

DEARDR (PT) ZS 32.83 36.43
DEARDR (HL) ZS 42.22 43.78
DEARDR (PTHL) ZS 38.94 47.44

DEARDR(PTHL) 4K 45.62 49.14
DEARDR(PTHL) All 46.23 50.33
Supervised 4K 29.24 35.22
Supervised 46.22 50.38

Table 3: The multi-hop aspect of HoVer presents new
challenges. Despite this, DearDr attains higher R-Prec
with fewer training data than supervised baselines

FEVER and is reported in Table 3. Our zero-
shot model has R-Precision that is less than 1% of
GENRE. While GENRE wasn’t trained on HoVer,
it was trained on HotpotQA (Yang et al., 2018)
which the HoVer dataset is derived from.

The benefit of pre-training with hyperlinks be-
comes apparent for multi-hop challenges as R-
Precision for HL and PTHL exceed PT. With
limited fine-tuning, using 1/4 of the dataset, R-
Precision with DEARDR is less than 1% away from
a fully supervised model, despite using fewer data.
Without pre-training, R-Precision is unsatisfactory.
With all data, DEARDR performs as good as a
model without pre-training. While DEARDR is
beneficial for this task with fewer data, there are
clearly more complex challenges with multi-hop
reasoning that require further data augmentation,
such as (Lee et al., 2022), to be solved solved by
autoregressive methods for retrieval.

Question Answering: The similarity between
fact verification and DEARDR pre-training is simi-
lar, aiding retrieval. However, application to ques-
tion answering (TriviaQA (Joshi et al., 2017, TQA),
HotpotQA (Yang et al., 2018, HPQA) and Natu-
ralQuestions (Kwiatkowski et al., 2019, NQ)) re-
quires further study. Table 4 shows pre-training
does offer a benefit, but with fewer data for fine-
tuning, similar gains in retrieval cannot be attained.

6 Conclusions and Future Work

We show that distant supervision and pre-training
enables high precision autoregressive document
retrieval with fewer annotated training data. While
previous work has studied the utility of pre-training

Approach R-Precision (%)

TQA HPQA NQ

GENRE* 69.2 51.3 60.3
DEARDR (PTHL) ZS 44.24 42.44 18.05
DEARDR (PTHL) 32K 53.98 43.54 36.94

Table 4: Application to question answering highlights
further challenges (* reported by De Cao et al. (2020)).

for dense-retrieval, this work aids understanding
of sparse autoregressive retrieval. In application to
fact verification, fewer labeled training data were
required. However, when we applied this method
to question answering, satisfactory results were not
obtained due to the domain shift between the two
tasks. Better understanding this limitation would
be required to adapt DEARDR pre-training to a
wider range of tasks and multi-hop reasoning.
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A Appendix

A.1 Hardware Requirements
Experiments were performed on a single worksta-
tion with a single NVIDIA GTX 1080 Ti GPU.

A.2 Implementation
A.2.1 Pre-training
The following parameters were adjusted as part of
the hyper-parameter optimization with the best pa-
rameters for all experiments indicated in bold. For
HL, using learning rate of 5e-6 was more benefi-
cial.

• Learning rate: 1e-4, 5e-5, 1e-5, 5e-6, 1e-6.

• Scheduler: constant with warmup, constant,
linear.

A.2.2 Fine-tuning + Supervised
The following parameters were adjusted as part
of the hyper-parameter optimization with the best
parameters for all experiments indicated in bold.
For fine-tuning, using a dropout of 0.2 was more
beneficial.

• Learning rate: 1e-4, 5e-5, 1e-5, 5e-6, 1e-6.

• Scheduler: constant with warmup, constant,
linear.

• Dropout: 0.1, 0.2, 0.3

B Licenses

The dataset released with this paper makes use
of data from Wikipedia which is licensed under
creative commons CC-BY-SA 4.0 license.
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Abstract
In recent years, multilingual pre-trained lan-
guage models have gained prominence due
to their remarkable performance on numer-
ous downstream Natural Language Process-
ing tasks (NLP). However, pre-training these
large multilingual language models requires
a lot of training data, which is not available
for African Languages. Active learning is a
semi-supervised learning algorithm, in which
a model consistently and dynamically learns
to identify the most beneficial samples to train
itself on, in order to achieve better optimization
and performance on downstream tasks. Further-
more, active learning effectively and practically
addresses real-world data scarcity. Despite all
its benefits, active learning, in the context of
NLP and especially multilingual language mod-
els pretraining, has received little considera-
tion. In this paper, we present AfroLM, a
multilingual language model pretrained from
scratch on 23 African languages (the largest
effort to date) using our novel self-active learn-
ing framework. Pretrained on a dataset signif-
icantly (14x) smaller than existing baselines,
AfroLM outperforms many multilingual pre-
trained language models (AfriBERTa, XLMR-
base, mBERT) on various NLP downstream
tasks (NER, text classification, and sentiment
analysis). Additional out-of-domain sentiment
analysis experiments show that AfroLM is able
to generalize well across various domains. We
release the code source, and our datasets used in
our framework at https://github.com/
bonaventuredossou/MLM_AL.

1 Introduction

With the appearance of Transformer models
(Vaswani et al., 2017), the field of Natural Lan-
guage Processing (NLP) has seen the emergence of
powerful multilingual pre-trained language models
(MPLMs), such as mBERT (Devlin et al., 2018),
XLM-RoBERTa (XML-R) (Conneau et al., 2019),
and mT5 (Xue et al., 2021). These prominent mod-
els have helped achieve state-of-the-art (SOTA)

performance in many downstream NLP tasks such
as named entity recognition (NER) (Alabi et al.,
2022a; Adelani et al., 2021a; Devlin et al., 2018;
Conneau et al., 2019), text classification (Kelechi
et al., 2021), and sentiment analysis (Alabi et al.,
2022a; Adelani et al., 2021a; Devlin et al., 2018;
Conneau et al., 2019). However they usually re-
quire a large amount of unlabeled text corpora
for good performance: mBERT was trained on
Wikipedia (2,500M words) and BookCorpus (Zhu
et al., 2015) (800M words) across 104 languages
- 5 of which are African; mT5 supports 101 lan-
guages (13 African) and XLM-R supports 100
languages (8 African), and were trained on mC4
(Xue et al., 2021) and CommonCrawl data (Wen-
zek et al., 2019), respectively. This requirement
for large-scale datasets contrasts sharply with the
scarcity of available text corpora for African lan-
guages, which has pushed them into low-resource
settings and largely excluded them from the pre-
training phase of these large pre-trained models
(Joshi et al., 2020; Adelani et al., 2022a). This ex-
clusion, leads very often, to a poor performance on
languages unseen during pre-training (Alabi et al.,
2022a) which eventually leads to inability to carry
out the required NLP task.

Active learning is a semi-supervised machine
learning algorithm that makes use of only a few
initial training data points to achieve better per-
formance of a given model M. The optimization
is done by iteratively training M, and using an-
other model N, usually referred to as the oracle,
to choose new training samples that will help M
find better configurations while improving its per-
formance (e.g., prediction accuracy). This makes
active learning a prevalent paradigm to cope with
data scarcity. The efficiency of active learning (i.e.
its ability to produce better performance despite
being trained on a smaller training data) has been
proven in tasks such as biological sequence de-
sign (Jain et al., 2022), chemical sampling (Smith
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Languages Family Writing System African Region No of Speakers Initial # of Sentences Source Size (MB)
Amharic (amh) Afro-Asiatic/Semitic Ge’ez script East 57M 655,079 ✥,✟,★ 279

Afan Oromo (orm) Afro-Asiatic/Cushitic Latin script East 37.4M 50,105 ✟ 9.87
Bambara (bam) NC/Manding Latin, Arabic(Ajami), N’ko West 14M 6,618 ✥ 1.00
Ghomálá’ (bbj) NC/Grassfields Latin script Central 1M 4,841 ✥ 0.50

Éwé (ewe) NC/Kwa Latin (Ewe alphabet) West 7M 5,615 ✥ 0.50
Fon (fon) NC/Volta-Niger Latin script West 1.7M 5,448 ✥ 1.00

Hausa (hau) Afro-Asiatic/Chadic Latin (Boko alphabet) West 63M 1,626,330 ✥,✟,★ 208
Igbo (ibo) NC/Volta-Niger Latin (Önwu alphabet) West 27M 437,737 ✥,✟,★ 63

Kinyarwanda (kin) NC/Rwanda-Rundi Latin script Central 9.8M 84,994 ➸,✟,✥ 37.70
Lingala (lin) NC/Bang Latin script Central & East 45M 398,440 ✥ 45.90

Luganda (lug) NC/Bantu Latin script (Ganda alphabet) East 7M 74,754 ✟,✥ 8.34
Luo (luo) Nilo-Saharan Latin script East 4M 8,684 ✟ 1.29

Mooré (mos) NC/Gur Latin script West 8M 27,908 ✥,✟ 5.05
Chewa (nya) NC/Nyasa Latin script South & East 12M 8,000 ✥ 1.66
Naija (pcm) English-Creole Latin script West 75M 345,694 ✥,✟,★ 101
Shona (sna) NC/Bantu Latin script (Shona alphabet) Southeast 12M 187,810 ✥,✟ 32.80

Swahili (swa) NC / Bantu Latin script (Roman Swahili alphabet) East & Central 98M 1,935,485 ✥,✟,★ 276
Setswana (tsn) NC / Bantu Latin (Tswana alphabet) South 14M 13,958 ✥,✟ 2.21
Akan/Twi (twi) NC / Kwa Latin script West 9M 14,701 ✥ 1.61

Wolof (wol) NC / Senegambia Latin (Wolof alphabet) West 5M 13,868 ✟ 2.20
Xhosa (xho) NC/Zunda Latin (Xhosa alphabet) South 20M 93,288 ✥,✟ 17.40
Yorůbá (yor) NC / Volta-Niger Latin (Yorùbá alphabet) West 42M 290,999 ✥,✟,★ 45.9
isiZulu (zul) NC / Bantu Latin (Zulu alphabet) South 27M 194,562 ✥,✟ 33.70

Table 1: Languages Corpora Details. Legends: (Adelani et al., 2022a)→ ✥, (Alabi et al., 2022a)→ ✟, (Kelechi
et al., 2021)→ ★, (Niyongabo et al., 2020)→➸.

et al., 2018), and Deep Bayesian (DB) approaches
on image data (Gal et al., 2017). Also, most of
the work on deep active learning focuses on image
classification with Convolutional Neural Networks
(CNNs). It should be noted that active learning has
been greatly explored and used to perform classi-
fication tasks, but not in language generation and
understanding, and this is what we hope to address.

A study of active learning in the context of
NLP has been carried out by (Siddhant and Lip-
ton, 2018). In their study, it is shown that active
learning with DB networks coupled with uncer-
tainty measures and acquisition function outper-
forms several i.i.d baselines. They showed that
with only 20% of samples labeled, their approach
reached an accuracy of 98-99% on the Named En-
tity Recognition (NER) task, while i.i.d tasks re-
quired 50% of labelled data to achieve compara-
ble performance. In their study on clinical texts,
(Chen et al., 2015) also proved that active learning
algorithms outperformed other learning methods.
(Ein-Dor et al., 2020; Tonneau et al., 2022) on their
works with BERT model(s) (for n different lan-
guages, there were n different BERT-based models)
went further by showing that active learning works
with a balanced and unbalanced dataset. They also
showed that the different active learning methods
performed relatively the same.

In our work, we fixed M=N (hence the title self-
active learning). In our framework, we give M
the ability to query itself, and use the knowledge
acquired during each active learning round to con-
struct new data points (from existing ones) that will
be used for the next active learning round.

We considered a diverse set of 23 African lan-
guages spread across the African continent. The
selected languages are spoken in the south, cen-
tral, east, and western regions of Africa. The lan-
guages cover four language families: Afro-Asiatic
(e.g., Amharic, Hausa, Afan Omoro), Niger-Congo
(NC) (e.g., Yorùbá, Bambara, Fon), English-Creole
(Naija) and Nilo-Saharan (Luo) (see Appendix A
for details). For each language, a dataset was col-
lected from the news domain, which encompassed
many topics such as health, politics, society, sport,
environment, etc.

Our primary contribution to this work is our
proposal of a self-active learning framework
in which we pre-train the biggest Multilingual
African Language Model (for the number of lan-
guages covered) to date, and we show that our
setup is very data-efficient and provides improve-
ments on downstream NLP tasks such as NER, text
classification, and sentiment analysis (even on out-
of-domain experiments).

2 Related Works on MPLMs for African
Languages

Language adaptive fine-tuning (LAFT) is one of
the best approaches to adapt MPLMs to a new
language. This entails fine-tuning an MPLM on
monolingual texts of the said language with the
same pre-training objective. However, this can-
not be efficiently applied to African languages fac-
ing data-scarcity. (Alabi et al., 2022b) proposed a
new adaptation method called Multilingual adap-
tive fine-tuning (MAFT), as an approach to adapt
MPLMs to many African languages with a single
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Figure 1: Self-Active Learning Framework). The process is designed in 4 stages (fully explained and detailed in
Algorithm 1): (1) ■ Dataset split for current Active Learning round, (2) ■ Active Learning round training, (3) ■
Generation of new sentence samples for the current round, and (4) ■ Augmentation of the datasets of all languages.

model. Their results show that MAFT is competi-
tive to LAFT while providing a single model rather
than many models that are specific for individual
languages. Nevertheless, Alabi et al. (2022b)’s ap-
proach still works under the assumption that one
does not need to train a model from scratch for lan-
guages in the low-resource settings, as they could
benefit from high-resource languages. We find that
this is not always the case.

(Kelechi et al., 2021) introduced AfriBERTa,
a multilingual language model trained on less
than 1GB of data from 11 African languages.
Training AfriBERTa from scratch showcased how
African languages can benefit from being included
in the pre-training stage of MPLMs. AfriBERTa
produced competitive results compared to exist-
ing MPLMs (e.g., mBERT, XLM-R), and outper-
formed them on text classification and NER tasks.
Rather than relying on high-resource languages for
transfer-learning, AfriBERTa leverages the linguis-
tic similarity between languages with low-resource
settings to produce promising results. (Kelechi
et al., 2021) empirically demonstrates that this is
more beneficial to these languages and is crucial
in assessing the viability of language models pre-
trained on small datasets.

(Antoine and Niyongabo, 2022) went beyond
the linguistic taxonomy in creating KinyaBERT,
a morphology-aware language model for Kin-
yarwanda. Trained on a 2.4GB corpus contain-
ing news articles from 370 websites registered

between 2011 and 2021, KinyaBERT boasts a
Transformer-like architecture that helps the repre-
sentation of morphological compositionality. Their
experiments outperformed solid baseline results
for tasks such as NER and machine-translated
GLUE on the Kinyarwanda language. These re-
sults demonstrated the effectiveness of not relying
on transfer learning from high resource languages
and rather explicitly incorporating morphological
information of the African languages in their pre-
training stage.

In the next section, we will describe our self-
active learning framework, and the core details of
our approach.

3 Self-Active Learning Framework

In this section, we describe our self-active learn-
ing framework (Figure 1). In Algorithm 1, we
present a single active learning loop. In our current
work, our model is trained only with a Masked Lan-
guage Modeling (MLM) objective (Conneau et al.,
2019; Conneau and Lample, 2019; Devlin et al.,
2018). We plan to further incorporate Translation
Language Modeling (TLM) objective to improve
translations of low-resource languages with rela-
tively few thousands of data points 1. This will be
useful for both supervised and unsupervised trans-
lation (Adelani et al., 2022a; Conneau et al., 2019).

We used a shared Sentence Piece vocabulary
with 250, 000 BPE codes. The subword shared

1https://github.com/facebookresearch/XLM
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vocabulary intends to improve alignment in the
embedding space across languages (see languages
description in Appendix A and corpora details in
Table 1) that are linguistically similar in features
such as script/alphabet, morphology, etc. (Conneau
et al., 2019), reflecting our focus languages. Addi-
tionally, (Conneau et al., 2019) showed that scaling
the size of the shared vocabulary (e.g. from 36,000
to 256,000) improved the performance of multilin-
gual models on downstream tasks. Our vocabulary
is defined jointly across all 23 languages and fixed
during training, as opposed to random training and
held-out dataset selection at each active learning
round.

The motivations behind the randomness in the
selection of the training and held-out datasets are:
(1) to make efficient use of the limited dataset we
have, and (2) to expose the model step by step,
instead of simultaneously, to a variety of samples
across different news sub-domains. We believe
this would help in domain-shift adaptation and the
robustness of the model.

As extensively detailed in Algorithm 1, at each
round we randomly select m sentences per lan-
guage, from the held-out dataset of the language.
For a language, to generate a new sentence s′, given
an original sentence s, we proceed as follows (more
details can be found in Algorithm 1):

1. select an initial ordered (left to right) set of
words from s as prompt,

2. add a mask token at the end of the ordered set
or sequence of words,

3. query the model to predict the masked token,

4. choose the best word, add it to the prompt,

5. repeat 2-4 until we reach the length of s.

The process described above will produce m new
data points that will be added to the language
dataset. The new dataset obtained is used to re-train
the model from scratch at the next active learning
round.

4 Experiments, Results and Discussion

Experiments: We use the XLM-RoBERTa
(XLM-R) architecture in our experiments based
on previous works utilizing the model to achieve
state-of-the-art performance in various downstream
tasks. Following the work and results of (Kelechi
et al., 2021), we trained XLM-R-based models

Algorithm 1 Self-Active Learning Training Round

Require:
•Masked Language Modeling (MLM) objective
πθ with masking probability p = 0.15
• Vocabulary V , ModelM, Tokenizer T
• Set of languages L =

⋃
i∈[1,23]{l}

• Overall Dataset D =
⋃

l∈LDl with Dl the
dataset of language l
• Training Dataset Dt with k% randomly se-
lected sentences from Dl, l ∈ L
• Held-out DatasetH with 1− k% samples for
each language: H =

⋃
l∈LHl

• proportion t of words to successively mask in
a sentence (from left to right)

Ensure:
• InitializeM, and T with V
• k ← 80
• t← 15
• TrainM with policy πθ
Generate set Gl of new samples for each lan-
guage:
for l ∈ L do
Gl ← {}
• Build Sl with m = |Hl| sentences randomly

chosen fromHl ▷ we choose m this way to
cope with small size datasets

for s ∈ Sl do
n← len(s), s =

⋃
i∈[1,n]{wi}

ts ←
⌈
n∗t
100

⌉
+ 1

prompt← ⋃
i∈[1,n−ts]

{wi}
while ts ̸= 0 do

prompt← prompt ∪ {<mask>}
wp ←M(prompt): ▷ predicted

masked word
prompt← prompt ∪ {wp}
ts ← ts − 1

end while
Gl ← Gl ∪ {prompt}

end for
Dl ← Dl ∪ Gl ▷ new samples added to the

language dataset
end for
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Model Hyper-parameters Values

AfroLM-Large

sequence maximum length 256
hidden size 768

attention heads 6
hidden layers 10
learning rate 1e-4

batch size 32
# of Parameters 264M

total initial training examples 5,137,026
vocabulary size 250,000

gradient accumulation steps 8
warming steps 40,000
training steps 500,000

Table 2: Hyper-parameters summary

from scratch. In our current work we trained
the model with 3 self-active learning rounds (we
stopped at 3 due to computational resources). We
used 80% and 20% of languages data for the train-
ing and held-out datasets respectively. We designed
2 versions of AfroLM: AfroLM-Large (without
self-active learning) and AfroLM-Large (with self-
active learning) with the hyper-parameters speci-
fied in Table 2. All training experiments were done
using the HuggingFace Transformers library (Wolf
et al., 2019).

Afro (without self-active learning) is one of our
baselines. We trained an XLM-R model on the en-
tire dataset, and the held-out dataset was just used
for evaluation. For AfroLM-Large models, we
used Google Cloud with a single 48GB NVIDIA
A100 GPU. An active learning round took ≈ 260
hours of training. We evaluated AfroLM-Large
models on three downstream tasks:

• NER: we evaluated the performance of our
model pre-trained using our self-active learn-
ing framework on the MasakhaNER dataset
(Adelani et al., 2021a). The dataset contains
ten African languages: Amharic, Hausa, Igbo,
Kinyarwanda, Luganda, Luo, Nigerian Pid-
gin, Swahili, Wolof, and Yorùbá. (Adelani
et al., 2021a; Alabi et al., 2022a) also pro-
vided strong baselines with pre-trained lan-
guage models like mBERT and XLM-R on
MasakhaNER.

• Text Classification: we tested our models
on Hausa and Yorùbá news text classification
dataset from (Hedderich et al., 2020), where
the authors have also built strong baselines on
mBERT and XLM-R models.

• Sentiment Analysis: we tested the the out-
of-domain performance of our model in two

domains different from news:

1. Movies: we directly fine-tuned and
evaluated AfroLM-Large on the YOSM
dataset (Shode et al., 2022), which con-
tains reviews of Yorùbá movies.

2. Twitter → Movies: in this setup,
we finetuned on the training and valida-
tion set of NaijaSenti (Muhammad et al.,
2022), and evaluated on YOSM. Nai-
jaSenti contains human annotated tweets
in Hausa, Yoruba, Igbo and Nigerian Pid-
gin. However, we were not able to eval-
uate AfroLM-Large on it because the
authors have not yet released the test set.

Results & Discussion: Tables 1 and 3 show that
our framework includes a large variety of African
Languages. Table 4, and Table 5 (with 11 addi-
tional languages from MasakhaNER 2.0 dataset
(Adelani et al., 2022b)) show the results of our
method in comparison with other baselines on
NER task. We can notice that AfroLM-Large
(w/ AL) outperforms AfriBERTa-Large, mBERT
and XLMR-base (≈ 2.5 TB of data); while being
pre-trained on significantly smaller dataset (≈ 0.73
GB (80% of 0.91 GB initial dataset)). AfriBERTa-
Large has been pretrained from scratch on 11
African languages, while mBERT and XLMR-base
(with existing pretrained weights) were finetuned
on the MasakhaNER dataset.

Table 6, and Table 7 show that, on the text classi-
fication, and sentiment analysis tasks, our method
outperforms many existing baselines. Additionally,
out-of-domain experiments and analyses show that
our method is robust and provides good results in
out-of-domain settings.

While AfroXLMR-base in average, slightly out-
performs our approach, it is important to notice that
it has been pretrained on a dataset 14x bigger than
our set. Furthermore, AfroLM-Large has been
trained on ≈ 0.73 GB of data (80% of 0.91 GB
initial dataset), which is less than the size of the
corpus used to train AfriBERTa (0.939 GB). This
allows us to confidently affirm that our approach is
data-efficient, while being very competitive.

It is important to note that the margin of per-
formance from AfroLM-Large (w/ AL) does not
come from the fact that it has been trained on more
languages. Our results show that AfroLM-Large
(w/ AL) outperforms models trained on signifi-
cantly larger datasets and number of languages.
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Language In In In In In
AfriBERTa? AfroLM? AfroXLMR mBERT? XLMR?

amh ✓ ✓ ✓ ✗ ✓
hau ✓ ✓ ✓ ✗ ✓
ibo ✓ ✓ ✓ ✗ ✗
kin ✓ ✓ ✓ ✗ ✗
lug ✗ ✓ ✗ ✗ ✗
luo ✗ ✓ ✗ ✗ ✗
pcm ✓ ✓ ✓ ✗ ✗
swa ✓ ✓ ✓ ✓ ✓
wol ✓ ✓ ✓ ✗ ✗
yor ✓ ✓ ✓ ✓ ✗

Table 3: Information about languages included in each language model. We can notice that AfroLM includes the
most of them.

Language AfriBERTa-Large AfroLM-Large AfroLM-Large AfroXLMR-base mBERT XLMR-base(w/o AL) (w/ AL)

amh 73.82 43.78 73.84 76.10 00.00 70.96
hau 90.17 84.14 91.09 91.10 87.34 87.44
ibo 87.38 80.24 87.65 87.40 85.11 84.51
kin 73.78 67.56 72.84 78.00 70.98 73.93
lug 78.85 72.94 80.38 82.90 80.56 80.71
luo 70.23 57.03 75.60 75.10 72.65 75.14
pcm 85.70 73.23 87.05 89.60 87.78 87.39
swa 87.96 74.89 87.67 88.60 86.37 87.55
wol 61.81 53.58 65.80 67.40 66.10 64.38
yor 81.32 73.23 79.37 82.10 78.64 77.58

avg 79.10 68.06 80.13 81.90 71.55 79.16
avg (excl. amh) 79.69 70.76 80.83 82.54 79.50 80.07

Table 4: NER Performances: F1-scores on languages test sets after 50 epochs averaged over 5 seeds. These results
cover all 4 tags in the MasakhaNER dataset: PER, ORG, LOC, DATE. XLM-R and mBERT results obtained from
(Adelani et al., 2021b). AfroLM-Large (w/ AL) outperforms AfriBERTa, and the initial MasakhaNER baselines.
The bold numbers represent the performance of the model with the lowest pretrained data. AfroXMLR-base =
XLMR-Large + MAFT (Alabi et al., 2022a) with 272M parameters. MAFT gives similar performance to individual
LAFT models (Alabi et al., 2022a) (LAFT results in single model per language).

Moreover, the comparison of AfroLM-Large (w/
AL) to AfroLM-Large (w/o AL) shows a signifi-
cant improvement in performance, which implies
that our self-active learning framework is efficient,
and leads to a better performance. This is expected,
because the idea of our self-active learning (and
of active learning in general) is to have AfroLM,
to consistently and dynamically, during the train-
ing phase, identify the most beneficial sample(s) to
learn from in order to boost the performance.

In our current algorithm, a sentence sample is
generated by iterative next-token prediction: the
generated sentence is the result of the concatenation
of each best token. Diversity in sample generation
and selection is paramount, and we believe, could
improve the performance of our framework. In
the limitation section (section 6), we proposed a
way of selecting diverse sentences (after sentence

generation). We also proposed a new weighted loss,
that we believe will be more balanced across the
entire dataset.

5 Future works and Conclusion

In conclusion, we propose AfroLM, a self-active
learning-based multilingual language model sup-
porting 23 African Languages; the largest to date.
Our language datasets are collected from the news
domain and span across different parts of the
African continent. Our experimental results on
NLP downstream tasks (NER, text classification,
and out-of-domain sentiment analysis), prove the
data-efficiency of AfroLM (as it has been trained
on a dataset 14x smaller than its competitors),
and its competitiveness as it outperforms many
MPLMs (AfriBERTa, mBERT, XLMR-base) while
being very competitive to AfroXLMR-base. We
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Model bam bbj ewe fon mos nya sna tsn twi xho zul AVG

MPLMs pre-trained on from scratch on African Languages
AfriBERTa-Large 78.60 71.00 86.90 79.90 71.40 88.60 92.40 83.20 75.70 85.00 81.70 81.31
AfroLM-Large (w/ AL) 80.40 72.91 88.14 80.48 72.14 90.25 94.46 85.38 77.89 87.50 86.31 83.26
MPLMs adapted to African Languages
AfroXLMR-base 79.60 73.30 89.20 82.30 74.40 91.90 95.70 87.70 78.90 88.60 88.40 84.55
mBERT 78.90 60.60 86.90 79.90 71.40 88.60 92.40 86.40 75.70 85.00 81.70 80.68
XLMR-base 78.70 72.30 88.50 81.90 72.70 89.90 93.60 86.10 78.70 87.00 84.60 83.09

Table 5: NER Baselines on MasakhaNER2.0 (Adelani et al., 2022b). We compare MPLMs trained from scratch
on African languages, and MPLMs adapted to African Languages. The average of scores are over 5 runs. The bold
numbers represent the performance of the model with the lowest pretrained data.

Language In In AfriBERTa-Large AfroLM-Large AfroLM-Large
AfriBERTa? AfroLM? (w/o AL) (w/ AL)

hau ✓ ✓ 90.86 85.57 91.00
yor ✓ ✓ 83.22 75.30 82.90

Table 6: Text Classification Performances: F1-scores on the languages test sets. The bold numbers represent
the performance of the model with the lowest pretrained data.

Models Yoruba F1-score

AfroLM-Large (w/o AL)
Movies 83.12

Twitter→ Movies 41.28

AfroLM-Large (w/ AL)
Movies 85.40

Twitter→ Movies 68.70

AfriBERTa-Large
Movies 82.70

Twitter→ Movies 65.90

Table 7: Out-Of-Domain Sentiment Analysis Performance: F1-scores on YOSM test set after 20 epochs averaged
over 5 seeds. The bold numbers represent the performance of the model with the lowest pretrained data.

also show that AfroLM is also able to general-
ize across various domains. For future work, we
intend to: (1) explore and understand the relation-
ship between the number of active learning steps
and the MPLMs performance on downstream tasks,
and (2) integrate a new weighted loss, and more
diversity in new data points generation and se-
lection as we explained in the limitation section
(see section 6). Our datasets, and source code are
publicly available at https://github.com/
bonaventuredossou/MLM_AL.

6 Limitations and Approach of Solution

Currently, the loss of the model across the train-
ing dataset (across all 23 languages), appears to
be the average of the individual (cross-entropy)
losses. Due to the disparate sizes of our corpora
per language, the training will be biased toward the
languages whose sizes predominate the training set.

Therefore, we suggest a strategy to re-weight the
cross entropy loss per language by the ratio of the
size of the dataset for that language to the size of
the entire training set:

L =
1

N

∑

l

|Dl

D |Ll

where |Dl
D | is the weight of the training dataset of

the language l, Ll is the loss of the model on a
given language l, and N is the total number of
languages (23 in our case). We believe this adjusts
well overall loss, by using the right weighted loss of
each language, that can be seen as their respective
contribution to the general loss.

Another limitation of our current framework is
that the samples that are generated from prompts
might not be diverse. Given a batch B of generated
samples, and a set S of initial samples, we want the
samples selected to be substantially different from
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the majority of samples present in S. We think
that performing the following two steps will help
to ensure this:

1. increase the number of words, in a sentence, to
be masked: this implies that the length of the
prompt is shortened, and that we provide less
(or short) context in the input to our model.
Long-range semantics is still a challenge in
natural language generation and understand-
ing, and large language models (GPT-2, Di-
aloGPT) have insufficiently learned the ef-
fect of distant words on next-token prediction
(Malkin et al., 2022). Therefore, we believe
that providing a short context will increase the
choices of the model and lead to the genera-
tion of more various tokens. This has been
shown by (Malkin et al., 2022) where they
also introduced the coherence boosting ap-
proach to increase the focus of a language
model on a long context.

2. use the Word Error Rate (WER) as a sim-
ple diversity measurement. The WER is an
adaptation of the Levenshtein distance (also
called edit distance), working at the word
level instead of the phoneme level. Ideally,
we want high WER. Let W =

⋃
i∈[1,ts]{wi},

the set of words from a sentence s that we
cut off for the next-token prediction loop de-
scribed in section 3 and in Algorithm 1. Let
W ′ =

⋃
i∈[1,ts]{w′

i}, the set of words pre-
dicted by the model. Then, for a pair (s, s′) of
the original sentence and new generated sen-
tence (s′ = prompt ∪W ′), we can define a
diversity score ds,s′ = WER(W,W ′). Given
the definition of d, for a language l, we can
define a diverse batch

Bl
diverse =

⋃

i∈[1,|Hl|]
{s′i | dsi,s′i ≥ t}

where t is an hyper-parameter, representing
an error threshold. t can be tuned because a
small t will result in a less diverse batch, while
a very huge value will result in an empty or
almost empty batch.

7 Ethics Statement

As any modern technology, machine learning algo-
rithms, are subject to potential dual good or bad
usage. Our work is motivated by the desire of

making AI (in general, NLP in particular) applica-
tions to be inclusive to the low-resourced languages
(which are the vast majority of existing living lan-
guages), hence benefiting to humanity and society.
We strongly discourage bad and unethical use of
our work (and its derivations).
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A Language Characteristics

Amharic (amh) also called Amarinya or
Amerigna, is a Semitic language, an official lan-
guage of Ethiopia, and is also spoken in Eritrea.
Amharic is written with a modified version of the
Ge’ez script, known as Fidel, consisting of 33 ba-
sic characters, each of them with at least 7 vowel
sequences. Unlike Central and Northwest Semitic
languages such as Arabic, Hebrew and Assyrian
Aramaic, Amharic is written from left to right. The
language has a variety of local dialects, all of which
are mutually intelligible. There are three major di-
alects: Gondar, Gojjami, and Showa. There are
specially marked differences in pronunciation, vo-
cabulary, and grammar between the northern Goj-
jami and the southern Showa dialects.

Afan Oromo (oro) is an Afroasiatic language
that belongs to the Cushitic branch spoken by about
30 million people in Ethiopia, Kenya, Somalia and
Egypt, and it is the third largest language in Africa.
The Oromo people are the largest ethnic group in
Ethiopia and account for more than 40% of the pop-
ulation. They can be found all over Ethiopia, and
particularly in Wollega, Shoa, Illubabour, Jimma,
Arsi, Bale, Hararghe, Wollo, Borana and the south-
western part of Gojjam2. Afan Oromo is written
with a Latin alphabet called Qubee. Like most other
Ethiopian languages, whether Semitic, Cushitic, or
Omotic, Oromo has a set of ejective consonants,
that is, voiceless stops or affricates that are accom-
panied by glottalization and an explosive burst of
air. Afan Oromo has another glottalized phone
that is more unusual, an implosive retroflex stop,
"dh" in Oromo orthography, a sound that is like
an English "d" produced with the tongue curled
back slightly and with the air drawn in so that a
glottal stop is heard before the following vowel
begins. It is retroflex in most dialects, though it
is not strongly implosive and may reduce to a flap
between vowels3. In the Qubee alphabet, letters
include the digraphs ch, dh, ny, ph, sh. Gemina-
tion is not obligatorily marked for digraphs, though
some writers indicate it by doubling the first ele-
ment: qopphaa’uu ’be prepared’. Afan Oromo has
five vowel phonemes, i.e., sounds that can differ-
entiate word meaning. They can be short or long.
The length of the vowel makes a difference in word
meaning e.g., laga ‘river’ and laagaa ‘roof of the

2https://omniglot.com/writing/oromo.htm
3https://en.wikipedia.org/wiki/Oromo_
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mouth’. Afan Oromo has 25 consonant phonemes,
i.e., sounds that make a difference in word meaning.
Like its close relative, Somali, native Oromo words
do not have the consonants /p/, /v/, and /z/.

Bambara (bam) is a Western Mande language
with about 14 million speakers mainly in Mali, and
also in Senegal, Niger, Mauritania, Gambia and
Côte d’Ivoire. It is spoken principally among the
Bambara ethnic group in Mali, where it is the na-
tional language and the most widely understood
one. Bambara is usually written with the Latin al-
phabet, though the N’Ko and Arabic alphabets are
also used to some extent. It uses seven vowels a, e,
E, i, o, O, and u each of which can be nasalized, pha-
ryngealized and murmured, giving a total number
of 21 vowels.

Ghomalá’ (bbj) is a major Bamileke language of
spoken in Cameroon. It is spoken by an estimated
1.1 million people in two main population groups.

Éwé (ewe) is a language spoken in Togo and
southeastern Ghana by approximately 20 million
people mainly in West Africa in the countries of
Ghana, Togo, and Benin. It is recognised as a
national language in Ghana, where English is the
official language, and in Togo, where French is the
official language. ’Ewe’ is also the name of the
tribal group that speaks this language. Éwé has
three distinguishable dialects. Most of the differ-
ences among the dialects have to do with phonol-
ogy. All dialects are mutually intelligible. Éwé
is written in the African reference alphabet, first
proposed by a UNESCO-organized conference in
1978. It is a version of the Latin alphabet adapted
to represent Éwé sounds. Some sounds are rep-
resented by two-letter sequences, e.g., dz, ts, gb,
kp, ny. Éwé has seven oral and five nasal vowels.
Nasal vowels are produced by lowering the soft
palate so that air escapes both through the mouth
and the nose. Nasal vowels are marked by a tilde.

Fon (fon) also known as Fongbé is a native lan-
guage of Benin Republic. It is spoken in average
by 1.7 million people. Fon belongs to the Niger-
Congo-Gbe languages family. It is a tonal, isolating
and left-behind language according to (Joshi et al.,
2020), with an Subject-Verb-Object (SVO) word
order. Fon has about 53 different dialects, spoken
throughout Benin (Lefebvre and Brousseau, 2002;
Capo, 1991; Eberhard et al., 2020). Its alphabet is
based on the Latin alphabet, with the addition of

the letters: ª, ¡, ¢, and the digraphs gb, hw, kp, ny,
and xw. There are 10 vowels phonemes in Fon: 6
said to be closed [i, u, ı̃, ũ], and 4 said to be opened
[¢, ª, a, ã]. There are 22 consonants (m, b, n, ¡, p,
t, d, c, j, k, g, kp, gb, f, v, s, z, x, h, xw, hw, w). Fon
has two phonemic tones: high and low. High is re-
alized as rising (low–high) after a consonant. Basic
disyllabic words have all four possibilities: high-
high, high-low, low-high, and low-low. In longer
phonological words, like verb and noun phrases, a
high tone tends to persist until the final syllable. If
that syllable has a phonemic low tone, it becomes
falling (high–low). Low tones disappear between
high tones, but their effect remains as a downstep.
Rising tones (low–high) simplify to high after high
(without triggering downstep) and to low before
high (Lefebvre and Brousseau, 2002; Capo, 1991).

Hausa (hau) belongs to the West Chadic branch
of the Afro-Asiatic language family. It is one of the
largest languages on the African continent, spoken
as a first language by the original Hausa people
and by people of Fula ancestry. Hausa is the major-
ity language of much of northern Nigeria and the
neighboring Republic of Niger. In addition, there
is a sizable Hausa-speaking community in Sudan4.
It has an alphabet of 29 letters containing 5 vow-
els and 24 consonants. Hausa alphabet is a Latin
script/Roman alphabet/English letters except (x, v,
p, and q) and also added six extra letters (á, â, Î, sh,
ts and ¯ (Adelani et al., 2021b). Hausa is an agglu-
tinative language, i.e., it adds suffixes to roots for
expressing grammatical relations without fusing
them into one unit, as is the case in Indo-European
languages.

Ìgbò (ibo) is one of the largest languages of West
Africa, is spoken by 18 million people in Nigeria.
It belongs to the Benue-Congo group of the Niger-
Congo language family. The language is thought to
have originated around the 9th century AD in the
area near the confluence of the Niger and Benue
rivers, and then spread over a wide area of south-
eastern Nigeria 5. Igbo is a national language of
Nigeria and is also recognised in Equatorial Guinea.
Igbo is written in an expanded version of the Latin
alphabet. Igbo is made up of many different di-
alects which aren’t mutually intelligible to other
Igbo speakers at times.

4https://www.mustgo.com/worldlanguages/hausa/
5https://www.mustgo.com/worldlanguages/igbo/
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Kinyarwanda (kin) a is part of the Bantu sub-
group of the central branch of the Niger-Congo
language family. It is closely related to Kirundi,
the language of Burundi. The Rwanda language is
mutually intelligible with Kirundi, which is spoken
in neighboring Burundi6. It has only 18/19 conso-
nants, as X and Q are not found in the alphabet. L
is often replaced by R, but due to the appearance of
imported words in the language, that is not always
the case. It has five vowel phonemes, i.e., sounds
that make a difference in word meaning.

Lingala (lin) is a Central Bantu language that be-
longs to the largest African languages phylum: the
Niger-Congo. Lingala is spoken as a first, second,
and third language primarily in the Democratic Re-
public of Congo (DRC), the Republic of Congo
(Congo-Brazzaville), and in parts of five neighbor-
ing central African states: Northwestern Angola,
eastern Gabon, southern Central African Republic,
and southwestern Sudan. The estimated number
of speakers ranges from twenty to twenty five mil-
lion7. It is written with the Latin alphabet. The
seven vowels are represented by five symbols. The
orthographic symbols ’e’ and ’o’ each represent
two sounds. There are two tones in Lingala. High
tone is represented with an acute accent, while low
tone is unmarked.

Luganda (lug) is a Bantu language spoken in the
African Great Lakes region. It is one of the major
languages in Uganda and is spoken by more than
10 million Baganda and other people principally in
central Uganda including the capital Kampala of
Uganda. Its alphabet is composed of twenty-four
letters; 18 consonants (b, p, v, f, m, d, t, l, r, n, z, s,
j, c, g, k, ny, N), 5 vowels ( a, e, i, o, u) and 2 semi-
vowels(w, y). Since the last consonant N) does
not appear on standard typewriters or computer
keyboards, it is often replaced by the combination
ng’. All consonants are pronounced as if with letter
‘a’ or ‘ah’ at the end. For example, bah, cah, jah,
gah, kah, mah, pah, lah, zah, e.t.c

Luo (luo) are spoken by the Luo peoples in
an area ranging from southern Sudan to south-
ern Kenya, with Dholuo extending into north-
ern Tanzania and Alur into the Democratic
Republic of the Congo. Luo has a CVC
or VC structure—consonant/vowel/consonant or
vowel/consonant. This means that Luo words can

6https://nalrc.indiana.edu/doc/brochures/kinyarwanda.pdf
7https://nalrc.indiana.edu/doc/brochures/lingala.pdf

end in a consonant, like gin, they are. This is unlike
Bantu languages, where words must end in a vowel.
Luo language is, therefore, more similar to English
articulation, while Bantu languages are more like
Italian8.

Mooré (mos) is a Gur language of the Oti–Volta
branch and one of two official regional languages
of Burkina Faso. It is the language of the Mossi
people, spoken by approximately 8 million people
in Burkina Faso, plus another 1M+ in surround-
ing countries such as Ghana, Cote D’ivoire, Niger,
Mali and Togo as a native language, but with many
more L2 speakers. Mooré is spoken as a first or
second language by over 50% of the Burkinabè
population.

Chewa (nya) is a Bantu language spoken in
much of Southern, Southeast and East Africa,
namely the countries of Malawi and Zambia, where
it is an official language, and Mozambique and Zim-
babwe where it is a recognised minority language.
Chewa has five vowel sounds: /a, E, i, O, u/; these
are written a, e, i, o, u.

Naija (pcm) is an English-based creole language
spoken as a lingua franca across Nigeria. The lan-
guage is sometimes referred to as "Pijin" or Broken
(pronounced "Brokun").

Shona (sna) is a Bantu language of the Shona
people of Zimbabwe. All syllables in Shona end
in a vowel. Consonants belong to the next syllable.
For example, mangwanani ("morning") is syllabi-
fied as ma.ngwa.na.ni; "Zimbabwe" is zi.mba.bwe.
No silent letters are used in Shona.

Swahili (swa) also known by its native name
Kiswahili, is a Bantu language and the native lan-
guage of the Swahili people native primarily to
Tanzania. Swahili has become a second language
spoken by tens of millions in four African Great
Lakes countries (Kenya, DRC, Uganda, and Tan-
zania), where it is an official or national language,
while being the first language for many people in
Tanzania especially in the coastal regions of Tanga,
Pwani, Dar es Salaam, Mtwara and Lindi. Standard
Swahili has five vowel phonemes: /a/, /E/, /i/, /O/,
and /u/.

Setswana (tsn) is a Bantu language spoken
in Southern Africa by about 14 million people.

8https://owlcation.com/humanities/Luo-language-of-
Kenya-Conversation-Basics
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Setswana is an official language and lingua franca
of Botswana and South Africa.

Akan/Twi is a dialect of the Akan language spo-
ken in southern and central Ghana by several mil-
lion people, mainly of the Akan people, the largest
of the seventeen major ethnic groups in Ghana. Twi
excludes consonants such as c, j, q, v, x and z. It has
15 consonants and 7 vowels. Apart from [a], [e],
[i], [o] and [u], Twi also has 2 additional vowels;
[E] and [O].

Wolof (wol) is a language of Senegal, Mauritania,
and the Gambia, and the native language of the
Wolof people. Wolof is the most widely spoken
language in Senegal, spoken natively by the Wolof
people (40% of the population) but also by most
other Senegalese as a second language.

Xhosa (xho) also isiXhosa as an endonym, is a
Nguni language and one of the official languages of
South Africa and Zimbabwe. The Xhosa language
employs 26 letters from the Latin alphabet. Xhosa
has an inventory of ten vowels: [a], [¢ e], [i], [ª o]
and [u] written a, e, i, o and u in order, all occurring
in both long and short. The /i/ vowel will be long
in the penultimate syllable and short in the last
syllable.

Yorùbá (yor) has 25 Latin letters without the
Latin characters (c, q, v, x and z) and with addi-
tional letters (e. , gb,s., o. ).Yorùbá is a tonal language
with three tones: low ("\"), middle ("—", optional)
and high ("/"). The Latin letters 〈c〉, 〈q〉, 〈v〉, 〈x〉,
〈z〉 are not used as part of the official orthography
of Standard Yorùbá, however, they exist in several
Yorùbá dialects. The tonal marks and underdots
are referred to as diacritics and they are needed for
the correct pronunciation of a word. Yorùbá is a
highly isolating language and the sentence structure
follows subject-verb-object (Adelani et al., 2021b).

Zulu (zul) is the mother tongue of the Zulu
people, South’s Africa largest ethnic group, who
created an empire in the 19th century.Zulu has
a 7-vowel system. Each vowel can be long or
short. Zulu has close to 50 consonants including
clicks, ejectives and implosives. Clicks originated
in Khoisan languages and then spread into some
neighboring Bantu ones. In Zulu they have three
places of articulation: central alveolar, lateral alveo-
lar and palatal combined with five accompaniments
(plain, aspirated, voiced, nasal, and voiced nasal).
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Abstract

With the growing prevalence of large-scale lan-
guage models, their energy footprint and po-
tential to learn and amplify historical biases
are two pressing challenges. Dataset distilla-
tion (DD) — a method for reducing the dataset
size by learning a small number of synthetic
samples which encode the information in the
original dataset — is a method for reducing the
cost of model training, however its impact on
fairness has not been studied. We investigate
how DD impacts on group bias in the context
of text classification tasks, with experiments
over two data sets, concluding that vanilla DD
preserves the bias of the dataset. We then show
how existing debiasing methods can be com-
bined with DD to produce models that are fair
and accurate, at reduced training cost.1

1 Introduction

Training and inference with deep neural networks
is generally costly in terms of storage and comput-
ing resources. Model compression methods such
as knowledge distillation (Hinton et al., 2015) and
pruning (Cheong and Daniel, 2019) are popular
ways of reducing model size to make inference
more efficient. An alternative approach is dataset
distillation (“DD”: Wang et al. (2018)), which
compresses the training set into a small synthetic
dataset. Although there is significant pre-cost as-
sociated with DD in learning synthetic instances,
DD has been shown to achieve almost identical
performance to training over the original training
set (Wang et al., 2018), at reduced computational
cost. For example, Sucholutsky and Schonlau show
that, on the IMDB binary sentiment classification
dataset (Maas et al., 2011), a randomly initialized
model trained over the distilled dataset with 10

∗This work was done when Aili Shen was at The Univer-
sity of Melbourne.

1Source code available at https://github.com/
HanXudong/Fair_Dataset_Distillation

50 100 150 200 250
Size of the distilled dataset

0.75

0.80

0.85

Accuracy
Fairness

Figure 1: Performance and fairness over an occupation
classification task, using models trained over the orig-
inal (dotted lines) and distilled datasets (dashed lines)
with different data sizes. For both metrics, larger is
better. See Section 3.2 for full results.

instances per class achieves almost 97.8% of the
original accuracy.

It is well known that naively-trained models
learn and amplify dataset biases, potentially lead-
ing to discrimination such as opportunity inequal-
ity (De-Arteaga et al., 2019). With the potential
for compression methods to reduce training and
storage cost, it is important to study their impact on
model fairness. Here, we take DD as a case study
and ask: (a) how does DD impact fairness; and
(b) can we ensure fairness within this paradigm?

Specifically, we investigate how DD impacts on
group fairness, and present experiments over two
fairness benchmark datasets for text classification.
Our contributions are: (1) we show that while DD
preserves model performance, it also retains the
dataset bias (e.g., Figure 1); and (2) we combine
bias mitigation approaches with DD, and show that
they improve fairness substantially.

2 Methodology

2.1 Dataset Distillation

Under STANDARD training, given inputs x anno-
tated with main task labels y and protected labels
g, a neural network with parameters θ and loss
function ℓ (x,y, θ) learns θ∗=argminθ ℓ(x,y, θ).
Training with stochastic gradient descent (SGD)
involves repeatedly sampling mini-batches of train-
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ing data and updating network parameters based on
their error gradient scaled by learning rate η, i.e.,
θt+1 = θt − η∇θtℓ (xt,yt, θt).

With DD (Wang et al., 2018) the goal is to find a
synthetic dataset such that SGD results in a parame-
ter update that maximally improves the STANDARD

training loss. This works by starting with initial
parameters θ0 and optimising:

x̃∗, ỹ∗, η̃∗

= argmin ℓ
x̃,ỹ,η̃

(
x,y, θ0 − η̃∇θ0ℓ (x̃, ỹ, θ0)

)
(1)

where the inner gradient term is the SGD update on
synthetic data, and the outer-most loss is the STAN-
DARD loss using the resulting parameter update.
The synthetic data instances, x̃, their labels, ỹ (rep-
resented softly, using a softmax parameterisation;
Sucholutsky and Schonlau (2021)), and the learn-
ing rate, η̃, are learned using gradient descent over
Equation (1). This requires twice differentiable ℓ;
see Wang et al. (2018) and Sucholutsky and Schon-
lau (2021) for full details of the training algorithm.
The final step after learning this small synthetic
dataset (typically in the realm of 10-100 examples)
is to use it to train a new model, which we can
then evaluate for accuracy (as in prior work), and
fairness (unique to this work).

Note that the distillation computational cost
scales positively with both the synthetic dataset
size, and the size of the original training set. In
Section 3.2, we provide the average runtime for
DD. When retraining networks over the distilled
instances, the original dataset will not be used and
is irrelevant to the retraining cost.

2.2 Bias Mitigation

Previously proposed bias mitigation approaches
can be classified as: (a) pre-processing the dataset
before training (Wang et al., 2019; Han et al.,
2021a); (b) adjusting the training algorithm itself
at-training (Li et al., 2018; Shen et al., 2021); and
(c) post-processing the trained models (Bolukbasi
et al., 2016; Ravfogel et al., 2020), which is less
relevant here, as it obscures the effect of DD it-
self. To learn fairer distilled datasets, we employ a
pre-processing method and an at-training method
at distillation time; no further debiasing is applied
at model training. We compare performance and
bias of a naively-trained model on distilled data
(a) without debiasing and (b) with debiased distil-
lation using one of the methods described next.

Balanced Training for Equal Opportunity Fair-
ness (BTEO) Recall that DD learns the com-
pressed synthetic training set from the original
dataset. Intuitively, we would expect to learn a
fairer synthetic dataset if the original dataset is bal-
anced w.r.t. the classes and protected attribute(s),
which we can achieve by pre-processing the dataset
(x, y and g). BTEO implements equal opportunity
fairness by balancing the distribution of protected
attributes for each class (Han et al., 2021a).

We achieve the objective of BTEO by dataset
downsampling, which essentially creates a bal-
anced training set where each demographic group
has the same number of training instances per class.

Adversarial Training (ADV) Following the
setup of Elazar and Goldberg (2018); Li et al.
(2018); Han et al. (2021c), the optimisation ob-
jective for standard adversarial training is:

min
θ

max
ϕ

ℓ(y, ŷ)− λℓ(g, ĝ) (2)

where ϕ denotes the trainable parameters of the ad-
versary, and λ is a trade-off hyperparameter. Solv-
ing this minimax optimization problem encourages
the main task model hidden representations to be
informative w.r.t. y but uninformative w.r.t. g.

In terms of the ADV for DD debiasing, the opti-
mization for DD (Equation (1)) is combined with
the adversarial loss (Equation (2)), resulting in the
minimax problem,

min
x̃,ỹ,η̃

max
ϕ

[

ℓ
(
x,y, θ0 − η̃∇θ0ℓ (x̃, ỹ, θ0)

)
− λℓ(g, ĝ)] (3)

Similar to STANDARD +ADV, DD +ADV trains
ϕ to predict ĝ over the final hidden representations
of the real dataset (x and g) extracted from the
classifer. However, for DD, the classifier is trained
over the synthetic datasets (x̃ and ỹ). To decouple
the training of model and discriminator, instead
of solving the minimax problem with a gradient
reversal layer (Ganin et al., 2016), we employ a
two-step update following Han et al. (2021b). The
negative sign for the adversarial loss ensures that
adversary gradients are incorporated into DD to
remove information related to protected attributes
from the synthetic instances. For full details, see
lines 6–9 of Algorithm 1 in Appendix A.

3 Experiments

In this section, we report experimental results for
DD without and with debiasing. In Appendix B,
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MOJI BIOS

Model Accuracy↑ Fairness↑ DTO↓ Accuracy↑ Fairness↑ DTO↓
STANDARD 72.3 ± 0.5 61.2 ± 1.4 47.7 82.3 ± 0.2 85.1 ± 0.8 23.2
STANDARD + BTEO 75.4 ± 0.1 87.7 ± 0.4 27.5 83.8± 0.2 90.5 ± 0.9 18.7
STANDARD + ADV 75.6 ± 0.7 89.3± 0.6 26.6 81.7 ± 0.2 90.7± 0.8 20.5

DD 71.3 ± 1.8 62.4 ± 5.9 47.3 79.7 ± 0.4 86.7 ± 1.4 24.3
DD + BTEO 75.7± 0.4 88.8 ± 1.1 26.8 73.2 ± 3.2 90.7± 1.3 28.3
DD + ADV 72.8 ± 1.5 70.7 ± 9.1 40.0 80.3 ± 0.5 87.7 ± 1.2 23.2

Table 1: Evaluation results ± standard deviation (%) on the test set of sentiment analysis (MOJI) and biography
classification (BIOS) tasks, averaged over 5 runs with different random seeds.

we provide full experimental details.

3.1 Experiment Setup

Dataset: We consider two tasks: (1) binary senti-
ment analysis over the MOJI dataset (Blodgett et al.,
2016), with protected “race” attributes (African
American English vs. Standard American English);
and (2) 28-way occupation classification with pro-
tected attribute gender (Male vs. Female) for each
biography (De-Arteaga et al., 2019).

Text DD: In order to perform text DD, we fol-
low Sucholutsky and Schonlau (2021) in learn-
ing synthetic samples from the embedding space.
Specifically, we create the training set by extract-
ing document embeddings from a fixed pretrained
language model, such that the learned synthetic
‘documents’ are vectors rather than text inputs.

Models: Since the inputs to DD are document
representations from a pretrained model, we follow
the typical classification head setting (Felbo et al.,
2017; Devlin et al., 2019) in using a multi-layer
perceptron classifer as the model (θ) for DD that
is trained over distilled instances x̃ and ỹ. Note
that the parameter initialization is assumed to be
known in this paper, which is the basic setting in
Sucholutsky and Schonlau (2021). Specifically, θ0
values are randomly sampled from Xavier Normal
distribution (Glorot and Bengio, 2010), and are
then repeatedly used in learning synthetic datasets
and retraining the model over distilled datasets.

Evaluation Metrics: Following Ravfogel et al.
(2020), we use overall accuracy as the performance
metric, and the equal opportunity criterion (Hardt
et al., 2016) to measure fairness in the form of
the absolute recall differences (RD) between demo-
graphic groups. For ease of exposition, we report
fairness as 1−RD, where larger is better and a per-
fectly fair model will achieve a score of 1.

In addition to reporting performance and fair-
ness metrics separately, we also report distance
to the optimal point (“DTO”), which quantifies
the accuracy–fairness tradeoff (Marler and Arora,
2004; Han et al., 2021a). DTO measures the nor-
malized Euclidean distance for a given combination
of accuracy and fairness to the optimal point which
denotes the ideal result, e.g., accuracy and fairness
of 1.0. It is typically unachievable in practice.

Training Details: We follow Sucholutsky and
Schonlau (2021) in our hyperparameter settings
for text DD. Specifically, we conduct distillation
for 10 GD steps, with 3 epochs for each iteration.
Within each step, we generate one synthetic text
embedding per target class, resulting in a total of
20 (= 10 steps × 2 classes) and 280 (= 10 steps
× 28 classes) synthetic embeddings for MOJI and
BIOS, respectively.

3.2 Results and Analysis

Table 1 summarizes the experimental results.
STANDARD model is trained over the original train-
ing set without debiasing, while DD denotes mod-
els with the same architecture as STANDARD but
trained over the distilled synthetic dataset. Over
both datasets, DD achieves similar accuracy to
STANDARD, consistent with previous work (Wang
et al., 2018; Sucholutsky and Schonlau, 2021).

How does DD impact fairness? Similar patterns
are observed over both datasets that fairness im-
proves marginally: models trained over the distilled
datasets retained 97.9% and 89.2% of the bias for
MOJI and BIOS, respectively.

Can we ensure fairness of DD? As described in
Section 2.2, we combined DD with two debiasing
methods: BTEO (Han et al., 2021a) and ADV (Li
et al., 2018). The methods are used only at the dis-
tillation stage, and not when training models over
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Figure 2: Evaluation results ± standard deviation with respect to different distilled dataset sizes.

the distilled dataset. Table 1 shows that, over the
MOJI dataset, both STANDARD +BTEO and STAN-
DARD +ADV improve fairness while also achiev-
ing better accuracy, leading to better performance–
fairness trade-off (smaller DTO). This is consis-
tent with previous work (Han et al., 2021c). Both
debiasing methods substantially improve fairness
while retaining accuracy compared to DD, with
DD +BTEO being most effective.

In terms of BIOS, the fairness of DD +BTEO im-
proves while accuracy drops appreciably, combin-
ing to result in a worse DTO. Since BIOS is a multi-
class dataset with label skew, this is largely due
to the naive sampling strategy of BTEO. Specifi-
cally, as suggested by Sucholutsky and Schonlau
(2021), DD is less efficient for complex tasks, and
we hypothesise the number of distilled instances for
BIOS is insufficient for BTEO which additionally
prevents the classifier from leaning unwanted cor-
relations by manipulating the training dataset. DD
+ADV, on the other hand, also improves fairness
while retaining similar accuracy to DD.

Varying the size of distilled dataset To better
understand the influence of the number of instances
per class (= steps) in DD without explicit debiasing,
we vary the number of steps from 1 to 20 (Figure 2).
As the number of instances per class decreases, the
accuracy drops substantially over BIOS, but stays
relatively constant over MOJI, again implying that

BIOS is a more challenging dataset than MOJI, due
to the combination of the much larger label set
and skew. Fairness scores generally increase as
the number of instances per class decreases, but
the combined DTO results are below the debiasing
approaches at the same fairness level.

As for DD +BTEO over the BIOS set, the accu-
racy increases monotonically as the distilled dataset
size increases, confirming our previous hypothesis
that 10 instances per class is insufficient for BTEO.

Ultimately, the best choice of distilled dataset
size is influenced by both the original task and the
debiasing methods, and an important hyperparame-
ter for DD debiasing that needs to be tuned jointly.
For MOJI, an overly-large number of instances per
class leads to worse performance and instability,
while the harder task BIOS is more stable than
MOJI given the same conditions, consisting with
the previous work (Wang et al., 2018).

Training cost of DD Similar to pre-training, DD
incurs a one-time cost in generating the distilled
dataset. However, the computational cost of DD
can be much more expensive than training the same
model over the original datasets. Tables 2a and 2b
show the computational cost for DD in seconds
over MOJI and BIOS, respectively.

Table 3 compares the training time for the non-
DD methods with DD (with 10 instances per class)
over the two datasets. ADV incurs additional cost
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Size Distillation Train
DD DD + ADV DD + BTEO

1 144 139 74 < 0.5
2 195 203 95 < 0.5
3 252 259 115 < 0.5
4 307 302 141 < 0.5
5 377 352 165 < 0.5
6 442 411 181 1
7 477 463 212 1
8 531 524 227 1
9 581 621 248 1

10 632 629 268 1
11 716 722 292 1
12 770 774 314 1
13 840 864 345 1
14 882 852 363 1
15 931 923 408 2
16 961 1051 417 2
17 998 991 438 2
18 1064 1052 473 2
19 1124 1158 488 2
20 1162 1268 525 2

(a) MOJI

Size Distillation Train
DD DD + ADV DD + BTEO

1 474 462 108 < 0.5
2 783 756 153 1
3 1137 1107 199 1
4 1459 1578 249 1
5 1919 1856 292 1
6 2325 2208 346 1
7 2485 2462 394 1
8 2802 2876 447 2
9 3037 3114 502 2

10 3453 3848 508 2
11 3769 3862 577 3
12 4225 4179 647 3
13 4620 4607 694 4
14 5370 4799 741 4
15 5084 5097 865 4
16 5442 6012 824 4
17 6139 6399 865 5
18 6007 6171 938 5
19 6685 6566 937 5
20 6728 6971 1025 5

(b) BIOS

Table 2: Computational cost (sec) to: (a) learn synthetic instances through distillation; and (b) train the model over
the synthetic instances.

Training Time

Model MOJI BIOS

STANDARD 35 96
STANDARD + ADV 40 135
STANDARD + BTEO 19 32

DD 1 2

Table 3: Training time (sec) over MOJI and BIOS.

over STANDARD due to the discriminator training,
while BTEO results in faster training due to the
reduction in training set size.

In terms of DD, the debiasing is only employed
as part of learning the synthetic instances, and does
not affect the classifier training over the distilled
dataset. As such, the training time for DD, DD +
ADV, and DD + BTEO is identical. As it can be
seen, training a model over a pre-distilled dataset is
much faster than the STANDARD training, but when
the combined cost of dataset distillation and model
training is taken into account, it is around an order
of magnitude slower than STANDARD training.

To further analysis how the upfront task of DD
compares to the training cost, Figure 3 shows the
reuse factor w.r.t. different DD sizes. For example,
for a naively trained model, the reuse factor for
size 10 is calculated as 3453

96−2 ≈ 36.73, where 3453
and 2 are the distillation time and training time of

Figure 3: Reuse factor of DD on the BIOS dataset.

DD w.r.t. size 10 (Table 2b), and 96 is the training
time of STANDARD (Table 3). It can be seen that
the ratio of neutralization and distilled dataset size
are positively correlated, and debiasing methods
(ADV and BTEO) requires less time to neutralize
the pre-cost of DD.

4 Conclusion

This paper evaluated the effect of dataset distilla-
tion on fairness in the context of two text classifi-
cation tasks. Empirically, we showed that distilled
datasets retain unwanted biases. In order to learn
fairer synthetic datasets, we employ adversarial
learning and balanced training for bias mitigation,
which results in substantial fairness improvements.
We conclude that DD can be effective for fair and
efficient text classification, specifically for simpler
tasks where a small distilled data set is sufficient.
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Limitations

Hyperparameter Tuning Taking ADV debias-
ing as an example, the current practice is to fine-
tune the trade-off hyperparameter to find the best-
performing model. However, tuning the trade-off
hyperparameter is too expensive for DD due to the
high cost of distillation. In this paper, we assume
that the trade-off hyperparameters for bias mitiga-
tion are only affected by the training dataset and
model architecture. Based on this assumption, we
adopted the best trade-off hyperparameter settings
from STANDARD training for DD, but further ex-
ploration of this interaction is warranted in future
work.

Parameter Initialization We adopted the DD
framework of Sucholutsky and Schonlau (2021),
including its strong assumptions about the initial
parameters of the classifiers that are trained over the
synthetic datasets. Specifically, the initial weights
(θ0) are assumed to be either fixed and known, or
drawn from a fixed and known distribution, before
and after distillation. This implies, for example,
that the classifier architecture has to be the same
as what was used during distillation. However, this
assumption underlies most existing DD work, and
is outside the scope of this research.

Ethical Considerations

This work aims to detect and mitigate bias in dis-
tilled datasets in NLP. For DD, both the distillation
over original datasets and the classifier training
over the distilled datasets do not access the pro-
tected attributes. However, consistent with previ-
ous work, the fairness definition and evaluation are
based on the protected attributes. Briefly, the pro-
tected attributes are unobserved during distillation,
model training, and inference, and are only used
for evaluation purposes.

This work relies on benchmarks to evaluate
model fairness and accuracy. Like much pre-

vious work, these benchmarks propose an over-
simplified, binary notion of the protected attributes.
We acknowledge that both gender (Sun et al., 2019)
and race (Field et al., 2021) are more nuanced. As
a result of such oversimplification specifically, and
the controlled nature of benchmarks in general, we
recommend to additionally consult user studies and
application scenarios to obtain holistic measure of
model fairness.

In terms of the DD debiasing, the employed
method requires access to training datasets with
protected attributes, consistent with previous work
on adversarial training and other bias mitigation
methods. After distillation, it is important to note
that the model trained over the debiased distilled
dataset can make fairer predictions without any
requirement of demographic information for either
synthetic instances or test instances.

We only use attributes that the user has self-
identified in our experiments. All data in this study
is publicly available and used under strict ethical
guidelines.
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Algorithm 1 Fair Dataset Distillation
Input: θ0 = initial weights of the main model; α = DD step
size; T = number of optimization iterations; ỹ0 = initial value
for ỹ; η̃0 = initial value for η̃; λ = strength of the adversarial
regularization

1: Initialize distilled dataset with M instances
x̃ = {x̃i}Mi=1 randomly,
ỹ = {ỹi}Mi=1 ← ỹ0,
η̃ ← η̃0

2: for each training step t = 1 to T do
3: Get a mini-batch of n real training instances

(xt,yt) = {xt,j , yt,j}nj=1

4: Compute updated model parameters with GD
θ1 = θ0 − η̃∇θ0ℓ (x̃, ỹ, θ0)

5: Evaluate the objective function on real training data:
L = ℓ (xt,yt, θ1)

6: if ADV then
7: Update the discriminator ϕ

ϕ = ϕ− ηadv∇ϕℓ (xt,gt, θ1, ϕ)
8: Incorporate adversarial loss

L = L − λℓ (xt,gt, θ1, ϕ)
9: end if

10: Update distilled data
x̃← x̃− α∇x̃

∑
j L,

ỹ← ỹ − α∇ỹ

∑
j L,

η̃ ← η̃ − α∇η̃

∑
j L

11: end for
Output: distilled data x̃; labels ỹ; and learning rate η̃

A Algorithm

The algorithm for combined DD with debiasing
techniques is detailed in Algorithm 1.

B Experimental Details

B.1 Dataset Splits

We use the same data split as previous work (Rav-
fogel et al., 2020), resulting in train, dev, and test
splits of 100k/8k/8k for MOJI, and 257k/40k/100k
for BIOS.

B.2 Fairness Metric

We follow the previous work (Han et al., 2021c)
in reporting the RMS recall (TPR) disparities. The
calculation of RMS TPR GAP consists of aggre-
gations at the group and class levels. At the group
level, we measure the absolute TPR difference of
each class between each group and the overall TPR
GAP TPR

G,y =
∑

g∈G |TPRg,y−TPRy|, and at the
class level, we further perform the RMS aggrega-
tion at the class level to get the RMS TPR GAP as
GAP =

√
1
|Y |

∑
y∈Y (GAP TPR

G,y )2.

B.3 Models
We follow Ravfogel et al. (2020) in using Deep-
Moji (Felbo et al., 2017) as the encoder to get
2304d representations of the input texts. For the
BIOS dataset, we follow Han et al. (2021a) in
taking 768d ‘AVG’ representations from BERT-
base (Devlin et al., 2019), which takes the average
of all contextualized token embeddings.

The number of trainable parameters of the clas-
sifier is about 1M for both tasks. The synthetic
datasets can also be treated as trained parame-
ters, and the total number of trainable parame-
ters are influenced by, dimension of the embed-
ding space (nd), the number of classes (nc), and
the number of distillation steps (ns), resulting in
ns× (nd×nc+nc×nc+1, which are 4613×ns
and 22289× ns for MOJI and BIOS, respectively.

We notice that DD is slow to converge for some
random initializations. When running DD with
different random seeds, we set dataset-specific ac-
curacy thresholds to filter unconverged runs, which
are 0.65 and 0.6 for MOJI and BIOS, respectively.

B.4 Computing Infrastructure
We conduct our experiments on a Windows server
with a 16-core CPU (AMD Ryzen Threadripper
PRO 3955WX), two NVIDIA GeForce RTX 3090s
with NVLink, and 256GB RAM, and on a HPC
cluster instance with 4 CPU cores, 32GB RAM,
and one NVIDIA V100 GPU.

B.5 Hyperparameter Tuning
We use the same model architectures and hyperpa-
rameters as previous work (Han et al., 2022), which
are shown to achieve better results than the results
in the original paper of BTEO (Han et al., 2021a)
and ADV (Li et al., 2018). We vary the size of
the distilled dataset from 1 to 20 for each method
and run experiments 7 times with different random
seeds for each hyperparameter combination. Corre-
sponding scripts are included in the submitted code
file.
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