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Abstract

Mixture of Experts (MoE) models with con-
ditional execution of sparsely activated lay-
ers have enabled training models with a much
larger number of parameters. As a result, these
models have achieved significantly better qual-
ity on various natural language processing tasks
including machine translation. However, it
remains challenging to deploy such models
in real-life scenarios due to the large mem-
ory requirements and inefficient inference. In
this work, we introduce a highly efficient in-
ference framework with several optimization
approaches to accelerate the computation of
sparse models and cut down the memory con-
sumption significantly. While we achieve up to
26x speed-up in terms of throughput, we also
reduce the model size almost to one eighth of
the original 32-bit float model by quantizing ex-
pert weights into 4-bit integers. As a result, we
are able to deploy 136x larger models with 27%
less cost and significantly better quality com-
pared to the existing solutions. This enables a
paradigm shift in deploying large scale multi-
lingual MoE transformers models replacing the
traditional practice of distilling teacher models
into dozens of smaller models per language or
task.

1 Introduction

Transformer models are getting larger and better on
a continuous basis. The largest transformer mod-
els scale up to hundreds of billions of parameters,
(Smith et al., 2022) resulting in high training and in-
ference costs. This makes it difficult to deploy such
models in any real-life scenario with reasonable
latency and throughput. Mixture of Experts (MoE)
models offer a more cost-effective method to scal-
ing model sizes by using sparsely activated com-
putations. More specifically, feed forward layers
can be easily enlarged by replicating the original
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weights F times where F is the number of experts.
Each of these replicas is referred to as an expert,
and tokens get routed to these experts depending on
a gating function. Transformer models have a much
larger number of parameters when utilizing these
MoE layers. However, the number of flops remains
comparable to their dense counterparts thanks to
sub-linear scaling in computation costs (Shazeer
et al., 2017). Recently, the Mixture of Experts
(MoE) architecture has been successfully utilized
to scale massive large scale multilingual models
(Lepikhin et al., 2020)), NLU tasks (Fedus et al.,
2021; Zoph et al., 2022) and multilingual multitask
models (Kim et al., 2021).

MOoE offers the benefits of scaling the model to
gain better accuracy without paying the huge com-
pute cost of massive dense models. However, large
scale MoE models bring their own set of unique
challenges to get efficient training and inference
methods. Most of the previous work focused on
improving training efficiency and throughput (Fe-
dus et al., 2021; Kim et al., 2021). In this work,
we focus on optimizing MoE models inference and
latency since it is crucial to harvest the benefits of
such models in real-life scenarios.

Production-scale Multilingual Machine Transla-
tion systems: in this work, we explore deploying
MoE models for large scale Multilingual Machine
Translation systems to benefit from large language
models, while maintaining reasonable serving cost.
Multilingual large scale systems are already very
attractive due to multiple aspects. First, they benefit
modeling since they allow better accuracy, espe-
cially through transfer learning across languages.
Additionally, they improve deployment and serv-
ing since we can replace dozens of models with a
single model that is able to serve many languages
at the same time. Nevertheless, we need the infer-
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ence to be highly optimized to make inference cost-
efficient. Despite these benefits, shipping such mul-
tilingual models brings a new challenge, because
they usually require a much larger model capacity
in terms of the number of parameters and the com-
putation. The MoE model architecture could be a
promising solution given its sub-linear or constant
FLOPs increase in terms of the number of model
parameters. But, the large memory consumption
issue still remains.

In this work, we show how to enable deploying
a single MoE model that can serve many languages
replacing dozens of traditional models while im-
proving accuracy and maintaining latency, through-
put and cost efficiency. We set the goal for this
work to match latency and throughput of a distilled
small model deployed on CPU while achieving
better serving cost.

It is worth noting that while the optimizations
presented here are applied to MoE encoder-decoder
architecture for multilingual machine translation
task, they are applicable to other architectures and
tasks without any loss of generality. Given the
recent success of MoE models on wide set of NLU
and NLG tasks (Fedus et al., 2021; Zoph et al.,
2022), we believe the optimization presented in
this work will be equally enabling to other tasks as
it is for machine translation.

2 Challenges and Contributions

2.1

Even though the MoE architecture in theory re-
quires much less computation with larger number
of parameters, it adds several computations such as
token routing and all-to-all communication which
could be a significant hit to the training throughput
as much as 12% for a single node as shown in (Liu
et al., 2022). In addition, it significantly increases
the amount of memory traffic in the MoE layers. So
far, previous studies focused more on the training
efficiency of those MoE models and there has not
been a solution to deploy this kind of models into
the real-time applications. At inference time, we
have observed the naive implementation of MoE
models could be up to 30 times slower than its
dense counterpart with the same embedding and
hidden dimensions. To achieve a reasonable de-
ployment cost, it is critical to lower the inference
cost by increasing throughput and reducing the la-
tency. Since MoE layers are not widely optimized
for the inference scenarios, it is challenging to build

MOE Inference challenge

37

efficient runtime environment in terms of computa-
tion and memory consumption.

Recently, (Rajbhandari et al., 2022) introduced
several approaches to improve inference of MoE
models focusing on very large scale models larger
than 100B parameters and decoding on multiple
GPUs. When the model size increases beyond the
memory limit of a single GPU, multiple GPUs can
be used together for a single inference by splitting
the model weights across different GPUs. While
multi-gpu can reduce latency and is required to
serve extremely large models, it introduces signifi-
cant communication overhead and makes it more
difficult to scale up and down the number of in-
stances based on traffic. Therefore, even though
multiple GPUs could bring much larger models into
production, we focus on the single GPU inference
scenario due to its cost efficiency with reasonably
sized models. It is worth noting that the optimiza-
tion we are presenting here for single GPU can be
utilized for larger models on several GPUs as well.
However, this is beyond the scope of this paper.

2.2 Inference Optimization Contributions

In this paper, we show how to reduce the memory
requirements to deploy largest possible model on a
single GPU, which avoids costly all-to-all collec-
tives. In addition, we optimized routing efficiency
for GPUs and implemented batch pruning. We
describe how we extend NVIDIA’s FasterTrans-
former' inference framework to support the MoE
model architecture in a real world deployment sce-
nario:

* We present how we utilize the parallel primi-
tives in the CUTLASS? and CUB 3 libraries
to efficiently express token routing and the
batched matrix multiply required for MoE.

We propose a new GEMM (GEneral Ma-
trix Multiply) which can consume 4-bit/8-bit
quantized weights and perform float math.
The new GEMM works as drop-in replace-
ments of normal feedforward layers without
having additional logic to handle quantiza-
tion/dequantization of activations. We also
show that 4/8 bit weight-only quantization
preserves the accuracy without any additional
algorithms.

"https://github.com/NVIDIA/FasterTransformer
2https: //github.com/NVIDIA/cutlass
3https://github.com/NVIDIA/cub
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* We implement an effective batch pruning al-
gorithm for MoE layers to make the search
algorithm on the decoder very efficient.

2.3 FasterTransformer overview

We build our MoE optimization over NVIDIA’s
FasterTransfomer, a highly optimized open source
inference engine for transformer models. Faster-
Transformer implements a highly optimized trans-
former layers for both the encoder and decoder for
inference which is built on top of CUDA, cuBLAS,
cuBLASLt and C++. FasterTransformer supports
seamless integration with Triton Inference server *
which enabled us to deploy our models in scalable
large scale cloud environment.

We have extended FasterTransformer to support
DeepSpeed MoE models(Kim et al., 2021) and
added support for Transformer with Untied Posi-
tional Encoding (TUPE) (Ke et al., 2020) attention,
gate routing and efficient computation of MoE lay-
ers, including batch pruning in those layers.

3 MoE Inference Optimizations

3.1 Model architecture

MoE showed tremendous success with encoder-
decoder model architecture in Multilingual Ma-
chine Translation (Lepikhin et al., 2020; Kim et al.,
2021), and in Natural Language understanding (Fe-
dus et al., 2021; Zoph et al., 2022). Therefore, in
this work we focus on the encoder-decoder archi-
tecture without loss of generality since the opti-
mization is directly applicable to encoder-only and
decoder-only models as well.

We train an encoder-decoder model for machine
translation with deep encoder and shallow decoder
architecture as proposed in (Kim et al., 2019; Ka-
sai et al., 2020). For a given batch of input sen-
tences, the encoder is executed only once while the
decoder is executed multiple times with a beam
search algorithm per token. The auto-regressive ex-
ecution of the decoder is usually the performance
bottleneck. Therefore, utilizing a shallow decoder
partially mitigates that effect. Empirically, we have
found that using half number of decoder layers than
the number of encoder layers gives a good trade-
off between quality and performance. For the most
efficient MoE layer execution, we use top-1 gating
algorithm proposed in Switch transformers (Fedus
et al., 2021). At every other layer, MoE layer is
used instead of the plain feedforward layer.

“https://github.com/triton-inference-server/server
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We use embedding dimension of 1024, the po-
sitional and word correlations are computed sepa-
rately and added together in the self attention mod-
ule (TUPE) (Ke et al., 2020). The feed-forward
hidden dimension is 4096 with 24 encoder layers
and 12 decoder layers as proposed in (Kim et al.,
2021). This model configuration satisfies the deep
encoder and shallow decoder design and the model
weights fit well into the GPU memory without ten-
sor slicing model parallelism (Shazeer et al., 2018).
The tensor slicing approach increases communi-
cation overheads and could potentially introduce
training instability issues. In the production set-
ting, we choose a model building pipeline which
could minimize such instability. On the other hand,
expert parallelism is preferred over tensor slicing
model parallelism because an atomic layer opera-
tion such as a feedforward layer is executed inside
one GPU. Therefore, we increase the number of
model parameters by adding more experts. With
the size of the layers and the number of layers,
the total number of parameters is roughly 5 billion
when 32 experts are used in the MoE layers. With
half precision floating point (fp16), this is about 10
GB which can fit on a single 16 GB GPU.

3.2 Multilingual Machine Translation Model

The traditional Machine Translation deployment
paradigm generally follows the teacher-student
model. Where several teachers are being distilled
into a very small student model that get deployed
on CPU (Kim et al., 2019). For instance, deploying
100 languages translation system, would require
training, distilling and deploying at least 200 of
such models. Each model is trained individually
for a particular language pair. This is not scalable
since each individual model needs to go through
various model compression steps to be deployed
on CPUs with relatively low FLOPs numbers. This
not only hinders scalable model building, but also
knowledge sharing and transfer between different
language pairs and tasks. Multilingual training ap-
proaches have been utilized to overcome this prob-
lem. However, shipping these multilingual models
brings a new challenge since such models usually
require much larger capacity in terms of the number
of parameters and the computation.

In this work, we use a multilingual MT system
trained on 10 language pairs and can be used in
place of individual systems per language pair. The
model is trained using production scale training
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Figure 1: Shows the computation performed by CUT-
LASS Grouped GEMM. Each color is a sub-matrix for
a particular expert, with the matrix multiplies for each
expert happening in parallel. If the yellow sentence was
finished, it would be omitted from the computation with
batch-pruning enabled. This would completely remove
the need to load the weight matrix for the yellow expert.

data of up to ~ 4B training sentence pairs with a
vocabulary of 128K using Sentence Piece °

3.3 Optimized GPU kernel design

One key factor to get an optimal performance with
massive CUDA cores is to have efficient parallel al-
gorithms for various additional operations for MoE.
In MoE layers, each row in the input activation
must get routed to a specific expert weight matrix,
depending on a top-k gating function. We imple-
ment this routing as a GPU friendly radix sort using
NVIDIA’s highly efficient CUB library.

In this case, each row in the activation matrix is
a token to be translated. The top-k gating function
outputs a list with &k (expert_scale, expert_idx)
tuples for each input token. Thus, for top-1 gating
(as is done in our case), the function outputs a
single tuple for every row of the activation matrix.

In order to perform the routing, we first append
the index for each row to the end of the tuple giving
a tuple of (expert_scale, expert_idx, row_idz).
Then, we sort the tuple using expert_idx as the
keys in order to group all rows that will be pro-
cessed by the same expert_idx together. The
row_idx entry from the sorted tuples are then used
to permute the original activation matrix in global
memory to a layout where all rows routed to the
same expert are laid out contiguously in memory.

In order to finalize the routing, we view each
group of rows assigned to a particular expert as its
own sub-matrix and compute pointers to the start of
these sub-matrices. We then pair each sub-matrix
pointer with pointers to the weights and biases for
the expert they are routed to, and use CUTLASS

Shitps://github.com/google/sentencepiece

Grouped GEMM to compute all of these matrix
multiplies in parallel using a single kernel. Figure
1 shows the computation performed by CUTLASS.

Finally, we un-permute the rows to their original
ordering and apply the expert_scale to each row
before passing the output of the MoE module to
the other parts of the network.

3.4 Expert quantization with 4-bit and 8-bit

We quantize the MoE weights for two reasons:

1. MoE weights are extremely large which lim-
its the size of the models that can fit on the
common 16 GB inference cards such as T4.

2. MoE matrix multiplies require loading the
weights for several different experts which
results in them being memory bound.

We do not use Quantization Aware Training
(QAT) (Wu et al., 2020), because our quantiza-
tion approach does not degrade model performance.
QAT is usually used when there exists a noticeable
performance degradation from quantization. Also,
we focus on quantizing expert weights only, be-
cause they are contributing to more than 90% of
entire model weights thanks to the special property
of MoE model size scaling. We get much larger
model mostly from the expert parameters in MoE
layers (Shazeer et al., 2017).

Algorithm 1: Weight dequantize

Input :E - Number of Experts
Input :W - quantized weights of shape (E, M, N)
Input :S - FP16 scales of shape (E,1, N)

QOutput : FP16 dequantized weights

Waq < NewMatrix(E, M, N)
fore< Oto £ — 1do
form < Oto M — 1do
forn<+ O0to N — 1do
f = IntToFloat(Wle, m,n])
Waqle,m,n] = f * Sle, n]
end for
end for
end for
return Wy,

R T I

—
>

All activations and biases are kept as FP16 and
only the expert weight matrices are quantized. As
a result, we do not require any post-training cali-
bration (because we don’t need scales for the acti-
vations) which makes this recipe easy to apply to
several language families. We perform symmetric,
range-based per-channel quantization on each ex-
pert weight. This means that for expert weights of



shape (E, M, N') where F is the number of experts
and M and N are arbitrary dimensions, we produce
scales of shape (£, 1, N). The same quantization
method is used for int4 and int8. During inference,
we dequantize the weights to FP16 and perform our
matrix multiplies using floating point computations.
Algorithm 1 shows the dequantization performed
during inference.

One option for implementing the GEMM + De-
quantize would be to write a separate kernel to
dequantize the weights before the MoE GEMM.
However, this would actually increase the amount
of memory traffic as we would add a read of W
and a write to Wy, as shown in Algorithm 1. As
a result, we decided to take advantage of the flex-
ibility of CUTLASS and fuse the dequantize step
into the GEMM kernel. After profiling, we real-
ized that the conversion from int to float (line 5 in
Algorithm 1) was slower than anticipated. In order
to improve this, we replaced the native int to float
conversion (I2F) with a series of high throughput
ALU and FP16 instructions which improved the
performance of our fused GEMM + Dequantize.

3.4.1 Quantization Optimization

The conversion optimization mentioned above pro-
duces exact results to the native I2F conversions. It
relies on two key observations.

1. For any FP16 number X where 1024 < X <
2048, 1024 will be represented exactly in the
exponent bits and int(X — 1024) will be di-
rectly stored in the mantissa. For example,
FP16 representation of 1027 (represented as
0x6403) has the integer 3 stored directly in
the mantissa bits of its representation.

For any integer 0 < Y < 1024, we can con-
struct the FP16 representation of Y + 1024
by setting the exponent to 1024 and storing Y
in the FP16 mantissa. This is easily done by
performing 0x6400 | Y, since 0x6400 is the
hex representation of 1024 in FP16.

Our optimization exploits these observations to
quickly convert int4s or int8s and FP16. After we
quantize the weights, we add 128 to int8 weights
and 8 to int4 weights to make them all unsigned.
We refer to these weights as . This is not strictly
necessary, but removes the need to perform sign
extension logic.
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3.4.2 Optimized 8-bit Dequantize

In order to best utilize the hardware, we convert
int8s to FP16s two at a time, leveraging the fact
that 2 FP16 elements can fit in a 32-bit register.
This is done as follows:

1. We load 4 int8 values, [eq, e1, e2, e3] from
W into a single 32-bit register.

We then create a second 32-bit register, R,
that stores the FP16 representation of [eg +
1024, e; + 1024] leveraging observation (2).

Next, we use float math to subtract
[1152,1152] from R;. This subtraction is due
to the fact that we must subtract 1024 from
each number in 121 convert eg and e; to FP16.
Then, we must further subtract 128 from each
number to obtain the float representation of
the original, signed integer.

4. Lastly, we repeat steps 2 and 3 for e and es.

3.4.3 Optimized 4-bit Dequantize

We change the layout of the weights to reduce the
number of logic instructions needed to construct
the FP16s [e; + 1024, ;41 + 1024] . Thus, for int4,
we change the layout of W to reorder groups of 8
elements as follows:

[607 €1, €2, €3, €4, €5, €6, 67} — [607 €2, €4, €6, €1, €3, €5, 67]

With this new layout, the idea for int4 is similar to
what was previously described for int8. Of course,
we must now subtract [1032, 1032] to recover the
original, signed integer as fpl6. We must also
iterate 4 times since 1 32-bit register holds 8 int4s
and conversion happens 2 at a time.

3.5 MoE Batch Pruning

Batch pruning refers to the act of removing sen-
tences from a batch dynamically as soon as they
are done translating. We observed that this speeds
up MoE layers as it can prevent the loading of entire
expert weights, reducing the amount of memory
traffic required in these memory bound layers.

In order to implement batch pruning in the MoE
layers, we make a simple modification to the gat-
ing function so that it assigns a large expert_idx
to all finished sentences. This causes all finished
sentences to be moved to the end of the permuted
activation matrix in the routing step. To complete



Table 1: Throughput of quanitzed MoE GEMMSs nor-
malized against the throughput of the FP16 MoE Gemm.
The number of active experts is the number of experts
that receive tokens from routing. The matrix shapes for
the GEMM C = A @ B are A=mx1024, B=1024x4096,
where m is different for each expert. The total num-
ber of tokens is set to 40 since this is close to what the
decoder computes in our inference environment.

Active Experts FP16  Int8 native I2F  Int8 optimized I2F  Int4 optimized I2F

1 1 1.05 1.28 1.24

4 1 1.01 1.21 1.28

8 1 1.34 1.21 1.57

16 1 1.40 1.39 1.73
1
1
1

24 1.40 1.49 1.78
32 1.46 1.59 1.85
GEOMEAN 1.26 1.35 1.56

the pruning, we simply keep track of the total num-
ber of active tokens and only process the first ac-
tive_tokens rows of the permuted activation matrix
mentioned in section 3.3.

4 Results and discussion

All experiments in this section are run on a single
NVIDIA PCIE V100 running inside a docker con-
tainer running Ubuntu 20.04 and CUDA 11.6. All
code is compiled with nvce and gee/g++ 9.3.

We run our experiments considering an encoder-
decoder MoE model with 32 experts with TUPE
(Ke et al., 2020), similar to the setup in (Kim et al.,
2021) but with a vocabulary size of 128k. All
throughput metrics measure the time to translate
1000 tokenized English sentences (~ 40K tokens)
to German (en-de) or vice-versa (de-en) and record
the total number of input tokens translated per sec-
ond. BLEU metrics are reported on the same data
set.

4.1 Speed-up and Cost-Effectiveness

We measure the improvement of our batch prun-
ing optimization by comparing the throughput with
and without that optimization. We found that we
achieve up to 1.14x speed up relative to our opti-
mized baseline without batch pruning.
INTS8/INT4 GEMM Performance. First, Table
1 shows a performance comparison for the FP16
GEMM compared to fused GEMM + Dequantize
with native I2F and our optimized I2F sequence for
INTS. Our INT4 implementation only supports the
optimized I2F sequence. Depending on the number
of experts, INT8 and INT4 could accelerate MoE
computation up to 59% and 85%, respectively.
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INTS8/INT4 Quality Impact. We also consider
the impact of INT8 and INT4 expert quantization
on BLEU scores, we observe negligible transla-
tion quality degradation when quantizing model
weights. Table 2 shows the change in BLEU com-
pared to FP16 after applying quantization.

End-to-end Performance Improvements. Ta-
ble 3 shows our machine translation experiments
for EN-DE, with different batch sizes and different
quantization schemes and reports both the through-
put of our PyTorch and Faster Transformer imple-
mentations. Compared to the Torch-FP16 base-
lines, the optimizations applied achieve significant
speed-up across different settings.

Cost Comparison. Table 4 shows the deploy-
ment cost comparison between the MoE models
and smaller models optimized for CPU deployment
(Kim et al., 2019). The cost of deploying MoE
models which are 136x larger on CPU is more than
100 times of the cost of deploying smaller models
on CPU. However, the optimized large MoE mod-
els on GPU cost less than the current CPU model
deployment with smaller models.

Table 2: BLEU differences from INT8 and INT4 weight-
only compared to the FP16 baseline.

Beam 1 A BLEU
Language Pair JEN

INTS INT4

EN-DE (Beam 1) -0.028  -0.052

EN-DE (Beam 2) 0.051  -0.180

DE-EN (Beam 1) -0.084  0.044

DE-EN (Beam 2) -0.027  -0.031

Avg. of 10 language pairs (Beam 2) -0.007 -0.167

5 Conclusions and Future Work

This paper describes how to make large MoE mod-
els cost-efficient on a single GPU in a real-world
inference environment. The final implementation
achieves a speedup of up to 26X over PyTorch base-
line. Our GPU MoE implementation allows serving
much larger and higher-quality models compared
to dense models on CPUs without increasing the
cost of serving. We consider two main avenues
for future work. We are currently working on im-
proving our fused GEMM + Dequantize kernel to
enable the use of fully vectorized 16 byte loads
on the weight matrix. In addition, we plan to ex-
plore deploying even larger models with distributed
inference in the future in a cost-efficient way.



Table 3: Throughputs for beam=1 and beam=2 for varying batch sizes. Throughput is measured as input tokens
processed per second. The precisions (FT-INT8 and FT-INT4) in the table refer to the quantization applied to the
MoE weights. Torch-FP16 columns show the throughput numbers when we run the model with PyTorch v1.10

using FP16 model weights.

Beam=1 Input tokens processed/s

cC

Beam=2 Input tokens processed/sec

Batch Size o ch-FP16 FT.FPI6 FTINTS FLINT4 Torch-FP16 FT-FPI6 FTINTS FT.INT4
1 16 388 401 400 | 14 351 361 361
8 70 1594 1639 1662 | 65 1453 1507 1518
20 150 3025 3178 3247 | 139 2571 2719 2803
32 214 4008 4264 4379 | 202 2960 3137 3239
64 379 5371 5706 5935 | 349 4333 4578 4746
96 485 6689 7101 7483 | 440 5062 5384 5605

Table 4: Deployment cost comparison. We show the most cost-effective throughputs under our 1s latency budget.

Hardware | Parameters | Batch size | Price (East US) | Latency (ms) | Throughput (words/sec) | Monthly USD/token
CPU (AVX512) ‘ 0.04 B 1 ‘ $587.65 (F16s) 75 351 0.209
CPU(AVX512)| 532B | 1 | $587.65(Fl6s)| 1080 | 26 | 22.602

$390.55
NVIDIA T4 ‘ 5.32B ‘ 20 ‘ (NCdas T4 v3) 421 ‘ 1565 ‘ 0.250
$390.55
NVIDIA T4 ‘ 5.32B ‘ 64 ‘ (NCdas T4 v3) 824 ‘ 2560 ‘ 0.153
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