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Abstract

With 84.75 million Filipinos online, the abil-
ity for models to process online text is crucial
for developing Filipino NLP applications. To
this end, spelling correction is a crucial prepro-
cessing step for downstream processing. How-
ever, the lack of data prevents the use of lan-
guage models for this task. In this paper, we
propose an N-Gram + Damerau-Levenshtein
distance model with automatic rule extraction.
We train the model on 300 samples, and show
that despite limited training data, it achieves
good performance and outperforms other deep
learning approaches in terms of accuracy and
edit distance. Moreover, the model (1) requires
little compute power, (2) trains in little time,
thus allowing for retraining, and (3) is easily
interpretable, allowing for direct troubleshoot-
ing, highlighting the success of traditional ap-
proaches over more complex deep learning
models in settings where data is unavailable.

1 Introduction

Filipinos are among the most active social media
users worldwide (Baclig, 2022). In 2022, roughly
84.75M Filipinos were online (Statista, 2022a),
with 96.2% on Facebook (Statista, 2022b). Hence,
developing language models that can process on-
line text is crucial for Filipino NLP applications.
Contractions and abbreviations are common in
such online text (Salvacion and Limpot, 2022).
For example, dito (here) can be written as d2, or
nakakatawa (funny) as nkktawa, which are abbre-
viated based on their pronunciation. However, lan-
guage models like Google Translate remain limited
in their ability to detect and correct such words, as
we find later in the paper. Hence, we aim to im-
prove the spelling correction ability of such models.
In this paper, we demonstrate the effectiveness
of a simple n-gram based algorithm for this task,
inspired by prior work on automatic rule genera-
tion by Mangu and Brill (1997). Specifically, we
(1) create a training dataset of 300 examples, (2)
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automatically generate n-gram based spelling rules
using the dataset, and (3) use the rules to propose
and select candidates. We then demonstrate that
this model outperforms seq-to-seq approaches.
Ultimately, the paper aims to highlight the use
of traditional approaches in areas where SOTA lan-
guage models are difficult to apply due to limita-
tions in data availability. Such approaches have the
added benefit of (1) requiring little compute power
for training and inference, (2) training in very little
time (allowing for frequent retraining), and (3) giv-
ing researchers full clarity over its inner workings,
thereby improving the ease of troubleshooting.

2 Related Work

The problem of online text spelling correction is
most closely related to spelling normalization — the
subtask of reverting shortcuts and abbreviations
into their original form (Nocon et al., 2014). In this
paper, we will use correcting to mean normalizing
a word. This is useful for low-resource languages
like Filipino, wherein spelling is often not standard-
ized across its users (Li et al., 2020).

Many approaches have been tried for word
normalization in online Filipino text: (1) pre-
determined rules using commonly seen patterns
(Guingab et al., 2014; Oco and Borra, 2011), (2)
dictionary-substitution models for extracting pat-
terns in misspelled words (Nocon et al., 2014), or
(3) trigrams and Levenshtein or QWERTY distance
to select words which share similar trigrams or are
close in terms of edit or keyboard distance (Chan
et al., 2008; Go et al., 2017).

Each method has its limitations which we seek
to address. Predetermined rules must be manually
updated to learn emerging patterns, as is common
in the constantly evolving vocabulary of online Fil-
ipino text (Salvacion and Limpot, 2022; Lumabi,
2020). Dictionary-substitution models are limited
by the constraint of picking mapping each pattern
to only a single substitution, whereas in reality, dif-
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ferent patterns may need to be applied to different
words bearing the same pattern (Nocon et al., 2014).
Trigrams and distance metrics alone may be suc-
cessful in the context of correcting typographical
errors for which the model was developed (Chan
et al., 2008), but may not be as successful on in-
tentionally abbreviated words. Our work uses a
combination of these methods to develop a model
that can be easily updated, considers multiple possi-
ble candidates, and works in the online text setting.

The task is further complicated by the lack of
data, which hinders the use of large pretrained lan-
guage models. Previous supervised modeling ap-
proaches require thousands of labeled examples
(Etoori et al., 2018), and even unsupervised ap-
proaches for similar problems required vocabulary
lists containing the desired words for translation
(Lample et al., 2018a,b). Since such datasets are
not available, our paper revisits simpler models,
and finds that they exhibit comparable performance
to that of much larger SOTA models.

3 Data

We use a dataset consisting of Facebook comments
made on weather advisories of a Philippine weather
bureau in 2014. We identified 403 distinct abbrevi-
ated and contracted words, and had three Filipino
undergraduate volunteers write their “correct” ver-
sions. To maximize the data, we removed hyphens
and standardized spacing, then filtered out candi-
dates where all annotators gave different answers.
We obtained 398 examples (98.7%) with 83.8%
inter-annotator agreement. We then created a 298-
100 train-test split; we selected test examples that
used spelling rules present in the training set to test
the ability of our n-gram model to extract and apply
such rules. To test generalizability, we also perform
cross-validation. The data and code for our experi-
ments are available at the following repository. !

4 Model

Automatic Rule Generation We extract spelling
rules from pairs (w, ¢), where w is a misspelled
word, and c is its corrected version. The rule gener-
ation algorithm slides a window of length &k over w
and ¢, and records w[i : i + k] = ¢c[j : j+ k] asa
rule (7, j are pointers); it returns a dictionary map-
ping each substring to a list of “correct" substrings
(See Appendix 1 for algorithm and example).

"https://github.com/ljyflores/
Filipino-Slang
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We test substrings of length 1 to 4, and find that
lengths 1 /2 work best. This makes sense as many
Filipino words are abbreviated by syllable, which
typically have 1-2 letters. This is similar to Indone-
sian (Batais and Wiltshire, 2015) and Malay (Ramli
et al., 2015), suggesting possible extensions.

We further filter candidates to words present in
a Filipino vocabulary list developed by Gensaya
(2018) (MIT License), except for when none of
the candidates exist in the vocabulary list, in which
case we use all the generated words as candidates.

Candidate Generation We recursively generate
candidates by replacing each substring with all pos-
sible rules in the rule dictionary. If the substring
is not present, we keep the substring as is. An
example can be found in Appendix D.

We find that rules involving single letter sub-
strings often occur at the end of a word. Hence, we
test candidate generation algorithms which either
allow single letter rules to be used anywhere when
generating (V1), or only for the last letter of a word
(V2). We also vary the # of candidates kept at each
generation step (ranked by likelihood, see Eq 2).

Ranking Candidates We explore two ways of
ranking candidates: (1) Damerau-Levenshtein Dis-
tance we rank candidates based on their edit dis-
tance from the misspelled word using the pyxdam-
eraulevenshtein® package with standard settings,
and (2) Likelihood Score we compute the likeli-
hood of the output word c given misspelled word
w as the product of probability the rules used to
generate it, where the probability of a rule is the
number of occurrences of a — b divided by the
number of rules starting with a (See Eqgs 1, 2).
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Pw—co)= [[ Pwli:itkl —cli:itk]) @

i=1
5 Evaluation

5.1 Comparison to Language Models

We benchmark the performance of our models
against two seq-to-seq models on the same dataset:
(1) ByT5 (Xue et al., 2022): a character-level TS
model (Raffel et al., 2020) trained on cross-lingual

https://github.com/lanl/
pyxDameraulevenshtein
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tasks, shown to be robust to misspellings, and
(2) Roberta-Tagalog (Cruz and Cheng, 2021): a
BERT (Devlin et al., 2019) model trained on large
Filipino corpora for masked language modeling.
We performed hyperparameter tuning using an 80-
20 split of the training data.

For inference, we obtain the top five candidates
for each misspelled word by selecting the highest
scoring candidates using beam search.

5.2 Augmentation Techniques

Since deep learning models perform poorly on
small datasets, we use two techniques to improve
performance to achieve more quality benchmarks.
First, we use II-model (Laine and Aila, 2017)
(Fig 1), a semi-supervised technique which mini-
mizes the mean-squared distance between the pre-
dicted corrections for two versions of a misspelled
word, where the weight is a hyperparameter.
Then, we use autoencoding augmentation (AE)
(Bergmanis et al., 2017), where we iteratively train
a seq2seq model on the original spelling normal-
ization task and an autoencoding task, where the
model is trained to reproduce the same word.

5.3 Comparison to Google Translate

We also benchmark using Google Translate’s
model. We input each word and check if the model
outputs a valid translation or suggests a correc-
tion (i.e. “Did you mean X?"). A correct transla-
tion/correction means the model was able to correct
(and thus translate) the misspelled word.

5.4 Evaluation

We evaluate the models with two metrics: (1) Ac-
curacy @ k: % of observations where the tar-
get is present among the top-k candidates, and (2)
Damerau-Levenshtein Distance (DLD): Best, av-
erage, and worst-case DLD of the top 5 candidates.

6 Results

6.1 Results from Evaluation Metrics

We train our models and show the results on the test
set in Table 1 (See Appendix 3 for hyperparameter
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details). To test generalizability, we perform 5-fold
cross-validation (See Appendix 2).

The N-Grams + DLD V1 algorithm performs
best in terms of accuracy and best-case DLD. It
achieves an improvement of 32% from the next
best model (DLD) for accuracy @ 1, which we
consider most important, as real-world spellcheck-
ers usually suggest one word. In addition, the ByT5
+ II-Model exhibits the best average DLD; hence
it generates many candidates which resemble the
target, though not achieving the correct output.

Also, N-Grams + Likelihood performs much
worse than with DLD, despite using the same can-
didate generation procedure. This was because the
dictionary also had irrelevant rules which muddled
the estimates; these can be filtered out with heuris-
tics, though at the expense of generalizability.

Moreover, the II-model results in small improve-
ments over the original ByT5 across all metrics;
this illustrates the impact of semi-supervised ap-
proaches over supervised approaches in settings
with limited data, albeit with limited success.

6.2 N-Gram Algorithm Runtime

Though N-Grams + DLD V1 achieves the best
performance, it performs inference in 2.781s on
average. N-Grams DLD V2 achieves significantly
faster performance (0.0086s) with a marginal de-
crease in performance (See Appendix C). It is
worth noting that all N-Gram models train in under
a second on a local CPU, whereas most language
models required at least 20 minutes on a GPU.

6.3 Analysis of Errors: N-Gram + DLD V1

We analyze the examples in which the N-Gram
+ DLD did not select the correct word as the top
choice (i.e. error at k = 1). The N-Gram + DLD
model produced errors on 23 observations (out of
100); we separate these errors into those where the
target was and was not in the candidate list.

Errors with Target in the Candidates There
were 9 (out of 23) errors wherein the target was
not among the candidates. In such cases, the DL
score selected candidates which closely resembled
the input, but were wrong; the correct choices were
ranked in the top 12.65% of candidates on average
(median of 8.57%). Given the difficulty in distin-
guishing between words with similar spellings, con-
text may be required (e.g. words surrounding the
misspelled words, likelihood of word occurring).



Type Model Accuracy @ k (%) DLD
k=1 k=3 k=5 Min Mean Max
N-Gram Based =~ N-Grams + DLD V1 077 082 085 046 291 4.73
N-Grams + DLD V2 067 074 074 1.03 296 4.59
N-Grams + Likelihood V1 ~ 0.17 038 058 122 350 5.29
N-Grams + Likelihood V2 047  0.61 0.64 130 3.06 4.65
ByT5 Model Only 031 042 049 098 271 438
Model + II-Model 037 058 0.66 057 206 341
Model + AE 0.04 0.04 0.04 428 6.69 102
Roberta-Tagalog Model Only 0.00 0.00 0.00 579 153 56.7
Model + II-Model 0.00 0.00 0.00 569 165 69.2
Model + AE 0.00 0.00 0.00 944 428 81.7
Baselines DLD 045 0.67 072 059 228 332
Google Translate 0.44 - - - - -

Table 1: Performance of Spelling Normalization Models on Test Set, see Appendix 3 for hyperparameter settings

Errors with Target not in the Candidates
There were 14 (out of 23) errors with targets not in
the candidate list; here, the rule dictionary lacked
at least one rule that was necessary to correct each
of the misspelled words. Upon adding these rules
to the dictionary, the model correctly predicted all
but five observations. In those five cases, the tar-
get was in the candidate list but not selected as the
top result, suggesting the need for better ranking
methods as discussed in the previous section.

As demonstrated by this section, a benefit of the
N-Gram + DLD model is that it allows access to the
collected rules, allowing researchers to understand
the cause of such errors, and hence directly make
tweaks (e.g. by adding rules, tweaking substring
length k) to improve the model. In contrast, ex-
plainability remains a challenge for language mod-
els, thereby reducing their ease of troubleshooting.

7 Conclusion

In this study, we propose an N-Gram + DLD model
for spelling normalization of Filipino online text,
and compare it to deep learning benchmarks. The
N-Gram + DLD V1 model achieves the best accu-
racy and best-case DLD, with a 32% improvement
in accuracy @ 1 over the next best model (DLD).
This shows the potential of simpler techniques, es-
pecially when data is scarce.

Besides improved performance, the N-Gram +
DLD model requires little compute power and
memory for training and inference. This allows
for frequent retraining of the model and addition
of new spelling rules as new words emerge. The
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model also allows researchers to understand how
predictions are made, and make appropriate tweaks
to the spelling rules, candidate sorting method, or
hyperparameters used (e.g. length of substrings).

This work has limitations which suggest areas
for improvement. First, the current work uses a
small dataset limited to the weather domain. Us-
ing more diverse datasets can improve the com-
prehensiveness of the rule dictionary. Also, more
complete dictionaries containing Filipino words
and their conjugations can help filter down valid
candidates before running DLD.

Second, the candidate ranking method can be
improved, especially in cases where the target and
selected words are similar, as discussed in the sec-
tion 6.3. For example, words can be ranked by how
common they are, or by inferring the correct choice
from the context. This has the added benefit of re-
ducing the candidate pool, requiring fewer DLD
calculations and hence reducing inference time.

Finally, we only explore correcting misspelled
words; combining it with misspelling detection can
further boost the practical applications of this work.

Ultimately, the development of such models will
pave the way for improvements in Filipino NLP,
and enable the development of more applications
that can serve the wider online Filipino community.
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A Cross Validation Results

The cross validated results are shown in Table 2.
While the metrics dropped from that in Table 1, the
models still exhibit the same order of performance
in terms of accuracy.

B Algorithms

Algorithm 1 Automatic Rule Generation
Input w (wrong word), r (right word)
Output d (rule dictionary)

I: k,d <+ {},ptry, =0,ptr, =0
2: while ptr,, < len(w) & ptr, < len(r) do
3: substry, < w[ptry, : ptry, + kj
4: substry < r[ptry : ptr, + k|
5: if substr,, = substr, then
6: Ptry, < ptry, + k
7: ptry < ptry + k
8: else
9: ptry, — ptry, + 1
10: ptry. < ptr, + k
11: end if
12: Append substr, to key substr,, in d
13: end while
14: Return d
{'21': ['tu', 'ka', 'tu', '21', 'tu'l,
'lo': ['lo', '"lu', 'lo', 'lo'],
'yv': ['y'l,
'ul': ['ul'],
"lu': ['1u'],
'uy': ['uy'l,
'n': ['n', 'in', 'n', 'ya', 'na', 'ng',...]

Figure 2: Example of a generated rule dictionary

C Runtime Performance

We plot accuracy @ 1 and runtime in Figures 3
and 4 respectively, and find that using a cutoff of
100 and 30 for N-Grams + DLD and N-Grams +
Likelihood respectively achieve the best tradeoff
between runtime and performance.

D Example

Figure 5 shows a rule dictionary and how the rules

are used to normalize “2loy” to “tuloy”.
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Figure 5: Example Inference for “2loy”

E Computational Details

We use one RTX 3090 (24GiB) GPU to perform
training for the language models, and we used a
total of six GPU hours across finetuning and hyper-
parameter selection. We note that By TS5 consists of
300 million parameters.

F Hyperparameter Settings

We train all models with the Adam optimizer, with
a starting learning rate of 5e—5 and stability of
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Model Accuracy @ k (%) DLD

k=1 k=3 k=5 Min Mean Max
RT 00+£0.00 0.0+£0.00 0.0+0.00 6.06£0.55 12.0+2.85 46.2+20.0
RT + 11 0.0+£0.00 00000 0.0£000 6.08+056 153+2.77 61.7+17.5
RT + AE 0.0+£0.00 0.00+£0.00 0.00+£0.00 7.38+1.53 21.3+6.92 549+8.10
BT 0.32+£0.06 052+£0.05 059+£0.07 0.77+0.15 231+£0.16 3.76+0.26
BT + 11 040+£0.06 0.57+0.03 0.65+0.03 053+0.05 1.75+£0.07 2.83+0.12
BT + AE 0.02+£0.03 0.02+£0.03 0.02+0.03 4.05+041 6.33+£038 945+0.71
NG+DLD 0.53+0.02 0.63+0.04 0.65+0.06 149+0.11 293+0.07 4.18+0.11
NG+ Lik. 0.35+0.07 047+£0.08 049+0.07 1.69+£026 295+0.11 4.13+£0.16

Table 2: Five-fold cross validation results for models on joint train and test set, within one standard deviation
Legend: RT (Roberta-Tagalog), BT (ByT5), NG (N-Grams)

le—8. Hyperparameters were finetuned using Ray
Tune, and models were selected based on the lowest
validation loss, as shown in Table 3.

Model Batch Epochs MSE Weight
RT 8 10 -
RT +11 8 30 0.2
RT + AE 4 70 -
BT 1 50 -
BT + 11 1 70 0.2
BT + AE 4 70 -

Table 3: Hyperparameter settings for best models, fine-
tuned using the Ray Tune Python library; We tried 10,
30, 50, 70 epochs, and batch sizes of 1, 2, 4, 8, and
16; Legend: RT (Roberta-Tagalog), BT (ByT5), NG
(N-Grams)
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