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Preface

Massively Multilingual Language Models (MMLMs) are trained on around 100 languages of the world,
however, most existing multilingual NLP benchmarks provide evaluation data in only a handful of these
languages. The languages present in evaluation benchmarks are usually high-resource and largely belong
to the Indo-European language family. This makes current multilingual evaluation unreliable and does
not provide a full picture of the performance of MMLMs across the linguistic landscape. Although
efforts are being made to create benchmarks that cover a larger variety of tasks, languages, and language
families, it is unlikely that we will be able to build benchmarks covering all languages and tasks. Due
to this, there is recent interest in alternate strategies for evaluating MMLMs, including performance
prediction and Machine Translation of test data. We believe that this is an important yet relatively
unexplored area of research that has the potential to make language technologies accessible to all.
The SUMEval workshop recieved submissions on techniques for scaling up multilingual evaluation.
In addition, the workshop also included a shared task on performance prediction.
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Abstract

The SUMEval Workshop’s shared task in-
volved predicting performance of multilingual
PLMs across multiple languages when these
models are fine-tuned with varying amounts of
data in different languages. The training data
was provided for performances of two multilin-
gual models on four NLP tasks, and a baseline
was shared with the participants to get started.
For test data, the task had two variants for eval-
uation, non-surprise version where the perfor-
mance was to be predicted for languages seen
in the training data but with unseen configura-
tions, and surprise version where the languages
were unseen during the training. A total of five
teams participated in the shared task with 15
submissions overall. The participants proposed
addition of new features, feature engineering
techniques and trained an ensemble of regres-
sion models for the task. The best performing
team had an improvement of 64% in MAE over
the shared baseline for the non-surprise vari-
ant, and a 17% improvement for the surprise
variant.

1 Introduction

Multilingual Pre-trained Language Models (PLMs)
(Devlin et al., 2019; Conneau et al., 2020; Xue
et al., 2021; Patra et al., 2022) have been recently
gaining prominence due their surprisingly effec-
tive cross-lingual transfer capabilities (Pires et al.,
2019; Wu and Dredze, 2019). These models are
pre-trained on hundreds of languages, and when
fine-tuned for a task on a single language (pivot
language), they can obtain reasonable performance
on languages unseen during fine-tuning (but seen
during pre-training). This zero-shot transfer capa-
bility while impressive has been found to be non-
uniform across languages, and is especially worse
on low resource languages or languages that are
typologically distant from the pivot language (Wu
and Dredze, 2020; Lauscher et al., 2020). Lauscher
et al. (2020) showed that these limitations of zero-

Pre-training
Data Size

Syntactic
Distance

Sub-word
Overlap

⋮

s

Performance
Measure
E.g.,
F1-Score,
Accuracy
etc.

Figure 1: Performance prediction aims to learn a map-
ping between the factors influencing cross lingual per-
formance of multilingual PLMs like Pre-training Data
Size, Typological Relatedness

shot transfer can be addressed by collecting a small
amount of data in different languages i.e. the few-
shot setup that can substantially improve their per-
formance.

Despite the fact that these multilingual PLMs
support hundreds of languages, most standard
multilingual benchmarks (Conneau et al., 2018;
Artetxe et al., 2020; Clark et al., 2020; Ponti et al.,
2020) support evaluation for only a handful of
these, and their performance on a large fraction
of languages remain unknown. While creating
standardised test sets in all of these supported lan-
guages will be an ideal solution, it can be pro-
hibitively expensive to do so.

As pointed out in Ahuja et al. (2022a), perfor-
mance prediction can be one possible remedy to
this problem with multilingual benchmarks, by uti-
lizing the linguistic and model-specific features
influencing cross lingual performance to learn a
mapping to the observed performance across dif-
ferent languages (See Figure 1). Utilizing regres-
sion models for predicting performance on NLP
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tasks have been shown to yield meaningful esti-
mates (Xia et al., 2020; Ye et al., 2021), and have
also been shown to be effective at predicting per-
formance of multilingual PLMs (Lauscher et al.,
2020; Srinivasan et al., 2022; Ahuja et al., 2022b).

The shared task for Scaling Up Multilingual
Evaluation (SUMEval) Workshop 2022 entailed
this task of performance prediction, where the par-
ticipants were given the performance of fine-tuned
multilingual models XLM-Roberta (Conneau et al.,
2020) and the Turing Universal Language Repre-
sentation model (T-ULRv6) (Patra et al., 2022) for
different training configurations across different
languages and tasks to build their performance pre-
diction systems. For evaluation there were two ver-
sions of the held out test sets, first a non-surprise
variant where the participants were asked to pre-
dict the performance on languages for which some
performance data was given in training but with
unknown training configurations, and second a sur-
prise variant where the performance was to be pre-
dicted on languages unseen in the training data.

Participants were provided LITMUS Predictor
(Srinivasan et al., 2022) as a baseline to get started
and were asked to build better systems possibly
using additional features, and alternate prediction
algorithms. We saw a participation of five teams
for the task, with a total of 15 submissions. Dif-
ferent teams utilized new features in addition to
those provided as part of the baseline, alternate fea-
ture engineering techniques, and utilized ensemble
learning methods for building models. The best
performing team on the non-surprise variant of the
task obtained a 64% reduction in MAE over the
baseline, and for surprise variant, the best perform-
ing team saw an improvement of 17%. To encour-
age further research in this area we have also made
the baseline and datasets available publically1.

2 Task and Dataset Description

We start by formally defining the performance pre-
diction problem for the shared task. Consider a
multilingual model M pre-trained on a set of L
languages. M is then to be fine-tuned on some
task T with labelled data in P pivot languages,
and then evaluated on a set of target languages T ,
where both P ⊂ L and T ⊂ L. A training configu-
ration S, is defined by the amount of labelled data
for each pivot language p ∈ P used for fine-tuning

1https://github.com/microsoft/Litmus/
tree/main/SumEval

M. The fine-tuned model can then be evaluated
on each of the target languages t ∈ T to obtain
performance measure s, such that s is a function
of:

s = f(t,S,P,M,T) (1)

In performance prediction, the objective is to
learn this mapping f , given instances of input con-
figurations {ti,Si,Pi,Mi,Ti} and output perfor-
mance si, so that we can use this mapping to predict
performance on unknown training configurations
and languages. The input tuple {ti, Si,Pi,Mi,Ti}
is often represented using various linguistic, model,
and data specific features. For a more detailed def-
inition of the task and the features, we refer the
readers to Xia et al. (2020); Ahuja et al. (2022a).

In the shared task, we provide the participants
different training configurations and their corre-
sponding performance on target languages for 4
multilingual tasks: i) XNLI (Conneau et al., 2018)
for Natural Language Inference, ii) TyDiQA (Clark
et al., 2020) for Machine Comprehension, iii)
WikiANN (Pan et al., 2017) for Named Entity
Recognition, and iv) UDPOS (Nivre et al., 2016)
for Part Of Speech Tagging; and 2 mulitlingual
PLMs: XLM-Roberta (large) and T-ULRv6 (large).
The candidates were asked to build regression mod-
els using this performance data, and then were eval-
uated by testing on new training configurations and
languages.

2.1 Dataset

The datasets were generated by fine-tuning the
models across the 4 datasets along different training
configurations and evaluating them on the target
languages. The statistics of the datasets are given
in Table 1. Training data was released to the partic-
ipants in the beginning of the competition and the
submissions were evaluated on the two variants of
the held-out test data:
i) non-surprise: In this test split the participants
were asked to predict the performance on the lan-
guages for which there was some performance data
available in the training set but the training con-
figurations were new, i.e. for the different data
allocations of the pivot languages.
ii) surprise: In this test split the participants were
asked to predict the performance on new languages,
which were unseen in the training dataset (both as
a pivot or target language). The training configu-
rations were both new and the ones present in the
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Task T Supp Models M Dataset Split Number of Config-
urations S

∣P∣ ∣T ∣ ∣P∩T ∣
XNLI XLM-R and

T-ULRv6

Train 40 15 15 15
Test (non-surprise) 10 15 15 15
Test (surprise) 50 15 10 0

TyDiQA-ID XLM-R and
T-ULRv6

Train 26 9 9 9
Test (non-surprise) 3 9 9 9

TyDiQA-OOD XLM-R and
T-ULRv6

Train 26 9 11 3
Test (non-surprise) 3 9 11 3

WikiANN XLM-R
Train 400 39 39 39
Test (non-surprise) 100 39 39 39
Test (surprise) 500 39 17 0

UDPOS XLM-R
Train 400 30 30 30
Test (non-surprise) 100 30 30 30
Test (surprise) 500 30 30 0

Table 1: Dataset statistics for the shared-task. Note that we have 2 versions of TyDiQA: TyDiQA-ID where both
training and test set comes from the the original TyDiQA benchmark, and TyDiQA-OOD where the training data is
from TyDiQA but test data is from XQUAD (Artetxe et al., 2020).

training data.
For validation, participants were provided scripts

for performing Leave-One-Language-Out (LOLO)
and Leave-One-Configuration-Out (LOCO) cross-
validation from the training data, to help emulate
the two test splits. In LOLO, one by one the per-
formance data for each language is kept aside for
validation and rest of the data is used for training
the model. Similarly, in LOCO each unique con-
figuration is set-aside one at a time for testing and
remaining data is used for training.

3 Baseline and Submitted Systems

In this section we will describe the LITMUS pre-
dictor baseline and the top two submissions made
for the shared task.

3.1 LITMUS Predictor Baseline

The LITMUS Predictor (Srinivasan et al., 2022)
is an online open-source tool built to predict task-
specific performance of multilingual PLMs across
different languages and offering data-collection
strategies to improve their performance. The tool
utilizes the following features to represent the input
tuple {ti, Si,Pi,Mi,Ti}:
1. Pre-training Data Size of ti: Cross Lingual
performance of multilingual PLMs have been ob-
served to be dependant on the amount of data for
a language that was present during pre-training
(Hu et al., 2020; Lauscher et al., 2020), where the
low resource languages for which the amount of
data present in the pre-training corpora was low,

are found to benifit less from cross lingual trans-
fer compared to high resource languages. Hence,
while predicting the performance for a language ti
we consider the log10 of the size (in tokens) of its
pre-training corpus, given by PT-SIZE(ti) ∈ R
2. Amount of Fine-Tuning Data in Si: Fine-
tuning multilingual PLMs even with small amounts
of labelled data (few-shot-learning) has been found
to drastically improve the performance in some
cases (Lauscher et al., 2020). Hence, for the given
training configuration Si representing amount of
fine-tuning data in each pivot language in P ,
we use it as features for the predictor, given as
FT-SIZE(Si) ∈ R∣P∣.
3. Syntactic Distance between each p ∈ Pi and
ti: Target languages that are syntactically closer to
the pivot languages have been observed to benefit
greater from cross-lingual transfer than the ones
that are syntactically distant (Pires et al., 2019;
Lauscher et al., 2020). Hence, for predicting per-
formance on ti, we consider it’s syntactic distance
with each of the pivot languages p ∈ Pi, which
is computed using the syntactic features provided
in the URIEL typological database (Littell et al.,
2017). This is denoted as SYN(Pi, ti) ∈ R∣P∣
4. Sub-word Overlap between each p ∈ Pi
and ti: Finally the sub-word vocabulary overlap
between the two pivot and target languages that
has also been shown to be important for cross lin-
gual transfer (Wu and Dredze, 2019; Ahuja et al.,
2022b) is also considered as a feature, denoted by
SWO(Pi, ti) ∈ R∣P∣.
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These four family of features are then used to
represent the input configuration which is used to
estimate the performance value:

si ≈ f(PT-SIZE(ti),FT-SIZE(Si),
SYN(Pi, ti),SWO(Pi, ti))

f can be approximated using any regression al-
gorithm, and the LITMUS predictor by default uses
XGBoost (Chen and Guestrin, 2016), and trains a
separate predictor for each task T and modelM
(which gives 8 predictors for our dataset).

3.2 PICT Team System
The team from Pune Insitute of Computer Technol-
ogy (Patankar et al., 2022) made submissions for
both non-surprise and surprise variants of the task.
They proposed three feature engineering methods
for the task in their submission: i) Multi-Output
: The output of the regression model is expected
to be a vector containing performance for each tar-
get language in the dataset, inputs are represented
by the fine-tuning size of each pivot language; ii)
Single-Output : Predicting performance of each
target language separately, one-hot representations
of the languages are appended to the input features;
iii) Single-Output w Language Features : Apart
from the pivot sizes, typological distance features
(from URIEL (Littell et al., 2017)) between pivot
and target pairs are also appended. The participants
train a common model for all the four tasks and the
two multilingual models by incorporating one-hot
vectors for the two as input features, and encourage
cross-task and cross-model transfer. For training
the regression models they experiment with Cat-
Boost (Prokhorenkova et al., 2018) and XGBoost.

3.3 GMU Team System
George Mason University team (Akter and Anas-
tasopoulos, 2022) builds on the baseline system
by proposing alternate feature engineering tech-
niques and included additional input features for
modelling the problem. The participants noted that
the feature representation in the existing baseline
system added a feature for each pivot language,
which may not scale well when different combina-
tions of the fine-tuning languages are used at the
test time. They proposed a fixed-size featurization
scheme which takes weighted sums of pivot-target
overlap features, where the weights are decided by
pivot sizes. Additionally, they propose two new

am as gd gu km kn ku ky mg ne or pa ps sd si so su
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Figure 2: Language wise absolute errors on surprise lan-
guages for the baseline and the four submitted systems.

features : i) Presence of Target Language in Pre-
training : A binary feature indicating whether the
target language was present during pre-training ;
ii) Target Language Writing Scripts : A binary
vector representing the writing script(s) of the tar-
get language obtained from van Esch et al. (2022).
Additionally, the GMU team also trained models
collectively for all the tasks and MMLMs, and used
an ensemble of XGBoost, Multi-Layer Perceptron
based regressors for their predictor model.

4 Results

We now compare the performance of the submis-
sions and the baseline on both non-surprise and
surprise test sets. Apart from PICT and GMU, we
received submissions from three other teams that
we identify by the usernames of the participants i.e.
Khooshrin, Viktoria, and Pranshu.

4.1 Non-Surprise Test Set

The Mean Absolute Errors (MAE) on the non-
surprise test set for the baseline and the submis-
sions are given in Table 2. On average, all the
submissions out-perform the baseline substantially,
with PICT obtaining almost 64% reduction in the
macro average error (91% in case of micro aver-
age). Analysing the task specific errors, we observe
the maximum reduction in errors comes from the
TyDiQA dataset. This might be attributed to the
fact that out of the 4 multilingual tasks, we had the
least amount of performance data for TyDiQA (26
training configurations as given in Table 1). Both
PICT and GMU use joint training for multiple tasks
which is in contrast to the baseline that trains indi-
vidual predictors for each task (and model). Hence,
the substantial drops in the errors are likely to be
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Average TyDiQA UDPOS WikiANN XNLI
System Macro Micro TULRv6 XLMR XLMR XLMR TULRv6 XLMR

LITMUS 0.018 0.131 0.351 0.381 0.005 0.017 0.026 0.003
Khooshrin 0.100 0.156 0.301 0.317 0.114 0.085 0.047 0.071
Viktoria 0.030 0.026 0.048 0.037 0.038 0.026 0.004 0.004
Pranshu 0.012 0.015 0.019 0.016 0.006 0.017 0.026 0.003
PICT 0.011 0.011 0.012 0.014 0.012 0.011 0.008 0.007
GMU 0.023 0.031 0.040 0.054 0.021 0.024 0.032 0.015

Table 2: Mean Absolute Errors (MAE) for the baseline and the submitted systems, on the non-surprise version of
the test set.

Average UDPOS WikiANN XNLI
System Macro Micro XLMR XLMR TULRv6 XLMR

LITMUS 0.088 0.055 0.044 0.135 0.025 0.017
Khooshrin 0.118 0.070 0.152 0.099 0.016 0.015
Viktoria 0.097 0.064 0.067 0.131 0.028 0.029
Pranshu 0.075 0.048 0.042 0.109 0.018 0.022
PICT 0.104 0.070 0.071 0.141 0.032 0.037
GMU 0.073 0.052 0.062 0.087 0.026 0.035

Table 3: MAEs for the baseline and the submitted systems, on the surprise version of the test set.

attributed to multi-task training which is also in
line with the observations in Ahuja et al. (2022b).

4.2 Surprise Test Set

Next, we compare the systems on the surprise lan-
guages test sets in Table 3. Here, teams GMU and
Pranshu outperform the baseline with 17% and
14% reduction in macro average errors respectively.
Maximum gains are observed for the WikiANN
dataset, where GMU team obtains a 35% reduction
in MAE. For UDPOS and XNLI tasks, GMU per-
forms slightly worse compared the baseline, while
Pranshu obtains comparable errors. We suspect
this might be explained by oberving that the er-
rors on WikiANN for the baseline are substantial
(±0.135 points F1-Score) compared to the other
two tasks, resulting in a better scope for improve-
ment in the former dataset.

We also plot the (surprise) language specific er-
rors on WikiANN dataset for the baseline and the
four systems in Figure 2. As can be seen, GMU out-
performs the other 4 systems for a majority of the
languages, with less then 0.05 error in the F1-score
for all languages except Amharic (am), Sindhi (sd),
Kyrgyz (kr), Malagasy (mg), Oriya (or), and Pushto
(ps) (6 out of 17 languages). This indicates that it
might be possible to approximate the performance

on new languages with a reasonable accuracy. How-
ever, there is still a scope of improvement as the
worst case errors are still as high as 0.25 points
F1-score for the best performing system.

5 Conclusion

In this paper we presented the findings from the
SUMEval workshop shared task on performance
prediction of multilingual PLMs. We received 15
submissions from five different teams, and most
teams were able to obtain substantial gains over the
baseline for the non-surprise test set, and two of
the teams out-performed the baseline on the sur-
prise test set with impressive gains. The strategy of
training jointly on multiple tasks and models was
utilized by multiple teams, and it lead to substantial
improvements for low-resource tasks like TyDiQA.
Additional features like the script of the target lan-
guage were also found to be useful, specially for
predicting performance of unseen languages. The
best performing system achieved an error of less
than 0.05 points F1-score for 11 out of 17 surprise
languages for which no performance data was avail-
able for training. Overall, the results indicate a
promising step towards scaling up the evaluation
of multilingual models across multiple languages.
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Abstract

Evaluating the performance of Massively Mul-
tilingual Language Models (MMLMs) is diffi-
cult due to the shortage of evaluation datasets
in low-resource languages. Due to computa-
tional limitations evaluating MMLMs trained
on all possible pivot configurations is not fea-
sible. This paper describes our contribution to
the SumEval 2022 shared task, which handles
the crucial task of Performance prediction of
MMLMs. We build upon Microsoft Research’s
Project LITMUS and devise a method to fur-
ther improve predictions. We develop vari-
ous machine-learning approaches which outper-
form the baseline score provided by LITMUS.
Our system ranked first with an RMSE score
of 0.017 for the non-surprise and 0.109 for the
surprise dataset.

1 Introduction

Massively Multilingual Language Models
(MMLMs) are models that are pre-trained on a
large set of languages and can perform various
tasks. For example, a Massively Multilingual Neu-
ral Machine Translation model (Arivazhagan et al.,
2019) is a single model trained on 100+ languages
with over 50 billion parameters. Such pre-trained
models work very well for zero-shot transfer
across languages. However, the performance of
these models is not consistent for all languages.
They depend on factors like the pivot languages
used for fine-tuning and the number of data points
used for training. It is not feasible to evaluate the
performance of the MMLMs on all languages. This
is because some target languages are low-resource
and lack proper evaluation sets for testing the
performance. It is also difficult to train and test
the models on all combinations of tasks, pivot
languages, and target languages. This paper aims
to develop a system that will take parameters like
the MMLM model, task name, pivot languages,

∗first author, equal contribution

and the number of data points used for fine-tuning
to predict the model’s performance for the task
on a particular target language. We develop two
different systems. The first is for models fine-tuned
on specific pivot languages and then tested on the
same target languages. The second system is for
models fine-tuned on a set of pivot languages and
tested on surprise languages that were not part of
the aforementioned set of pivot languages.

2 Related Work

Previously researchers have explored predicting
the performance of machine learning models from
unlabeled data by utilizing underlying information
about data distribution (Domhan et al., 2015) or
by measuring (dis)agreements between multiple
classifiers (Platanios et al., 2014).

As the NLP Models are getting computationally
complex to train, researchers have been interested
in predicting the performance of NLP models with-
out actually training them. Xia et al. (2020) have
used ten different language features to train a XG-
Boost regressor. They compare the model’s per-
formance with predictions made by human experts.
Dolicki and Spanakis (2021) leverage various syn-
tactic features to implement a zero-shot perfor-
mance predictor. Ahuja et al. (2022) demonstrate a
single-task and multi-task performance prediction
and discuss the significance of various linguistic
features. Srinivasan et al. (2022) have developed
LITMUS, a tool for prediction and labeling plan
generation. We use LITMUS as a baseline for eval-
uating the performance of our system. We build
upon all these past works by utilizing the syntactic
features and tree-based models that have produced
good results in the past and implement them on
different configurations of data.

3 Dataset Description

The dataset consists of performance measures of
XMLR and TULRv6Large, which are finetuned on
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Figure 1: Data distribution of train data.

a specific set of languages (pivot languages) for
four different tasks: XNLI (Conneau et al., 2018),
WikiANN (Pan et al., 2017), UDPOS, and TyDIQA
(Clark et al., 2020)). The dataset has 880 data
points with distribution as shown in figure 1. Each
data point has the model’s training configuration,
including the model name, task name, pivot lan-
guages, and evaluation results on specific target
languages. The training configuration also contains
the data used in each pivot language to finetune the
MMLM. The evaluation results consist of the per-
formance of the corresponding model on a set of
languages. Instead of training a new regressor for
every model-task pair, we observed that combining
the data helps the prediction model gain better in-
sights. Our four data combination techniques are
described as follows:

• Multi Output Dataset: The total number
of unique languages across all the individ-
ual datasets is 40. In order to combine the
individual task-model pair-wise datasets, we
create 40 columns each for training configu-
ration and evaluation results (one column for
each language). A zero in a pivot language
column indicates the absence of that language
while finetuning. We use this dataset to train
a multi-output regressor.

• Single Output Dataset: We create a new row
for each new evaluation language and provide
the target language as an extra feature. We
then use this dataset to train a single-output
regressor.

• Single Output Dataset with Language fea-
tures: We create an additional dataset by
adding a few language features to it. We ob-
tain the pair-wise genetic, syntactic, phonetic,
geographic, inventory, and featural distances

Model Dataset Name MAE RMSE
XG-Boost Multiouput 0.007 0.030

Single output 0.015 0.052
Single output feats 0.012 0.041

Cat-Boost Multiouput 0.017 0.035
Single output 0.012 0.034
Single output feats 0.008 0.017

Litmus Non-surprise 0.018 0.054

Table 1: Results for non-surprise data.

Model Dataset Name MAE RMSE
XG-Boost Surprise 0.093 0.128
Cat-Boost Surprise 0.082 0.109
Litmus Surprise 0.088 0.122

Table 2: Results for surprise data.

between target and pivot languages and uti-
lize them as features for the model. These
distances are calculated using the URIEL ty-
pological database. (Littell et al., 2017).

• Surprise Dataset: To predict the performance
of MMLMs on surprise languages, we calcu-
late the pair-wise syntactic, phonetic, featural,
inventory, genetic, and geographic distances
and the subword overlap between the target
surprise language and the pivot languages.
The target surprise language is also taken as a
feature, but we encode the surprise languages
with integers that are not present in label en-
codings of the pivot languages.

4 System Description

To get the relationship between different languages,
we use different parameters used by Lin et al.
(2019) like syntactic, phonetic, featural, inventory,
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Figure 2: System Design.

genetic and geographic distances, and subword
overlap.

• Syntactic Distance: The cosine distance be-
tween the feature vectors derived from the
syntactic structures of the languages.

• Genetic Distance: The genealogical distance
of the languages.

• Geographic Distance: The orthodromic dis-
tance between the languages, divided by the
antipodal distance.

• Inventory Distance: The cosine distance be-
tween the phonological feature vectors de-
rived from the PHOIBLE database.

• Phonological Distance: The cosine dis-
tance between the phonological feature vec-
tors derived from the WALS and Ethnologue
databases.

• Featural Distance: Cosine of all distances
mentioned above.

• Subword Overlap: Percentage of common
tokens in both languages

We have made two separate systems for perfor-
mance prediction. The first one is for predicting
the performance of the MMLMs on known lan-
guages, as shown in Figure 2. The second one is to
for predicting the performance of the MMLM on
surprise languages.

4.1 Non-Surprise system

We use the three datasets mentioned in section 3 to
predict the performance metric of an MMLM on a
target language.

4.1.1 Multi Output Model

The dataset has 42 features, 40 denoting the number
of data points of the pivot languages, one feature
for the model name, and one for the task name. Our
targets are the evaluation scores of 40 target lan-
guages. We train different regression models like
CatBoost (Prokhorenkova et al., 2018), XGBoost
(Chen and Guestrin, 2016) and SVM as multi-target
regression models on this data.

4.1.2 Single Output Model

The dataset has 43 features, 40 denoting the number
of data points of the pivot languages, one feature
for the model name, one for the task name, and one
representing the target language. Our target is the
evaluation score of an individual target language.
This dataset is used to train XGBoost, CatBoost,
and SVM regressors.

4.1.3 Single output with features model

The dataset has 283 features, 40 for the data size
of each pivot language used for fine-tuning, and
240 are the pair-wise syntactic, phonetic, genetic,
geographic, inventory, and featural distances of the
target with the pivot language. The rest of the fea-
tures are the model name, task name, and the name
of the target language. We train the aforementioned
three regressors on this dataset.
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4.2 Surprise system

We use the Surprise dataset to train this system. As
mentioned above in section 3, this dataset consists
of the syntactic, phonetic, featural, inventory, ge-
netic, and geographic distances and the subword
overlap of the surprise languages with the pivot
languages. The final training data consists of 563
features. 70 features are pivot languages, 490 are
the 7 distance parameters of each of the 70 lan-
guages with the target surprise language, and the
remaining three are for the model name, task name,
and target language name. We train CatBoost with
a maximum tree depth of 7 and a learning rate of
0.3. For XGBoost, we obtained the best results
using the default parameters.

5 Experiments and Results

Our Training setup was pretty straightforward.
Some of the observations we made during our ex-
tensive experimentation are as follows.

1. Linguistic features improve the perfor-
mance:
We observed that adding the seven linguis-
tic features mentioned in section 4 improves
the score of both the single output regressors.
Adding pairwise linguistic features in multi-
output data sets is not feasible as we need to
add 11,200 new columns.

2. Tree based models perform better:
We tried various regression models such as
Logistic Regression, SVM, Multi-Layer Per-
ceptron, Polynomial Regression, Lasso Re-
gression, XGBoost, and CatBoost. We ob-
serve that XG-Boost and Cat-Boost are the
top-performing models. We speculate this be-
cause tree-based machine learning models are
good at handling complex, non-linear relation-
ships.

3. Target language: anonymous vs labeled:
When trained on a single output dataset, if
we remove the labels of the target language,
we observe a consistent but slight reduction
in performance. This shows that the model
makes informed choices based on the target
language.

4. Dataset: individual vs combined:
The model trained on the combined dataset
produces better results than training individual

models for Task-model pairs. This indicates
that the insights gained by a model on a task
are transferable.

5. Features: PCA and Feature Elimination:
Performing Principal Component Analysis
(PCA) on the extracted features reduces the
performance of the models. This indicates
that some important features are lost during
the decomposition process. Feature elimina-
tion does not improve the model performance
either.

6. Eliminating individual language features:
We retrain each model by eliminating one syn-
tactic feature and evaluate its performance.
We find that eliminating any feature gives a
lower overall score than we get by utilizing all
the features. We also find that the importance
of each feature from most important to least
important is as follows:
1. phonological distance
2. inventory distance
3. featural distance
4. genetic distance
5. syntactic distance
6. geographic distance

6 Conclusion

In this paper, we have developed two approaches
for the performance prediction of Massively Multi-
lingual Models. One is for known languages, and
another is for unknown or surprise languages. We
have performed feature engineering on the data
using different methods and tested different regres-
sion models on these features. For the non-surprise
system, CatBoost gave the best performance on the
single-output dataset with language features. On
the surprise system, too, CatBoost outperformed
all the other models. Both systems were able to
outperform the LITMUS model. The system’s per-
formance can be further improved if more data is
available for certain tasks like TyDiQA and XNLI.
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Abstract

This paper describes the submission of our mul-
tilingual NLP model performance evaluation
system for the SUMEval 2022 shared task, a
system for predict the performance of a model
on a set of target languages. The system is
based on the LITMUS model (Srinivasan et al.,
2022), with the addition of 3 new features and
model ensembling. Experimental results show
that our system obtains a significant improve-
ment than the baseline on both the test set and
the surprised test set. Our system has achieved
a 11% MAE reduction on the test set and is the
best-performing submission on the surprise test
set with 17% MAE reduction compared to the
baseline.1

1 Introduction

Large multilingual models like mBERT (Devlin
et al., 2019), TULRv6 (Microsoft, 2020) and XLM-
R (Conneau et al., 2020) are becoming more pop-
ular as the foundation of NLP systems that can
be used on more than 100 languages. However,
most of the languages used in the evaluation of
such massively multilingual models are still mostly
high-resource ones. A large number of mid- to
low-resource languages are not even used as part
of the pre-training stage of dearth of unlabeled or
labeled data. In addition, training and fine-tuning
these large models to evaluate their performance
for different combinations of tasks and languages is
computationally very expensive. An alternate solu-
tion has been provided by making meta-models that
can predict performance of multilingual NLP mod-
els without running the computationally expensive
experiments.

Our submission for the SUMEval 2022 shared
task focuses on improving the baseline perfor-
mance of the LITMUS model by adding different
features to the existing ones and using ensembling

1Our code is available at https://github.com/
syedasabrina/GMU_SumEval_litmus.git.

to improve the performance over the unlabeled test
and surprise datasets. Our results show that our
method is more effective than the baseline in pre-
dicting the performance in the evaluation for an
existing as well as unseen set of languages for vari-
ous settings. In fact, our system ensemble achieves
the lowest error for the surprise language test set
among the systems submitted to the shared task.

The organization of the rest of the paper is as
follows. Section 2 presents the system description
of our submitted predictor model. We present eval-
uation results and perform additional analyses on
the SUMEval 2022 datasets in 3 and 4 respectively.
We briefly discuss related works in Section 5, and
Section 6 presents ideas for further expansion in
future work.

2 System Description

Our system is built on top of the baseline LITMUS
model (Srinivasan et al., 2022). We first describe
briefly this baseline model (§2.1) and then discuss
the additional features we use (§2.2). Our best
submission consisted of an ensemble of models
described in §2.3. From here on, we will be using
the terms target language to indicate the language
on which the fine-tuned model is evaluated (and
whose performance we are trying to predict), and
pivot language to indicate the language on which
the model is fine-tuned.

2.1 The LITMUS Model

The LITMUS predictor is an AI assistant for pre-
dicting the performance of a multilingual language
model like XLMR and mBERT on an NLP task
without labeled test data and providing an esti-
mated amount of labeled data needed to achieve
the predicted performance for a set of known/un-
known languages. The tasks that they focused on
are XNLI (Conneau et al., 2018, natural language
inference), UDPOS (Silveira et al., 2014, part-of-
speech tagging) or WikiANN (Pan et al., 2017,
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named entity recognition). The system introduces
a set of factors that may influence zero-shot perfor-
mance of a multilingual model. These features are
largely based on the properties of the models:

Size of Pre-training-data is the log10 of the size
of the pre-training corpus per language.

Typological Features capture the similarities
based in hand-crafted features inspired by linguis-
tic typology. The typological features for each
languages are collected from the WALS database
(Dryer and Haspelmath, 2013).

Type overlap with pivot language is a metric
that signifies the overlap between the vocabulary of
the target language and the vocabulary of the pivot
language.

Distance from Pivot Language: is a metric sig-
nifying the distance between the target language
and the pivot language. This metric is measured
using lang2vec (Littell et al., 2017) that con-
tains feature vectors for language features such as
syntax phonology etc from WALS, SSWL and Eth-
nologue.

These features are used as an input to an
XGBoost (Chen and Guestrin, 2016) regressor
predictor model after converting them to a [0, 1]
range using min-max normalization. The regressor
is trained with a learning rate of 0.1, max depth of
10, squared error as the loss function and number
estimators of 100 and the error is measured using
Mean Absolute Error (MAE).

The evaluation is done under two settings based
on the assumption of the availability of labeled test
data for a particular target language. The labeled
test data is considered unavailable by making the
target language not appear in any of the training
instances. The MAE of performance predictions
across targets has been reported as 0.61%, 0.89%
and 0.85% respectively for UDPOS, XNLI and
WikiANN when the labeled test data is available
and 8.08%, 4.62% and 9.93% when the labeled
data is not available.

2.2 Added Features

We have added 3 new features to adapt the LIT-
MUS model to our task-at-hand. Beyond the addi-
tional features, we also train the predictor across all
tasks and models (as opposed to training a separate
model for each task or MLM). The added features
are described below:

Fine-tuning Feature: The baseline LITMUS
model handles multi-pivot settings by adding 2p ad-
ditional pivot features (capturing pivot-target over-
lap) for each of the p pivot languages present in the
fine-tuning mix. However, under the shared task’s
settings, one could have different sizes on the com-
binations of fine-tuning languages with different
data sizes used for finetuning. Hence, we decided
to introduce a fixed-size “fine-tuning feature" to
the LITMUS model, which is calculated using the
following equation:

F =Ð→L ⋅Ð→s
where F = Fine-tuning mix feature,

Ð→
L = embed-

ding created for each target language from WALS
database (Dryer and Haspelmath, 2013) (similar to
the ones already used by LITMUS) and Ð→s = data
size for each target language to fine-tune the model.
Essentially, we compute a single feature, which is
the weighted average of the pivot-target overlaps,
with the weights being proportional to the amount
of data per language in the finetuning mix.

Presence of Target Language in Pre-training:
This is a binary feature that indicates if the target
language has previously been seen by the model in
the pre-training phase.

Target Language Writing Scripts: According
to previous works (Muller et al., 2020; Pfeiffer
et al., 2020) pre-trained models have been shown
to behave differently depending on the language’s
script. Hence, we have added the information about
the writing scripts for the target languages as a
feature. For all the languages that are being used in
the systems, we have curated a list for all of their
writing scripts based on information from van Esch
et al. (2022). Note that for each script we have a
binary feature depending on the script’s usage from
each language. Also note that some languages may
use multiple scripts, e.g. Hindi both in Devanaghari
script and romanized (using Latin script) were used
in pre-training of XLM-R. Also note, though, that
even though the resource of van Esch et al. (2022)
may list multiple scripts for a language, it is not
necessarily true that all such data are present in the
pre-training or finetuning. We leave such changes
to "cleanup" these features for future work.

Training the predictor across all tasks and mod-
els: The LITMUS baseline is trained separately
for 4 different tasks (UDPOS, WikiANN, XNLI,
QA) and for 2 different multilingual models (T-
ULR and XLMR). For individual tasks, the predic-
tor is trained on task specific datasets. We have
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trained the predictor on all datasets available for
all tasks and models combined, using additional
categorical features denoting the task and the MLM
being modeled.

2.3 Ensemble Learning

Ensembling means combining the predictions from
multiple regressors, which in principle should pro-
vide better predictive performance. For this task,
we have combined the predictions of two differ-
ent regressors (XGBoost and MLPRegressor)
trained with the additional features on the com-
bined models and combined tasks setting. Though
it had a lesser impact on the test set, emsembling
significantly improves accuracy on the surprise test
set.

3 Evaluation Results

In this section, we are going to analyze the re-
sults of the experiments carried out for differ-
ent test datasets. We have submitted 3 dif-
ferent systems for each test set and the per-
formance is measured on Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE).
They are the all_tasks_combined system,
the all_task_and_models_combined sys-
tem, and the ensemble system which are going to
be referred as GMU-Task, GMU-Task+Model,
and GMU-Ensemble from here onwards. The re-
sults for the test set and the surprised set for all 3 of
these models are discussed in Sections 3.1 and 3.2
respectively.

3.1 Test Set Results

Based on official leaderboard results, the
overall RMSE for the GMU-Task, the
GMU-Task+Model and the GMU-Ensemble
are 0.016, 0.016 and 0.023 and the MAE is 0.030,
0.030, 0.035. This indicates that the ensemble does
not help much in improving the overall accuracy
of the system. Training across all models (with
the GMU-Task+Model) on top of across tasks
does not improve over just training across tasks;
this indicates that the performance of one model
cannot be useful for explaining the performance of
another model, at least not using the features we
use.

Table 1 provides a breakdown of performance for
the systems per task/dataset and language model.
Based on the results we make the following obser-
vations:

• For UDPOS and WikiANN task, our
GMU-Task model compares the most with
the baseline model. The MAE and RMSE
scores are on par between the two models.

• for the XNLI task, the baseline outperforms
our best system GMU-Task by a large mar-
gin, a 78.57% MAE reduction for the XLMR
model, and a smaller 13.33% MAE reduction
for the T-ULR model over our system.

• For the QA task, our models significantly out-
performs the baseline for both XLMR and
T-ULR models. The GMU-Ensemble Sys-
tem has an 85.3% MAE improvement for
the XLMR model over the baseline. Our
GMU-Task System has a 93.62% of MAE
improvement over the baseline for the T-ULR
model.

• On average, our GMU-Task system has
achieved a 76.47% MAE reduction for T-ULR
model over the baseline while being on par
with the average MAE of the baseline for the
XLMR model. Hence, the GMU-Task sys-
tem has an overall MAE reduction of 11%
over baseline. Our improvement is attributed
to the large improvement on the QA task.

Amongst all our submitted models, the
GMU-Task system has the better performance nu-
merically. However, GMU-Task+Model system
is not very far off. These two models have very
similar values of MAE and RMSE across tasks and
models. The GMU-Ensemble has shown the best
performance for the QA task for the XLMR but
due to its comparatively poor performance over
the other tasks, its average performance is poor
amongst all systems.

3.2 Surprise Test Set Results

A surprise test set was available for the UD-
POS, WikiANN, and XNLI tasks. Based on
public leaderboard results, the overall RMSE for
the GMU-Task, the GMU-Task+Model and the
GMU-Ensemble are 0.10, 0.099 and 0.099, with
the MAE at 0.080, 0.082, 0.073. This indicates that
emsembling can raise the overall accuracy of the
system on unseen languages and settings.

Table 2 presents a score breakdown as before.
We summarize some interesting observations be-
low:

• Similar to the test set, for the UDPOS task
baseline outperforms our best system by
40.9% MAE reduction.
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UDPOS WikiANN XNLI QA Average
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Baseline (as provided by the organizers)

XLMR 0.005 0.009 0.017 0.033 0.003 0.004 0.375 0.376 0.015 0.043
T-ULR - - - - 0.026 0.037 0.345 0.349 0.119 0.194

Combining All Tasks: GMU-Task

XLMR 0.009 0.014 0.019 0.034 0.014 0.029 0.104 0.130 0.015 0.030
T-ULR - - - - 0.030 0.040 0.022 0.034 0.028 0.038

Combining All Tasks+Models: GMU-Task+Model

XLMR 0.009 0.013 0.020 0.035 0.017 0.032 0.081 0.098 0.016 0.029
T-ULR - - - - 0.030 0.041 0.037 0.051 0.032 0.044

Ensembling: GMU-Ensemble

XLMR 0.021 0.032 0.024 0.037 0.015 0.021 0.055 0.068 0.023 0.035
T-ULR - - - - 0.032 0.042 0.042 0.050 0.034 0.045

Table 1: Results on the test data. Our models significantly outperform the baselines for the QA task (both models),
and perform largely on par for almost all other tasks and models. We highlight the best performing model per task.

UDPOS WikiANN XNLI Average
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Baseline (as provided by the organizers)

XLMR 0.044 0.059 0.135 0.164 0.017 0.020 0.090 0.124
T-ULR - - - - 0.026 0.028 0.025 0.027

Combining All Tasks: GMU-Task

XLMR 0.070 0.088 0.090 0.116 0.062 0.080 0.080 0.101
T-ULR - - - - 0.083 0.099 0.079 0.094

Combining All Tasks+Models: GMU-Task+Model

XLMR 0.082 0.101 0.080 0.099 0.057 0.072 0.083 0.100
T-ULR - - - - 0.050 0.060 0.055 0.066

Emsembling: GMU-Ensemble

XLMR 0.062 0.081 0.086 0.115 0.034 0.040 0.074 0.100
T-ULR - - - - 0.027 0.033 0.026 0.032

Table 2: Results on the Surprise Test dataset. The baseline model is the best for the UDPOS and XNLI tasks,
while out GMU-Task+Model is the best for WikiANN. Note though that our GMU-Ensemble is the best general
solution, performing the best across tasks on average.

• For the WikiANN task, our
GMU-Task+Model has a 40.74% of
MAE reduction over the baseline.

• The baseline has an improvement of 50%
over our GMU-Ensemble for the XNLI task
and XLMR model. However, for the T-ULR
model, the performance are on par with each
other.

• On average, the GMU-Ensemble has
achieved an overall 17% MAE reduction over
baseline making it the best general solution,
performing the best across tasks on average.
This improvement can be attributed to the av-
erage performance of the system being greater
than the baseline for the XLMR model and

being on the same level for the T-ULR model.
Amongst the three submitted systems, the

GMU-Ensemble performs the best for the
given dataset for the UDPOS and XNLI tasks
for both XLMR and T-ULR model. How-
ever, the GMU-Task+Model outperforms the
GMU-Ensemble for the WikiANN task. From the
discussion above we can conclude that ensembling
predictions technique can better the performance
of the LITMUS model for the surprise test set.

4 Analysis

We have performed various analyses, choosing to
focus on the surprise test set and the performance
of our best-performing GMU-Ensemble model.
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Task Model Config Lang MAE
UDPOS XLMR Diff Galician 0.033
UDPOS XLMR Same Galician 0.026
WikiANN XLMR Diff Gujarati 0.027
WikiANN XLMR Same Gujarati 0.020
XNLI T-ULR Diff Bengali 0.017
XNLI T-ULR Same Marathi 0.016
XNLI XLMR Diff Panjabi 0.015
XNLI XLMR Same Panjabi 0.013

Table 3: Lowest MAE’s for languages across tasks. We
can see for XLMR model, we get the lowest MAE’s for
the same languages across tasks regardless of config-
urations. Also, the same configuration data has better
performance(highlighted) as the languages are seen by
the models during pretraining.

Figure 1: MAE per task for surprise dataset. The
GMU-Ensemble performs better overall. They have
similar trend of values across tasks.

Semantic vs Syntactic Tasks According to the
authors (Srinivasan et al., 2022), for the baseline
LITMUS model, the predictor relies mostly on
the pretraining data size feature for the semantic
task and on the typological features and overlap
between the language feature for the syntactic task.
Figure 1 presents the MAE per task for the baseline
and the GMU-Ensemble system. The baseline
model has the best MAE score for the XNLI task,
which is a semantic task and the other 2 tasks which
are both syntactic tasks, has poor MAE compared
to XNLI. The same trend of the MAE score is also
followed by the GMU-Ensemble system attribut-
ing to the similar feature importance concept of the
baseline model.

Performance per Language We also observe
large variability in the performance of the
GMU-Ensemble model across languages and
datasets. Figure 2 presents a breakdown of the
MAE on surprise tests per target language. The
Oriya language has the highest MAE for the
WikiANN task. Amongst all the tasks the XNLI
task has the lowest MAE for the Panjabi language.

The error ranges from 0.013 to 0.246.
Table 3 catalogs the languages with the lowest

MAEs for each tasks and their configurations. Test
configurations that are the same as the ones seen
during training for each task almost always lead to
lower MAE value than the test sets containing sur-
prise languages as well as new configurations. The
values reflect the common observation that the mod-
els will perform better if the target language has
been seen by the model in the pre-training and/or
finetuning step. his may also provide a supporting
argument for works that promote an equitable allo-
cation of data labeling across languages for multi-
lingual models, e.g. Debnath et al. (2021). Also, it
should be noted that regardless of the configuration,
we obtain the lowest MAEs for the same languages
per task (e.g. for UDPOS with XLMR the lowest
MAE under both seen and unseen configurations
is for Galician). The only exception is the combi-
nation of XNLI with the T-ULR model for Bengali
and Marathi. For the XNLI T-ULR Same Con-
figuration test set, we get 0.037 and 0.016 MAE
scores and for the XNLI T-ULR Different Configu-
ration test set we get 0.012 and 0.039 MAE scores
for Bengali and Marathi respectively. The values
are completely reverse of each other. This trend
is consistent with other languages for these two
datasets. The languages we get the lowest values
for the XNLI T-ULR Same Configuration test set
are the ones for which we get the highest values for
the XNLI T-ULR Different Configuration test set,
which is an interesting observation.

5 Related Work

Lin et al. (2019) first explored how to determine
which high-resource transfer language can be used
to maximize performance in a lower-resource tar-
get language in a traditional cross-lingual trans-
fer learning scenario. Given the experimental set-
tings as input, Xia et al. (2020) introduced the per-
formance prediction task for simple cross-lingual
transfer settings, constructing regression models
that are similar to our system to predict the eval-
uation outcome of an NLP experiment. Experi-
menting on nine different NLP tasks, the study dis-
covered that the predictors can make meaningful
predictions over unknown languages and different
modeling architectures, outperforming baselines
and human expert predictions. Ye et al. (2021) then
discussed how the task of estimating a system’s
performance without running the computationally
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(a) UDPOS XLMR surprise langs diff config (b) UDPOS XLMR surprise langs same config

(c) WikiANN XLMR surprise langs diff config (d) WikiANN XLMR surprise langs same config

(e) XNLI TULRv6Large surprise langs diff config (f) XNLI TULRv6Large surprise langs same config

(g) XNLI XLMR surprise langs diff config (h) XNLI XLMR surprise langs same config

Figure 2: Mean Absolute Errors for the surprise test set broken down by target language. Same languages have
lower MAEs across tasks. The XNLI T-ULR dataset has the lowest MAEs for different Languages.
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expensive experiments may aid in estimating per-
formance of a language model for new datasets/lan-
guages. The study explores approaches for the reli-
ability analysis of performance prediction models
after examining the effectiveness of several such
performance prediction models on four common
NLP tasks.

6 Conclusion

In this paper we describe the GMU team submis-
sion for SUMEval 2022 shared task. Our system
has extended the LITMUS model by including new
features, combining data for training and using en-
sembling techniques that has improved the overall
predictions for the test set.
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Abstract
We release NTREX-128, a data set for machine
translation (MT) evaluation from English into
a total of 128 target languages. The paper de-
scribes the data creation process and proposes
a quality filtering method based on human eval-
uation. We show experimental results which
confirm that the directionality of test sets trans-
lation indeed plays an important role wrt. the
usefulness of the corresponding metrics’ scores.
Thus, we recommend that the NTREX-128 data
set should be used for evaluation of English-
sourced translation models but not in reverse di-
rection. The test set release introduces another
benchmark for the evaluation of massively mul-
tilingual machine translation research.

1 Introduction

Research on massively multilingual neural machine
translation models requires test data to evaluate the
models’ quality. The creation of such resources is
expensive—especially when one considers test sets
for 100+ languages—so the amount of available
test data is limited. This hinders progress.

While there already exist a few multilingual
benchmark test sets more data will be needed to
boost research efforts. Thus, we follow recent
“open data” approaches undertaken in the field with
this release.

As our research shifted its focus to massively
multilingual models we started collecting test data
for this scenario. We now release this data to the
community as an additional benchmark for the eval-
uation of massively multilingual machine transla-
tion models.

NTREX-128, a data set containing “News Text
References of English into X Languages”, expands
multilingual testing for translation from English
into 128 target languages. Our test data is based
on WMT19 (Barrault et al., 2019) test data and
compatible with SacreBLEU (Post, 2018).

We release NTREX-128 in the hope that it may
be useful for the scientific community.

Data set # of Languages
TICO-19 37
FLORES-101 101
FLORES-200 200

Table 1: Number of supported languages for three multi-
lingual test data sets. Language sets do not fully overlap
and text domains differ across the data sets.

2 Literature Review

Recently, the Conference on Machine Translation
(WMT) has added a shared task on large-scale, mul-
tilingual machine translation. Such tasks require
benchmark data sets for their evaluation. Three
examples of such data are:

- TICO-19 (Anastasopoulos et al., 2020);

- FLORES-101 (Goyal et al., 2021; Guzmán
et al., 2019); and

- FLORES-200 (#NLLB Team, 2022).

Table 1 shows the total number of languages
supported by each of the aforementioned data sets.
We will provide brief descriptions of all three data
sets below.

TICO-19 is a data set released by the “Transla-
tion Initiative for Covid-19”. It was a joint
effort from several partners from academia
and industry. The benchmark includes 30 doc-
uments (3,071 sentences, 69.7k words) trans-
lated from English into 37 target languages.

FLORES-101 is a data set released by Meta AI
researchers. It includes 842 documents (3,001
sentences) translated from English into 101
target languages.

FLORES-200 extends the above data set to a total
of 200 target languages. It is based on the
same English source data as FLORES-101.
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3 Data Set

3.1 Creation Process

To produce this data set we sent out the original
English WMT19 (Barrault et al., 2019) test set
(‘newstest2019‘) to professional human translators.
This work started after the release of the WMT19
test data and continued in parallel to our work on
new translation models since then. Translators did
have the full document context available but we do
not know if (or to which degree) they have used
this information.

3.2 Quality Assurance

Test data has to be of a high-enough quality level
to be useful. We specified two main requirements:
1) we require translations which are performed by
native speakers of the respective target language
who are bilingual in English; and 2) reference trans-
lations should not be created based on post-editing
MT output.

Our translation provider, as part of their transla-
tion process, performed quality assurance before
delivery of the test set files. Upon receipt of the
files we then sent them out to human evaluation
via source-based direct assessment (src-DA), as im-
plemented in the Appraise framework (Federmann,
2018). To avoid potential bias, annotation work
was performed by an independent vendor.

As the result of the human evaluation process,
we obtain segment-level quality scores based on the
assessment of bilingual annotators who are native
speakers of the respective target language. Scores
range from 0 − 100 and express the ‘quality of
the semantic transfer’ between source and target
language. This focuses more on adequacy than on
fluency but, based on previous research findings,
we consider this an acceptable trade-off.

Segments with scores < 25 are deemed defec-
tive, while any score in the [25, 50) range is con-
sidered suspect. We return any segments with a
score < 50 to the translation vendor for repairs.
We have found that this method allows us to check
quality for all translated segments; it scales well to
thousands of segments with acceptable cost. As a
side effect we have observed an increased level of
quality control on the translation provider’s side as
they have understood that we will routinely verify
their translation output for the full data sets, instead
of random samples.

3.3 Avoiding post-edited reference output
Reference-based evaluation metrics, by design,
have an inherent problem with reference bias. Even
when dealing with professional translators there is
a chance that reference translations may have been
created by post-editing machine translation output.
This is a problem for two reasons: First, it gives
the respective MT system an unfair advantage in
competitive evaluations. Second, it means that the
reference translations are not independently pro-
duced anymore and, thus, may be of inferior quality
compared to human translation from scratch.

4 Statistics

The NTREX-128 benchmark includes 123 docu-
ments (1,997 sentences, 42k words) translated from
English into 128 target languages. More details are
available in Appendix C.

5 Experiments

Based on the recent success of embedding-based,
automatic evaluation metrics such as COMET (Rei
et al., 2020), we run an experiment with the
NTREX-128 data set in which we compare
COMET-src scores for the authentic translation
direction against the scores obtained in the reverse
direction. As a secondary concern we investigate
how COMET-src behaves for languages which it
has not been trained on.

6 Results

We make the following observations:

- using COMET-src for quality estimation of
test data is possible but limited as score ranges
are non-comparable across language pairs;

- a sizable subset of languages sees COMET-src
scores on translationese input scored higher
than the corresponding authentic source data;

- while relative comparisons of COMET-src
scores work for all language pairs there ex-
ists a subset of languages for which the scores
appear broken. We suggest that this may be
related to the fact COMET has never seen any
training data examples for these languages.

See the RESULTS file in our repository for more
details. As our main focus lies in the release of the
NTREX-128 data set, we leave the further investi-
gation of these points for future work.
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7 Conclusion

We have presented our work on NTREX-128, a
data set which contains 128 reference translations
of the English ‘newstest2019‘ test set originally
released as part of WMT19. We intend to make it
available as part of SacreBLEU. The test data will
be released in the hope that it may be useful for the
scientific community.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, Christof Monz, Matteo Negri, Matt Post,
Raphael Rubino, Lucia Specia, and Marco Turchi.
2017. Findings of the 2017 conference on machine
translation (wmt17). In Proceedings of the Sec-
ond Conference on Machine Translation, Volume 2:
Shared Task Papers, pages 169–214, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Jan Niehues, Sebastian Stüker, Katsuhito Sudoh,
Koichiro Yoshino, and Christian Federmann. 2017.
Overview of the IWSLT 2017 evaluation campaign.
In Proceedings of the 14th International Conference
on Spoken Language Translation, pages 2–14, Tokyo,
Japan. International Workshop on Spoken Language
Translation.

Christian Federmann. 2018. Appraise evaluation frame-
work for machine translation. In Proceedings of the

27th International Conference on Computational Lin-
guistics: System Demonstrations, pages 86–88, Santa
Fe, New Mexico. Association for Computational Lin-
guistics.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2021. The flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2013. Continuous measurement scales
in human evaluation of machine translation. In Pro-
ceedings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse, pages 33–41,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan
Pino, Guillaume Lample, Philipp Koehn, Vishrav
Chaudhary, and Marc’Aurelio Ranzato. 2019. Two
new evaluation datasets for low-resource machine
translation: Nepali-english and sinhala-english.

James Cross Onur Çelebi Maha Elbayad Kenneth
Heafield Kevin Heffernan Elahe Kalbassi Janice
Lam Daniel Licht Jean Maillard Anna Sun Skyler
Wang Guillaume Wenzek Al Youngblood Bapi Akula
Loic Barrault Gabriel Mejia Gonzalez Prangthip
Hansanti John Hoffman Semarley Jarrett Kaushik
Ram Sadagopan Dirk Rowe Shannon Spruit Chau
Tran Pierre Andrews Necip Fazil Ayan Shruti Bhos-
ale Sergey Edunov Angela Fan Cynthia Gao Vedanuj
Goswami Francisco Guzmán Philipp Koehn Alexan-
dre Mourachko Christophe Ropers Safiyyah Saleem
Holger Schwenk Jeff Wang #NLLB Team, Marta R.
Costa-jussà. 2022. No language left behind: Scaling
human-centered machine translation.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

A License

See the LICENSE file in our repository. In addition
to these license terms we ask that you cite this paper
when using NTREX-128 in your work. Thank you.

B Download

NTREX-128 data is available from our
GitHub repository: https://github.com/
MicrosoftTranslator/NTREX.
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C List of languages

The NTREX-128 data set covers the following set
of 128 languages or language variants:

Afrikaans, Albanian, Amharic, Arabic, Azer-
baijani, Bangla, Bashkir, Bosnian, Bulgarian,
Burmese, Cantonese, Catalan, Central Kurdish,
Chinese, Chuvash, Croatian, Czech, Danish, Dari,
Divehi, Dutch, English, Estonian, Faroese, Fi-
jian, Filipino, Finnish, French, Galician, Geor-
gian, German, Greek, Gujarati, Haitian Creole, He-
brew, Hindi, Hmong, Hungarian, Icelandic, Indone-
sian, Inuinnaqtun, Inuktitut, Irish, isiZulu, Italian,
Japanese, Kannada, Kazakh, Khmer, Kiswahili,
Korean, Kurdish, Kyrgyz, Lao, Latvian, Lithua-
nian, Macedonian, Malagasy, Malay, Malayalam,
Maltese, Māori, Marathi, Maya, Yucatán, Mon-
golian, Nepali, Norwegian, Odia, Otomi, Queré-
taro, Pashto, Persian, Polish, Portuguese, Pun-
jabi, Romanian, Russian, Samoan, Serbian, Slo-
vak, Slovenian, Somali, Spanish, Swedish, Tahitian,
Tajik, Tajiki, Tamil, Tatar, Telugu, Thai, Tibetan,
Tigrinya, Tongan, Turkish, Turkmen, Ukrainian,
Upper Sorbian, Urdu, Uyghur, Uzbek, Vietnamese,
Welsh.

Note that the total count of language names
is less than 128 as there are some languages for
which we support multiple scripts or variants. For
detailed information on language codes, see the
LANGUAGES file in our repository, which is the
most up-to-date version of this list.
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Abstract

Significant progress has been made on Indone-
sian NLP. Nevertheless, exploration of the code-
mixing phenomenon in Indonesian is limited,
despite many languages being frequently mixed
with Indonesian in daily conversation. In this
work, we explore code-mixing in Indonesian
with four embedded languages, i.e., English,
Sundanese, Javanese, and Malay; and intro-
duce IndoRobusta1, a framework to evalu-
ate and improve the code-mixing robustness.
Our analysis shows that the pre-training cor-
pus bias affects the model’s ability to better
handle Indonesian-English code-mixing when
compared to other local languages, despite hav-
ing higher language diversity.

1 Introduction

Recent developments in Indonesian Natural Lan-
guage Processing (NLP) have introduced an im-
mense improvement in many aspects, includ-
ing standardized benchmarks (Wilie et al., 2020;
Cahyawijaya et al., 2021; Koto et al., 2020; Winata
et al., 2022), large pre-trained language model
(LM) (Wilie et al., 2020; Cahyawijaya et al., 2021;
Koto et al., 2020), and resource expansion cover-
ing local Indonesian languages (Tri Apriani, 2016;
Dewi et al., 2020; Khaikal and Suryani, 2021). De-
spite all these significant efforts, only a few studies
focus on tackling the code-mixing phenomenon
that naturally occurs in the Indonesian language.
Code-mixing 2 is an interesting phenomenon where
people change between languages and mix them in
a conversation or sentence. In Indonesia, many peo-
ple speak at least two languages (i.e., Indonesian
and a local language) in their day-to-day conversa-
tion (Aji et al., 2022), and use diverse written and

1We will release the code upon acceptance. We provide
the anonymized code repository at https://anonymous.
4open.science/r/indorobusta-1403/

2In our case, code-mixing refers to intra-sentential code-
switching where the language alternation occurs in the sen-
tence.

spoken styles specific to their home regions.
Inspired by the frequently occurring code-

mixing phenomenon in Indonesian, we want to
answer two research questions "Is the LMs per-
formance susceptible to linguistically diverse In-
donesian code-mixed text?" and "How can we
improve the model’s robustness against a vari-
ety of mixed-language texts?". Therefore, we
introduce IndoRobusta, a framework to as-
sess and improve code-mixed robustness. Using
our IndoRobusta-Blend, we conduct experi-
ments to evaluate existing pre-trained LMs using
code-mixed language scenario to simulate the code-
mixing phenomenon. We focus on Indonesian as
the matrix language (L1) and the local language
as the embedded language (L2) (Myers-Scotton
and Jake, 2009).We measure the robustness of In-
donesian code-mixed sentences for English (en)
and three local languages, i.e, Sundanese (su), Ja-
vanese (jv), and Malay (ms)3 on sentiment and
emotion classification tasks. In addition, we ex-
plore methods to improve the robustness of LMs
to code-mixed text. Using our IndoRobusta-
Shot, we perform adversarial training to improve
the code-mixed robustness of LMs. We explore
three kinds of tuning strategies: 1) code-mix only,
2) two-steps, and 3) joint training, and empirically
search for the best strategy to improve the model
robustness on code-mixed data.

We summarize our contribution as follows:
• We develop a benchmark to assess the robust-

ness of monolingual and multilingual LMs on
four L2 code-mixed languages covering En-
glish (en), Sundanese (su), Javanese (jv), and
Malay (ms);

• We introduce various adversarial tuning strate-
gies to better improve the code-mixing robust-
ness of LMs. Our best strategy improves the

3Malay is not a direct Indonesian local language, but it is
considered as the parent language to many of Indonesian local
languages such as Jambi, Malay, Minangkabau, and Betawi.
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accuracy by ∼5% on the code-mixed test set
and ∼2% on the monolingual test set;

• We show that existing LMs are more robust
to English code-mixing rather than to local
languages code-mixing and provide detailed
analysis of this phenomenon.

2 IndoRobusta Framework

IndoRobusta is a code-mixing robustness
framework consisting of two main modules:
1) IndoRobusta-Blend, which evaluates
the code-mixing robustness of LMs through
a code-mixing perturbation method, and 2)
IndoRobusta-Shot, which improves the code-
mixing robustness of LMs using a code-mixing
adversarial training technique.

2.1 Notation
Given a monolingual language sentence X =
{w1, w2, . . . , wM}, where wi denotes a token in
a sentence and M denotes the number of tokens
in a sentence, we denote a monolingual language
dataset D = {(X1, Y1), (X2, Y2), . . . , (XN , YN )},
where (Xi, Yi) denotes a sentence-label pair and
N is the number of samples. Given a token wi,
a mask token wmask and a sentence X , we de-
fine a sentence with masked wi token as X\wi

=

{w1, w2, . . . , wi−1, w
mask, wi+1, . . . , wM}. We

further define a code-mixing dataset D′ =
{(X ′

1, Y1), (X
′
2, Y2), . . . , (X

′
N , YN )}where X ′

i de-
notes the code-mixed sentence. Lastly, we define
the set of parameters of a language model as θ,
the prediction label of a sentence X as fθ(X), the
prediction score of the label Y given a sentence X
as fθ(Y |X), and the prediction score of the label
other than Y given a sentence X as fθ(Ȳ |X).

2.2 IndoRobusta-Blend
IndoRobusta-Blend is a code-mixing robust-
ness evaluation method that involves two steps: 1)
code-mixed dataset generation and 2) model evalu-
ation on the code-mixed dataset. The first step is
synthetically generating the code-mixed example
using the translation of important words in a sen-
tence. To do so, we formally define the importance
Iwi of the word wi for a given sample (X,Y ) as:

Iwi =





fθ(Y |X)− fθ(Y |X\wi
),

iffθ(X) = fθ(X\wi
) = Y

[fθ(Y |X)− fθ(Y |X\wi
)]+

[fθ(Ȳ |X)− fθ(Ȳ |X\wi
)], otherwise.

Algorithm 1 Code-mixed sample generation work-
flow in IndoRobusta framework
Require: Clean sentence example X , ground truth

label Y , language model Θ, similarity threshold
α, perturb ratio R, embedded Language L

Ensure: Adversarial Example Xadv

Y ′ ← PREDICT(Θ, X)
if Y ′ 6= Y then

return X
end if
W←R% highest Iwi words in X
WL ← TRANSLATE(W , target-language=L)
Xadv ← PERTURB(X, WL)
if SIM(X , Xadv) < α then

while SIM(X , Xadv) < α do
WL ← RESAMPLE(WL, Iwi)
Xadv ← PERTURB(X,WL)

end while
end if
return Xadv

IndoRobusta-Blend takes R% words with
the highest Iwi , denoted as the perturbation ratio,
and applies a word-level translation for each word.
Using the translated words, IndoRobusta-
Blend generates a code-mixed sentence by replac-
ing the important words with their corresponding
translation. To ensure generating a semantically-
related code-mixed samples, we define a similarity
threshold α to constraint the cosine distance be-
tween X and Xadv. When the distance between X
and Xadv is below α, we resample the perturbed
words and generate a more similar Xadv.

More formally, we define the code-mixing
sample generation as a function g(X,Y, θ) =
Xadv. To generate the code-mixed dataset D′

from the monolingual dataset D and a model θ,
IndoRobusta-Blend applies g(Xi, Yi, θ) to
each sample (Xi, Yi) in D. Using D and D′,
IndoRobusta-Blend evaluates the robustness
of the fine-tuned model θ′, trained onD, by evaluat-
ing θ on both D and D′. More formally, we define
the code-mixed sample generation in Algorithm 1.

2.3 IndoRobusta-Shot

IndoRobusta-Shot is a code-mixing adver-
sarial defense method, which aims to improve
the robustness of the model. IndoRobusta-
Shot does so by fine-tuning the model on the
generated code-mixed dataset D′. Similar to
IndoRobusta-Blend, our IndoRobusta-
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Model Orig. en jw ms su avg

EmoT

IBB 72.42 9.55 12.35 9.47 9.39 10.19
IBL 75.53 9.24 12.12 10.23 9.32 10.23
mBB 61.14 12.50 14.02 12.73 12.50 12.96
XRB 72.88 10.98 13.94 13.18 12.50 12.65
XRL 78.26 12.27 13.03 12.42 11.74 12.37

Avg 10.91 13.09 11.61 11.09

SmSA

IBB 91.00 1.33 5.07 3.20 2.40 3.00
IBL 94.20 2.47 4.13 4.00 2.20 3.20
mBB 83.00 2.20 3.00 2.93 2.47 2.65
XRB 91.53 3.40 3.80 4.27 4.27 3.94
XRL 94.07 2.13 3.20 2.60 2.73 2.67

Avg 2.31 3.84 3.40 2.81

Table 1: Delta accuracy with R = 0.4 on the test data.
A lower value denotes better performance. We bold the
best score and underline the second-best score.

Shot generates D′ from D and θ by utilizing the
code-mixed sample generation method g(θ,X, Y ).
Three different fine-tuning scenarios are explored
in IndoRobusta-Shot , i.e., code-mixed-only
tuning, which fine-tune the model only onD′; two-
step tuning, which first fine-tune the model on D,
followed by a second-phase fine-tuning on D′; and
joint training, which fine-tunes the model on a
combined dataset from D and D′.

3 Experiment Setting

3.1 Dataset

We employ two Indonesian multi-class classifica-
tion datasets for conducting our experiments, i.e., a
sentiment-analysis dataset, SmSA (Purwarianti and
Crisdayanti, 2019), and an emotion classification
dataset, EmoT (Saputri et al., 2018). SmSA is a
sentence-level sentiment analysis dataset consists
of 12,760 samples and is labelled intro three possi-
ble sentiments values, i.e., positive, negative, and
neutral. EmoT is an emotion classification dataset
which consists of 4,403 samples and covers five
different emotion labels, i.e., anger, fear, happi-
ness, love, and sadness. The statistics of SmSA
and EmoT datasets are shown in Appendix Table 4.

3.2 Code-mixed Sample Generation

For our experiment, we use Indonesian as the L1
language and explore four commonly used L2 lan-
guages, i.e., English, Sundanese, Javanese, and
Malay. We experiment with different code-mixed

Model CM Only Two-Step Joint
Orig CM Orig CM Orig CM

EmoT

IBB 45.13 66.53 69.85 68.31 74.68 67.27
IBL 63.29 68.58 73.06 69.46 75.90 68.01
mBB 32.97 58.11 54.72 59.68 62.98 56.54
XRB 57.59 68.40 72.17 69.11 74.38 67.26
XRL 71.61 71.56 77.13 70.44 78.31 70.06

SmSA

IBB 45.10 93.51 89.81 92.68 92.52 90.71
IBL 68.40 94.67 90.60 94.12 94.73 93.00
mBB 51.72 83.73 78.95 85.16 85.61 84.31
XRB 59.31 91.37 68.08 93.87 93.77 92.21
XRL 63.06 95.07 85.96 95.35 95.35 93.99

Table 2: Accuracy on original (Orig.) and code-mixing
(CM) test sets after adversarial training with different
tuning strategies.

perturbation ratio R = {0.2, 0.4, 0.6, 0.8} to as-
sess the susceptibility of models. We utilize Google
Translate to translate important words to generate
the code-mixed sentence X ′.

3.3 Baseline Models

We include both monolingual and multilingual pre-
trained LMs with various model size in our exper-
iment. For Indonesian monolingual pre-trained
LMs, we utilize two models: IndoBERTBASE
(IBB) and IndoBERTLARGE (IBL) (Wilie et al.,
2020), while for the multilingual LMs, we employ
mBERTBASE (mBB) (Devlin et al., 2019), XLM-
RBASE (XRB), and XLM-RLARGE (IBL) (Conneau
et al., 2020). Note that all of the multilingual mod-
els are knowledgeable of the Indonesian language
and all L2 languages used since all the languages
are covered in their pre-training corpus.

3.4 Training Setup

To evaluate the model robustness, We fine-tune the
model on D using the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 3e-6, and a
batch size of 32. We train the model for a fixed
number of epoch, i.e., 5 epochs for sentiment anal-
ysis and 10 epochs for emotion classification. We
run each experiment three times using different
random seeds and report the averaged score over
three runs. For the adversarial training, we train
the model using Adam optimizer with a learning
rate of 3e-6 and a batch size of 32. We set the max-
imum epoch to 15, and apply early stopping with
the early stopping patience set to 5.
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Figure 1: The effect of perturbation ratio to the evalua-
tion accuracy in the emotion classification task.

3.5 Evaluation Setup

To measure the robustness of the models,
IndoRobusta uses three evaluation metrics: 1)
the accuracy on the monolingual dataset, 2) the
accuracy on the code-mixed dataset, and 3) delta
accuracy (Srinivasan et al., 2018). We measure
accuracy before and after adversarial training to
analyze the effectiveness of the adversarial training
method in the IndoRobusta-Shot.

4 Result and Discussion

4.1 Code-Mixing Robustness

The result of the robustness evaluation with R =
0.4 is shown in Table 1. Existing LMs are more
prone to code-mixing in the emotion classification
task, with > 10% performance reduction, com-
pared to 3% on the sentiment analysis task. Inter-
estingly, monolingual models, i.e., IndoBERTBASE
and IndoBERTLARGE, are more robust in the emo-
tion classification task compared to the multilin-
gual models with 2% higher delta accuracy. While
on the sentiment analysis task, all models perform
almost equally good in all L2 languages.

We also observe that the robustness on English
language are generally lower than Javanese and
Malay in all models. We conjecture that this is
due to the bias from the pre-training corpus, since
pre-training corpus is gathered from online plat-
forms, and Indonesian-English code-mixing is par-
ticularly common in such platforms (Nuraeni et al.,
2018; Aulia and Laksman-Huntley, 2017; Marzona,
2017). While Indonesian and local language code-
mixing are considered a secondary choice in online
platforms (Cahyani et al., 2020) and is more com-

monly used in the day-to-day conversation (Gint-
ing, 2019; Muslimin, 2020).

4.2 Impact of Perturbation Ratio
According to Figure 1, we can clearly observe that
LMs performance gets lower as the perturbation
ratio R increases. Interestingly, the steepest de-
cline happens when the perturbation ratio R = 0.4,
and the model performance decreases slightly with
a higher perturbation ratio (R = {0.4, 0.6, 0.8}).
This result suggests that translating the words with
high importance as mentioned in §2.2, effectively
alters the model prediction.

We further analyzed the generated code-mixed
sentence, we show the example of the generated
code-mixed sentences from IndoRobusta in Ta-
ble 3. To generate the code-mixed sentence, we
select important words from the sentence and per-
form word-level translation into four different L2
languages, i.e English, Sundanese, Javanese, and
Malay. We analyze the important word selected
by the Iwi over a dataset, we count the total num-
ber of times a word is selected as important with
R = {0.2, 0.4, 0.6, 0.8}, denoted as informative
frequency (IF). For each word, we divide the IF
with its document frequency (DF) to produce a nor-
malized informative frequency (IF/DF). We show
the top-20 words with highest IF/DF score for emo-
tion classification task in Table 5 and for sentiment
analysis task in Table 6. Most of the words are
related to the label in the lexical-sense, e.g.: ’re-
gret’, ’disappointing’, and ’disappointed’ are com-
monly associated with negative sentiment, while
’comfortable’, ’fun’, ’nice’ are commonly associ-
ated with positive sentiment. Most of the time,
the word-translations for all L2 languages are valid
and infer similar meaning. We find that the model
prediction is still largely shifted even though the
important word is translated correctly. This shows
that, despite having learned all the languages in-
dividually, LMs are unable to generalize well on
code-mixed sentences and improving robustness
with an explicit tuning is required to achieve com-
parable performance.

4.3 Improving Code-Mixing Robustness
Table 2 shows the results of the adversarial train-
ing using different tuning strategies. Code-mixing
only and two-step-tuning yield a better improve-
ment on the code-mixed data compared to the joint
training. Nevertheless, code-mixing only-tuning
significantly hurts the performance on the original
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Code-Mixed Text Translation

sate kambing dan gulai
kambing nya sedap penya-
jian makannan nya juga
sangat cepat tempat nya
cukup bersih

lamb satay and lamb curry
are yummy, quick serving,
and the place is quite clean

hayam goreng, tempe,
tahu goreng dengan sambal
yang pedas mantap sejak
zaman dulu teu dan ter-
jangkau

fried chicken, tempe, fried
tofu with spicy chilli sauce
has been delicious since an-
cient times.

tidak bisa mudhun galau
mikirin lo

I cannot sleep because I am
thinking about you

meski masa kampanye su-
dah selesai bukan berati
habis pula effort mengerek
tingkat kedipilihan elekta-
bilitas.

Even though the campaign
period is over, it doesn’t
mean that the effort to raise
the electability level is over.

Table 3: Example of generated code-mixed sentences
with IndoRobusta. Blue denotes an Malay word,
Orange denotes a Sundanese word, Red denotes a Ja-
vanese word and Violet denotes an English word. The
bold words in the translation column are the correspond-
ing colored word translations in English.

data, while the two-step-tuning can retain much
better performance on the original data. joint train-
ing, on the other hand, yields the highest perfor-
mance on the original data, and even outperforms
the model trained only on the original data by∼ 2%
accuracy while maintaining considerably high per-
formance on the code-mixing data.

5 Related Work

Code-Mixing in NLP Code-mixing has been
studied in various language pairs such as Chinese-
English (Lyu et al., 2010; Winata et al., 2019b;
Lin et al., 2021; Lovenia et al., 2022), Cantonese-
English (Dai et al., 2022), Hindi-English (Baner-
jee et al., 2018; Khanuja et al., 2020), Spanish-
English (Aguilar et al., 2018; Winata et al., 2019a;
Aguilar et al., 2020), Indonesian-English (Barik
et al., 2019; Stymne et al., 2020), Arabic-
English (Hamed et al., 2019), etc. Multiple
methods have been proposed to better understand
code-mixing including multi-task learning (Song
et al., 2017; Winata et al., 2018), data augmenta-
tion (Winata et al., 2019b; Chang et al., 2019; Lee
et al., 2019; Qin et al., 2020; Jayanthi et al., 2021;
Rizvi et al., 2021), meta-learning (Winata et al.,
2020), and multilingual adaptation (Winata et al.,
2021). In this work, we explore code-mixing in In-
donesian with four commonly used L2 languages.

Model Robustness in NLP Prior works in robust-
ness evaluation focus on data perturbation meth-
ods (Tan and Joty, 2021; Ishii et al., 2022). Vari-
ous textual perturbation methods have been intro-
duced (Jin et al., 2019; Dhole et al., 2021), which
is an essential part of robustness evaluation. More-
over, numerous efforts in improving robustness
have also been explored, including adversarial train-
ing on augmented data (Li et al., 2021; Li and Spe-
cia, 2019), harmful instance removal (Bang et al.,
2021; Kobayashi et al., 2020) and robust loss func-
tion (Bang et al., 2021; Zhang and Sabuncu, 2018).
In this work, we focus on adversarial training, since
the method is effective for handling low-resource
data, such as code-mixing.

6 Conclusion

We introduce IndoRobusta, a framework to ef-
fectively evaluate and improve model robustness.
Our results suggest adversarial training can sig-
nificantly improve the code-mixing robustness of
LMs, while at the same time, improving the per-
formance on the monolingual data. Moreover, we
show that existing LMs are more robust to English
code-mixed and conjecture that this comes from
the source bias in the existing pre-training corpora.

Limitations

One of the limitation of our approach is that we
utilize Google Translate to generate the perturbed
code-mixing samples instead of manually gener-
ating natural code-mixing sentences. Common
mistake made from the generated code-mixed sen-
tence is on translating ambiguous terms, which
produces inaccurate word-level translation and al-
ters the meaning of the sentence. For future work,
we expect to build a higher quality code-mixed sen-
tences to better assess the code-mixed robustness of
the existing Indonesian large-pretrained language
models.
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A Annotation Guideline for Human
Evaluation

We introduce a manual annotation to evaluate the
generated code-mixed sentences. To validate the
quality of our perturbed code-mixing sentences,
we hire 3 native annotators for each language to
evaluate the generated Sundanese-Indonesian and
Javanese-Indonesian code-mixed sentences, and 3
Indonesian annotators with professional English
proficiency for assessing the generated English-
Indonesian code-mixed sentences. Each human
annotator is asked to assess the quality of 40 ran-
domly sampled code-mixed sentences and provide
a score in range of [1, 2, 3, 4, 5] with 1 denotes an
incomprehensible code-mixing sentence and 5 de-
notes a perfectly natural code-mixed sentence. The
detailed annotation guideline is described in A The
score between annotators are averaged to reduce
annotation bias.

Dataset |Train| |Valid| |Test| #Class

EmoT 3,521 440 442 5
SmSA 11,000 1,260 500 3

Table 4: Statistics of EmoT and SmSA datasets.

Table 4 contains more details of the EmoT and
SmSA dataset that we used in the sample genera-
tion. Sample generated by perturbing these datasets
will later be annotated.

First, we compile 40 samples generated from
each model into an excel sheet. Then the anno-
tator is given access to the file. Before starting
the annotation process, the annotator is given
instructions and a definition of the score that can
be assigned to the sample sentence. For each row
in the given excel file, the annotator is asked to
read the code-mixing sentence generated by the
model and provide annotation values. Annotation
scores are defined as follows:
1 - unnatural (unintelligible sentence)
2 - less natural (sentences can be understood even
though they are strange)
3 - adequately natural (sentences can be under-
stood even though they are not used correctly)
4 - imperfect natural (sentences are easy to
understand, but some of the words used are slightly
inaccurate)
5 - natural (sentences are easy to understand and
appropriate to use)

B Annotation Result
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Figure 2: Human evaluation result from the generated
code-mixed samples averaged over three annotators.

Figure 2 shows the result of the human assessment
on the generated code-mixed sentences. The re-
sults indicates that the generated sentences are ad-
equately natural by achieving an average score of
3.94 for English-Indonesian, 3.71 for Sundanese-
Indonesian, and 3.39 for Javanese-Indonesian.
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Word IF DF IF/DF jw ms su en

love 1078 1260 0.856 tresna cinta cinta love
tolong 1408 2520 0.559 bantuan membantu Tulung help
km 1183 2520 0.469 km km km km
kasih 2947 6300 0.468 tresna cinta cinta love
pakai 1505 3360 0.448 nggunakake guna ngagunakeun use
udh 1659 3780 0.439 wis Sudah Geus Already
setan 1088 2520 0.432 setan syaitan Sétan Devil
hrs 1078 2520 0.428 jam jam tabuh hrs
cinta 5559 13020 0.427 tresna cinta cinta love
jam 2495 5880 0.424 jam pukul tabuh o’clock
gua 1594 3780 0.422 aku saya abdi I
jatuh 1768 4200 0.421 tiba jatuh ragrag ka handap fall down
mobil 1057 2520 0.419 mobil kereta mobil car
sehat 1214 2940 0.413 sehat sihat cageur healthy
beneran 1351 3360 0.402 tenan sungguh saleresna really
kadang 1175 2940 0.400 kadhangkala kadang-kadang sakapeung sometimes
lu 1505 3780 0.398 lu lu lu lu
ketemu 1641 4200 0.391 ketemu berjumpa papanggih meet
dgn 2254 5880 0.383 karo dengan kalawan with
kantor 1127 2940 0.383 kantor pejabat kantor office

Table 5: Top 20 most perturbed word on emotion classification experiments conducted on test data and their
translation on four languages. Red denotes mistranslated words due to ambiguity or translator limitation.

Word IF DF IF/DF jw ms su en

cocok 1750 2100 0.833 cocok sesuai cocog suitable
asik 2338 2940 0.795 Asik Asik Asik Asik
nyaman 2905 3780 0.769 nyaman selesa sreg comfortable
menyesal 2240 2940 0.76 getun penyesalan kaduhung regret
mantap 8456 11340 0.746 ajeg mantap ajeg steady
mengecewakan 3094 4200 0.737 nguciwani mengecewakan nguciwakeun disappointing
kecewa 21910 30660 0.715 kuciwa kecewa kuciwa disappointed
enak 9443 14700 0.642 becik bagus hade nice
jelek 1617 2520 0.642 ala teruk goréng bad
salut 1834 2940 0.624 salam tabik hormat salam salute
memuaskan 2877 4620 0.623 marem memuaskan nyugemakeun satisfying
keren 3136 5040 0.622 kelangan sejuk tiis cool
kadaluarsa 1827 2940 0.621 kadaluarsa tamat tempoh kadaluwarsa expired
murah 3094 5040 0.614 murah murah murah inexpensive
kartu 2058 3360 0.613 kertu kad kartu card
banget 2434 41160 0.591 banget sangat pisan very
bangga 148 2520 0.589 bangga bangga reueus proud
mending 1974 3360 0.588 luwih apik lebih baik Leuwih alus Better
uang 4396 7560 0.581 dhuwit wang duit money
id 1442 2520 0.572 id ID en id

Table 6: Top 20 most perturbed word on sentiment analysis experiments conducted on test data and their translation
on four languages. Red denotes mistranslated words due to ambiguity or translator limitation.
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