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Abstract

As the demands for large-scale information pro-
cessing have grown, knowledge graph-based
approaches have gained prominence for repre-
senting general and domain knowledge. The
development of such general representations is
essential, particularly in domains such as manu-
facturing which intelligent processes and adap-
tive education can enhance. Despite the contin-
uous accumulation of text in these domains, the
lack of structured data has created information
extraction and knowledge transfer barriers. In
this paper, we report on work towards develop-
ing robust knowledge graphs based upon entity
and relation data for both commercial and edu-
cational uses. To create the FabKG (Manufac-
turing knowledge graph), we have utilized text-
book index words, research paper keywords,
FabNER (manufacturing NER), to extract a
sub knowledge base contained within Wikidata.
Moreover, we propose a novel crowdsourcing
method for KG creation by leveraging student
notes, which contain invaluable information
but are not captured as meaningful information,
excluding their use in personal preparation for
learning and written exams. We have created
a knowledge graph containing 65000+ triples
using all data sources. We have also shown the
use case of domain-specific question answering
and expression/formula-based question answer-
ing for educational purposes.

1 Introduction

In recent years, the advancement of artificial intel-
ligence applications has grown multifold. Many
areas such as natural language processing, digital
twins (Liu et al., 2021), and chatbots (Chen et al.,
2021) have become very popular for their ability
to record and use information from unstructured
sources efficiently. One such application is Knowl-
edge Graph (KG), which has gained popularity in
various domains due to its potential applications. A
Knowledge Graph is a graph meant to accumulate
and impart real-world knowledge, with nodes rep-

resenting entities of interest and edges representing
potentially diverse relations between the entities.
A KG has varied applications in recommendations,
search, question answering and many more. Most
importantly, a KG can be used to make decisions
based on inferences.

The use of a knowledge graph is of high value
in making design and manufacturing-related deci-
sions. As there has been an explosion of knowledge
addition in various design considerations and man-
ufacturing decisions, most of the knowledge is with
Small and medium-sized enterprises (SMEs). The
decision-making in design and production could
be significantly improved using knowledge graphs
(Buchgeher et al., 2021). It can benefit not only
small and medium manufacturers (Li et al., 2021),
but also hardware-based entrepreneurs and help
boost self-sustaining product development (Li et al.,
2020).

A number of prior researchers have started de-
veloping manufacturing related knowledge graphs
based on specific problem areas such as machining
process planning (Yang et al., 2019; Ye et al., 2018),
workshop resource KG (Zhou et al., 2021; Sun and
Wang, 2019), intelligent manufacturing (Yan et al.,
2020), faults (Liang et al., 2022; Wang and Yang,
2019), maintenance (Hossayni et al., 2020) and
industry 4.0 (Garofalo et al., 2018; Bader et al.,
2020; Kraft and Eibeck, 2020). However, none
of these graphs represent fundamental knowledge
of manufacturing concepts, processes, process pa-
rameters, characterization, materials, applications,
and various other basic aspects of manufacturing
domain education. A large amount of such frag-
mented knowledge can be integrated to assist the
learners in intuitively and easily connecting with
the knowledge system by leveraging the nodes and
relationships. Such knowledge integration will also
assist in intelligent question answering that can
accelerate knowledge discovery and search.

Google bases part of its Knowledge Vault on the
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Figure 1: (a) Manufacturing Knowledge Graph construction methodology (b) Use of SPARQLWrapper to fetch
Wikidata items associated with ’crystal structure’ in two step forward and two step backward. This image also
shows addition of entities from student notes.

well-known Wikidata knowledge base (Ringler and
Paulheim, 2017). Even though Wikidata has a large
amount of information from Wikipedia, there is a
dearth of standardized knowledge regarding many
important entities related to the Manufacturing do-
main. For instance, the term ‘additive manufactur-
ing’ is present as ‘3d printing’; while there have
been substantial developments in the field of ‘metal
additive manufacturing’ (metal AM) over the last
decade, it is not present as a subclass of ‘3d print-
ing’ in Wikidata. Moreover, within metal additive
manufacturing (Frazier, 2014), sub-classifications
such as DMLS, EBAM, and PBF are not present
in Wikidata. One reason for this is the volunteer-
driven nature of Wikidata as a knowledge base; this
has led to a limited amount of specialist terminol-
ogy and information regarding the manufacturing
domain. Therefore, Wikidata cannot provide direct
answers to questions that are very specific to this
domain. To understand the basic concepts in the
context of manufacturing we focus on formulating
answers to some basic questions such as, ‘What are
some precision finishing manufacturing process?’,
‘What are some tools for machining copper?’ etc.
The purpose of creating such a knowledge graph of
manufacturing using Wikidata is to provide a start-
ing point for a structured manufacturing knowledge
base, which can be amalgamated with knowledge
from other sources such as textbook (Rahdari et al.,
2020) and research articles (Wang et al., 2020b).

To tackle the challenges in developing the knowl-
edge graph from scratch for manufacturing science,
we consider various methodologies for creating ac-
curate graphs. We propose a merged knowledge
graph that combines the existing structured Wiki-
data knowledge graph with a novel semi-supervised

knowledge graph extracted from textbook data. For
extracting graph triples from Wikidata, as men-
tioned in Figure 1, we have adopted two methods
for the approach: (1) Vocabulary-based and (2)
Based on Unstructured text. Former includes fetch-
ing Wikidata items using a collection of manufac-
turing vocabulary terms through the utilization of
textbook index words, keywords from research pa-
pers, and named entity recognition using FabNER
(Kumar and Starly, 2021), followed by the use of
DBpedia (Mendes et al., 2011) to find Wikidata
items. The latter is a semi-supervised approach
that utilizes students’ notes, considering standard
textbooks as the reference. The most significant
purpose of the latter method is to make use of text-
book knowledge structured by humans, thereby
increasing the quality of the knowledge base. The
following sections elaborate on the details of the
methodology and implementation.

2 Manufacturing Knowledge Graph
Construction

2.1 KG construction using Wikidata
Wikidata is a knowledge base maintained collabora-
tively by the community to represent information in
machine readable format. Since no such knowledge
base exists for the manufacturing domain, we de-
cided first to extract existing Wikidata knowledge
and then merge this with the knowledge contained
within manufacturing textbooks.

Wikidata’s knowledge graph has Q and P identi-
fiers where Q represents entities, and P represents
relations (Hernández et al., 2015). Currently, Wiki-
data is limited to very few relevant relations be-
tween entities for manufacturing domain-specific
entities. We have taken about 10 unique relations
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based on all P identifiers attached with relevant
Q identifiers identified by us. The relevant rela-
tions in Wikidata include ‘Instance of’, ‘Subclass
of’, ‘Use’, ‘Color’, ‘Part of’, ‘Uses’, ‘Has qual-
ity’, ‘Has cause’, ‘Has part’, ‘Facet of’, ‘Different
from’.

In order to find manufacturing-specific entities
in Wikidata, we used the following methods:

2.1.1 Entities extraction from index words of
textbooks

Index words located at the end of textbooks are
a list of all topics and entities provided to assist
readers in finding the location of the text (Kumar
and Dinakaran, 2021). These are important terms
that are often overlooked but are a good collec-
tion of domain-specific entities. We utilized eas-
ily accessible 5 diverse ebooks related to manu-
facturing (Groover, 2020), digital manufacturing
(Zhou et al., 2012), manufacturing process (El-
Hofy, 2005) welding technology (Kou, 2003) and
additive manufacturing (Gibson et al., 2021), and
extracted the index entities mentioned at the end
of the book to expand the list of relevant entities.
We found about 3500 relevant entities from various
books and added those to our vocabulary.

2.1.2 Keywords from research papers
We used 500k+ abstracts to create the corpus for
manufacturing, as mentioned in FabNER. While
extracting the abstracts, we accumulated the key-
words mentioned in the abstract, removed dupli-
cates, and normalized many of the words (using
Levenshtein distance). There are many words
written with some variation in the spelling. E.g.,
Landau-Ginzburg-Devonshire, Landau-Ginsburg-
Devonshire, Landau-Ginsberg-Devonshire, are the
same entities with variation in the way it is written
in different abstract keywords by various authors.
Overall, we found about 4500 relevant entities from
a sample of 5000 abstracts.

2.1.3 Named entity recognition on
unstructured text

We utilized review articles related to manufacturing
to find the most frequent and diverse terms since
it generally mention most of the past work and
technologies developed in the succinct text. Ten
full review articles (Wong and Hernandez, 2012;
ElMaraghy et al., 2012; Zhu et al., 2013; Frazier,
2014; Oztemel and Gursev, 2020; Yan et al., 2018;
Stuart et al., 2010; Rajurkar et al., 2017; Wang et al.,

2020a; Kaur and Singh, 2019) for this part were
selected, which were processed using a trained
neural network model consisting of BERT (Devlin
et al., 2018) and GloVe (Pennington et al., 2014)
stacked embeddings through Flair framework (Ak-
bik et al., 2019). Next, we employed BiLSTM
and CRF (Consoli and Vieira, 2019) architecture
to identify 12 category entities in the review arti-
cles with F-score of 83%. Overall, we found about
2000 entities from diverse review articles related
to manufacturing.

Table 1: Named entity recognition performance for the
Manufacturing dataset

Model Precision Recall F1
BERT+BiLSTM+CRF 0.8185 0.8429 0.8306

Using text and vocabulary of entities from all
the above sources, i.e., index words, research paper
keywords, and NER on review articles, we fur-
ther employed two methods for finding existing
Wikidata items. As depicted in Fig. 1, in the first
method, we used DBpedia spotlight API to find
Wikidata items associated with the unstructured
text directly based on a 0.5 confidence value. In
the second, we provide manufacturing vocabulary
terms as the input to wptools python library to fetch
Wikidata items as the output. We find all manu-
facturing relevant Wikidata items to extract a sub-
graph from Wikidata and later merge this relatively
bigger knowledge graph with textbook knowledge
(explained in the next section). Upon availability
of some Wikidata items, we further used SPARQL-
Wrapper (uses Wikidata SPARQL endpoint) and
relations list (P identifiers) to fetch forward (head
from the primary entity) as well as backward (tail
from the primary entity) entities associated with
the item. We performed the same for two linked
steps forward and two linked steps backward to
find most of the nodes that are connected with each
other.

2.2 KG construction using Exam
cheatsheet/notes for Manufacturing

We propose a novel approach for creating triples
utilizing human knowledge. Qualifying exams (or
course exams) are part of any doctoral degree pro-
gram. In some schools, written exams are con-
ducted for a few courses. In some specific courses,
cheatsheets/concise notes are allowed for students
to bring into the exam to enable the student to re-
member important points. In most cases, the cheat-
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Figure 2: Conversion of concise notes to structured graph

sheet (or notes) developed for the exam are useless
when the exams are over. This also means that the
verified knowledge written by a student to remem-
ber the essential facts is lost or left unutilized for
future references.

We devised a strategy for making these short,
concise notes be useful input for building con-
nected entities within FabKG. We created optional
advice on cheatsheet generation for students to fol-
low prior to the exam at our institution so that they
could participate to the task of knowledge base en-
hancement in the Manufacturing area. Students
can only write crucial details from various text-
book chapters, assuming that the number of pages
allowed in the exam is limited. There is a title
within each chapter, followed by several subtitles,
each of which contains some entities and context,
which is potentially a good knowledge source. The
guidelines were kept simple so that students would
not have to spend much time referring to them. It
mentioned the title, subtitle, and content hierarchy
and a precise technique for separating them.

The following guidelines are provided for exam-
ple purposes only:

a) The chapter name is preserved as the top title,
followed by a distinctive symbol, making it easier
to distinguish between chapters.

b) Within a chapter, many sub-topics are sepa-
rated by another unique symbol, such as a double
semi-colon ’;;’. Two sub-topics are shown in Fig. 2,
for example, (1) Defects and (2) Crystal structure

c) If there is a further subtopic within a subtopic,
it is separated by a symbol such as ’:’ followed by
some relevant points. A single semi-colon sepa-

rates multiple subtopics.
d) Explanations or additional information about

any term are retained in brackets as an attribute
of a relational entity. For example, displaced ion
(Frenkel defect) denotes that a point defect with a
displaced ion is also known as a Frenkel defect.

Use of some symbols patterns when creating
the notes aided in the design of regex patterns for
quickly extracting entities and their obvious rela-
tionships. We were able to extract over 1200 dis-
tinct entities, 25 unique relations, and 4200 unique
triples using this method. Fig. 2 depicts the notes
in their raw and structured state. The student notes
in both unstructured and structured form was veri-
fied by human supervision. Indirect crowdsourcing
is the crucial aspect that has made this element of
the project possible. However, the intention was
to use note takers’ knowledge. It should be em-
phasized that even though some previous work has
mentioned the use of notes (Denny et al., 2015)
for developing a knowledge map, however, on a
larger scale and for educational applications, this
type of knowledge source has not been studied.
This method might be used with little effort for any
domain-specific textual material.

Despite the small number of entities/relations
discovered, this method allows textbook knowledge
to be converted into useable knowledge, which aids
in developing a knowledge graph for educational
purposes. In general, for automatic extraction of
directed relation, it is often difficult to determine
which entities are related to each other when more
than 2 entities are present in a sentence. This is
also because, on multiple occasions, no relation
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exists between the entities. It becomes a challenge
to employ a NER and detect directed relations be-
tween entities automatically which we solve by
this semi-supervised method. Based on the analy-
sis of the notes, some of the crucial relations found
include: ‘has’, ‘hasProperty’, ‘uses’, ‘usedTo’,
‘usedIn’, ‘causes’, ‘producedBy’, ‘makes’, ‘has-
Expression’, ‘hasPart’, ‘addedWith’, ‘hasValue’,
‘includes’, ‘partOf’, ‘alsoCalled’, ‘dueTo’, ‘in-
stanceOf’, ‘isAbbrev’, ‘isAcronym’, ‘hasCompara-
tor’.

2.3 Fusion of structured and unstructured
knowledge

All triples found with the above-mentioned meth-
ods were aggregated together to create a knowledge
graph of about 65000 triples. Fig1(b) depicts the
merger of Wikidata and textbook knowledge. We
created a collection of possible synonyms for vari-
ous entities to enable us to merge Wikidata entities
with textbook entities. We found that out of 1200
textbook entities, about 25% were present in Wiki-
data. We also found some links between entities
which otherwise were not present in Wikidata due
to limited relations.

3 Knowledge driven QA

3.1 Domain specific question answering

The Knowledge Graph for manufacturing (FabKG)
is suitable for answering questions and powering
a chatbot to answer questions. The FabKG is a
directed graph G = (V, E) where the node v ∈ V
denotes named entities of manufacturing, numeric
literal or expression, and the edge e ∈ E denotes
directed relation between the nodes.

Given a natural language question as input, the
entities are categorized in their respective classes.
Based on the subject and predicate most similar
object (highest cosine similarity) to the category in
the knowledge base is queried.

Some of the common domain specific questions
could not be answered using general purpose search
engines. Examples of questions that could be an-
swered by FabKG are:

a. Which tool geometry is used for planning?
b. Which material has more hardness, cermet or

alumina? Note: We have used a hasComparator
relation specifying various comparison values in
our KG that could answer the ‘more’ and ‘less’
inference question.

Figure 3: A small subgraph showing the links of entities
connected with other expressions for ease of calculation,
making the system think like humans.

c. What is the composition of Tungsten in cast
cobalt?

d. Which nontraditional manufacturing process
is used for coining operations?

e. What is the length to depth ratio for discontin-
uous fibers?

3.2 Expression based question answering

We have included some manufacturing-specific for-
mulas/expressions in the knowledge graph to en-
able inference-based calculations. Since we have
captured some formulae linked with entities using
‘hasExpression’ relation, traversing for the formula
node in the graph is easy. We have also included a
simple rule for calculation-type questions. Here is
an example question below:

Calculate the strain on the cylinder given
the area 1 cm2, 10N force, and Young’s
modulus for steel 200 GPa.

Given the question above, we have some ‘for-
mula entities’: area, force, and young modulus of
steel. These entities are queried in the KG for any
available linked expression. Similar to MathGraph
(Zhao et al., 2019), we utilize SymPy (Meurer et al.,
2017) to convert the queried expression into a math-
ematical equation with variables, and to perform
the calculation, we use some basic rules of prece-
dence to fetch the results. As shown in fig. 3, we
can find strain using Young’s modulus and stress;
however, since stress is not known, we calculate
stress as the first step using force and area. This
process depicts the way human thinks while an-
swering a question with some inputs and related
expressions.

Some other examples of questions forms that
are easier than the above-mentioned questions: a.
Calculate material removal rate given feed rate,
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cutting speed, and depth of cut. HINT: We can
calculate the Material removal rate using (feed
rate)*(cutting speed)*(depth of cut). b. Calculate
measuring length of roughness given cutoff length
of 0.8. HINT: measuring length of roughness = 0.5
* cutoff length.

4 Conclusion and future work

We have developed FabKG – a knowledge graph for
product design and manufacturing, which utilizes
two critical sources of knowledge, (1) Wikidata
and (2) Human constructed notes, that combine
structured/unstructured knowledge towards answer-
ing question-related to product development and
manufacturing. Using this KG, students, product
developers, and knowledge seekers can get good
insights into various concepts and fundamentals
about various topics in this domain. Using all the
methods described above, we have found 65000+
triples in 12 entity categories.

In the future, we plan to use the heterogeneous
knowledge graph for directed relation prediction
in the bigger corpus, performing graph embedding
and link prediction. Moreover, lecture presenta-
tions with succinct text could also be utilized for
finding entities and relations. Generally, the ti-
tle/topic of the presentation symbolizes the sub-
ject, with some entities either written directly or
placed after another subtopic. Furthermore, ‘prop-
erty/attribute’ of relation through the specific value
of entities such as the strength of materials, carbon
content, Brinell hardness, Etc., currently available
in tabular form in books and other resources, can
be added to the KG. The same could be represented
using a hypergraph by combining multimodal data.
Therefore, the new graph structure would have
not only an ‘entity-relation-entity’ type graph but
also an ‘entity-attribute-value’ graph. Finally, this
knowledge graph could help link to global knowl-
edge by contributing to existing Wikidata knowl-
edge with the help of Wikimapper.
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