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Abstract

While neural language models often perform
surprisingly well on natural language
understanding (NLU) tasks, their strengths
and limitations remain poorly understood.
Controlled synthetic tasks are thus an
increasingly important resource for diagnosing
model behavior. In this work we focus on
story understanding, a core competency
for NLU systems. However, the main
synthetic resource for story understanding,
the bAbI benchmark, lacks such a systematic
mechanism for controllable task generation.
We develop Dyna-bAbI, a dynamic framework
providing fine-grained control over task
generation in bAbI. We demonstrate our ideas
by constructing three new tasks requiring
compositional generalization, an important
evaluation setting absent from the original
benchmark. We tested both special-purpose
models developed for bAbI as well as
state-of-the-art pre-trained methods, and found
that while both approaches solve the original
tasks (>99% accuracy), neither approach
succeeded in the compositional generalization
setting, indicating the limitations of the
original training data. We explored ways to
augment the original data, and found that
though diversifying training data was far
more useful than simply increasing dataset
size, it was still insufficient for driving robust
compositional generalization (with <70%
accuracy for complex compositions). Our
results underscore the importance of highly
controllable task generators for creating robust
NLU systems through a virtuous cycle of
model and data development.1

1 Introduction

Considerable progress has been made recently
in natural language understanding (NLU), driven
largely by advances in model pre-training (Devlin
∗ Work begun during an internship at the Allen Institute.
1 Data and code available at https://
dyna-babi-project.github.io/.

Figure 1: (a) Low task configurability leads to
static datasets, benchmark saturation & unreliable
model development. (b) We propose a dynamic
benchmarking approach; developing models and tasks
in a tight feedback loop using (c) Dyna-bAbI task
generator. Dyna-bAbI provides fine-grained control
over task structure, composition and difficulty, yielding
challenging new test sets exposing limitations of state-
of-the-art models.

et al., 2019; Raffel et al., 2020) and the
development of large-scale NLU benchmarks
across a wide range of tasks (Wang et al., 2018,
2019; Liang et al., 2020). Such successes, however,
have coincided with the discovery of various
shortcomings in existing human curated datasets,
largely related to annotation artifacts (Gururangan
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et al., 2018), or systematic biases that create
shortcuts that can inflate model performance and
harm generalization.

In order to overcome these issues, two
avenues of research have recently gained traction:
1) development of dynamic benchmarks (Potts
et al., 2021; Kiela et al., 2021) where, in contrast
to conventional static benchmarks, evaluation
and data collection are conducted interactively
with humans and models in a rapidly evolving
feedback loop and; 2) renewed interest in synthetic
benchmarks (Lake and Baroni, 2018; Sinha et al.,
2019; Clark et al., 2020; Ruis et al., 2020) that
allow for absolute control over the data creation
process in order to help understand the strengths
and weaknesses of existing models on targeted
tasks and language phenomena.

Story understanding is a particularly important
domain for research on dynamic and synthetic
benchmarks; it is a core competency for NLU
systems (McClelland et al., 2020; Dunietz et al.,
2020), but the scale and annotation detail required
make human data collection prohibitively costly.
However, the main synthetic resource for story
understanding remains the bAbI task suite (Weston
et al., 2016), which is saturated by models
reaching near-perfect performance (Liu et al.,
2021), and further limited by exploitable biases
in the data (Kaushik and Lipton, 2018). Despite
its creators’ initial intentions, bAbI has largely
remained a static benchmark limited to a small
subset of the tasks potentially possible to generate
within the bAbI “micro-world”. Accordingly, two
natural questions arise: (Q1) is near-perfect model
performance on the original bAbI tasks a reliable
indicator of story understanding competence?;
(Q2) are there still interesting challenges to
discover inside the broader bAbI task space that
help identify weaknesses in current models and
drive modelling innovation?

To answer these questions, we employ a
dynamic synthetic benchmarking approach on
bAbI, combining the benefits of the agile approach
of recent dynamic benchmarks with the scale
and control provided by synthetic datasets. As
illustrated in Figure 1, in dynamic synthetic
benchmarks the data generator itself is designed
for agile development, enabling experimentation
with increasingly complex tasks and a wider
range of linguistic phenomena.2 Constructing

2 While our framework does not enable automatic collection

challenging tasks is a challenge in and of itself,
requiring precise control over the reasoning
patterns underlying each question. To meet these
requirements, we developed a new task generator
for bAbI called Dyna-bAbI3.

Using Dyna-bAbI, we first devise new splits that
systematically test compositional generalization
across tasks; as shown in Fig. 1c, we test models
on novel combinations (right side, line 10) of
concepts seen at training, like co-reference and
object tracking (left). We find that training on the
original bAbI tasks (hereafter: bAbI 1.0) is not
sufficient for models to attain good compositional
generalization. Though general purpose pre-trained
models far outperform special-purpose (non-pre-
trained) architectures developed for bAbI, they still
suffer a 20-50% drop in accuracy compared to
the non-pre-trained models which suffer a 50-80%
drop. Both types attain near perfect performance
on the original tasks, suggesting that bAbI 1.0 is
not challenging enough to differentiate between the
two classes of models (Q1).

We next investigate how different enhancements
of training data affect compositional generalization:
(a) injecting more questions into bAbI 1.0, and
(b) generating new, more diverse training samples.
Compared to question injection, we find that
diverse training data better facilitates compositional
generalization, as well as being more data
efficient. However, neither approach drives reliable
compositional generalization; a representative
state-of-the-art (SOTA) model, T5 (Raffel et al.,
2020), demonstrates a lack of robustness to
novel combinations and also exhibits knowledge
inconsistency, for example, by correctly answering
certain types of questions but systematically
failing to answer equivalent paraphrases. These
results suggest that there remain many important
challenges within the broader bAbI task space (Q2)
which can be discovered through more careful
control of task generation.

To sanity-check the quality of our new tests
compared with bAbI 1.0, we employ the notion
of concurrence proposed by Liu et al. (2021);

of new data based on model errors as in other dynamic
benchmarks, we still chose the term “dynamic” to
highlight their important common function: data generation
frameworks that enable easily “moving the goalposts” in
meaningful directions (in our case, for probing models’
systematic generalization capacities).

3 Implemented in Python for improved accessibility compared
with the original Lua implementation (https://github.
com/facebookarchive/bAbI-tasks).
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concurrence is a measure of correlation between
models’ performance on a synthetic task and their
performance on an existing, non-synthetic NLU
benchmark. We find high concurrence between our
new challenge tasks and the widely used SQuAD
dataset (Rajpurkar et al., 2016), in contrast to bAbI
1.0, which achieved low concurrence.

Giving the continued interest in using bAbI 1.0
to evaluate new modelling approaches (Banino
et al., 2020, 2021; Schlag et al., 2021), our new
challenge splits and the Dyna-bAbI task generator
contribute to more reliably guiding future efforts.
While we focused on bAbI, our results apply more
generally, telling a cautionary tale about the limits
of static synthetic datasets, and motivating the
development of controllable task generators for
dynamic synthetic benchmarking.

2 Related Work

Our work brings together two promising areas of
current research: dynamic benchmarking such as
Dynabench (Kiela et al., 2021) that address many
existing issues with static benchmarks (Bowman
and Dahl, 2021), and synthetic benchmarking,
which is widely used for high-precision and data-
intensive problems such as relational and logical
reasoning (Sinha et al., 2019; Clark et al., 2020;
Betz et al., 2021; Richardson and Sabharwal, 2022),
robot planning (Banerjee et al., 2020), instruction
following and language grounding (Long et al.,
2016; Lake and Baroni, 2018) among many others
(Richardson et al., 2020; Khot et al., 2021). Most
approaches to synthetic benchmarking focus on
model development on a static benchmark, and
are not designed to facilitate agile and highly
controlled task space exploration, which is our
focus here.

The recent gSCAN dataset (Ruis et al., 2020) and
later extensions (Qiu et al., 2021; Wu et al., 2021)
can be seen as an example of a synthetic benchmark
“going dynamic”. Our work differs in terms of
target domain (story understanding as opposed to
multi-modal language grounding), and we further
focus attention on a more general research direction
of intentional, a-priori design of NLU benchmarks
for agile development. In this regard, our work
can be seen as part of a trend towards data-centric
research efforts in response to prevailing model-
centric research, which generally focuses heavily
on architectural design and novelty (Kaushik and
Lipton, 2018), at the expense of work on the data

side (Sambasivan et al., 2021; Rogers, 2021).
We address the domain of story understanding

as a particularly core (and data-intensive) capacity
underlying language use (McClelland et al., 2020),
thought to require constructing and manipulating
situation models of entities and their relations as
they unfold throughout discourse (Zwaan, 2016;
Tamari et al., 2020). Procedural text datasets (Dalvi
et al., 2018; Tandon et al., 2020) are closely related
in that they provide detailed annotation of entities
and state changes, and have mostly focused on
relatively small and static benchmarks using human
collected data. Overall, recent works identify a
lack of benchmarks which systematically probe the
situation models constructed by systems processing
discourse-level texts (Sugawara et al., 2021).

The bAbI benchmark (Weston et al., 2016)
is seen as highly relevant in terms of objective
(targeting situation modelling) (Dunietz et al.,
2020), but has been viewed critically due
to its constrained nature and exploitable
artifacts (Kaushik and Lipton, 2018). Our
work focuses on improving the evaluation in bAbI
through compositional generalization, widely
used across NLP to more rigorously probe model
robustness (Finegan-Dollak et al., 2018; Keysers
et al., 2020; Gontier et al., 2020; Yanaka et al.,
2021), but to our knowledge still not applied to
story understanding or bAbI.

3 Synthetic Dynamic Benchmarking on
bAbI

3.1 Dyna-bAbI

What makes a synthetic benchmark dynamic? We
think of a dynamic synthetic benchmark as a
highly controllable task generator, enabling rapid
exploration of interesting areas of a task space.
The original bAbI 1.0 simulator code does not
readily facilitate such exploration; each of the
bAbI 1.0 tasks is generated by a hard-coded script
which does not enable parametric manipulation
of interesting generation aspects such as question
difficulty or compositionality.

Accordingly, we developed Dyna-bAbI, a
Python-based version of the original simulator.
Dyna-bAbI facilitates control of task generation
through a configuration file, effectively abstracting
away much of the underlying implementation
complexity. The configuration file allows users
to specify high-level task parameters such as the
set of target concepts, passage length, and filtering
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conditions to mine for harder/rarer examples. We
also modularized the code to facilitate adding new
questions and other concepts more easily.

In this next sections we describe the underlying
structure of the bAbI 1.0 tasks, and how we
combine them using Dyna-bAbI to create more
complex compositional generalization tasks.

3.2 bAbI task structure
A task in bAbI 1.0 is a set of train, validation
and test splits. Each split is a set of instances,
where an instance is a tuple (p, q, a)=(passage,
question, answer). Passages are generated using
a micro-world simulator by sampling a valid
sequence of world events from an event set E and
generating a linguistic description of them. By
default, linguistic descriptions are generated by a
simple sentence-level mapping from an event to a
natural language sentence. For example, the event
move(john,park) could be translated to “John
moved to the park.”

Some tasks also incorporate more complex
linguistic mappings between events and
sentences, such as co-reference: the
event sequence (move(john,park),
move(john,kitchen)) could be mapped to
“John moved to the park. Then he went to the
kitchen.” We denote the set of possible linguistic
mappings by L.

Finally, a valid question-answer pair (q,a) over p
is sampled from question set Q. In bAbI, each
split is generated using some particular subset
of all possible events, linguistic constructs and
questions (§3.3); for a given split we can then
define its concept set, C = E ∪ L ∪ Q. Instances
also include a set of supporting facts (f ), or the
relevant lines from which a can be derived (see
Fig. 1). The support composition (fc) is the set of
events and linguistic constructs contained in f (see
examples in §4.2.1), and is useful for characterizing
compositionality performance (§3.4).

3.3 Original bAbI 1.0 tasks
Our focus here is on a particular subset of 12 bAbI
1.0 tasks evaluating aspects of story understanding.
Table 1 summarizes them, detailing E ,L,Q for
each task. For L, we list only complex constructs
beyond the default event-sentence mapping (which
is present in every task). See appendix A.1 for
additional details on task construction. Not all
of the story understanding tasks are considered.
For example, tasks 14 and 20 address time

Task Events
(E)

Linguistic
Constructs

(L)

Questions
(Q)

Avg. sents. &
supp. facts
per story

1 MOVE - where-P 6, 1

2 MOVE,
POSS - where-O 15.52, 2

3 MOVE,
POSS - where-was-O 51.9, 3

5
MOVE,
GIVE,
POSS

- give-qs 20.1, 1

6 MOVE - yes-no 6.27, 1

7
MOVE,
GIVE,
POSS

- counting 8.67, 2.33

8 MOVE,
POSS - list 8.75, 1.94

9 MOVE NEGATE yes-no 6, 1
10 MOVE INDEF yes-no 6, 1
11 MOVE CO-REF where-P 6, 2
12 MOVE CONJ. where-P 6, 1

13 MOVE CONJ.,
CO-REF where-P 6, 2

Table 1: Subset of 12 bAbI 1.0 tasks considered
here. Each task is characterized by the possible events,
linguistic constructs and questions that can occur in
instances. POSS (possession) is short for GRAB and
DROP events. Statistics based on training sets. A large
space of task configurations remains unexplored.

reasoning and agent motivations, and we leave their
integration for future work.

3.4 Compositional generalization on bAbI

As can be seen in Table 1, many possible task
configurations are not covered by the original
benchmark; which directions should be explored?
We focus on out-of-distribution (OOD) robustness,
which is increasingly seen as a vital evaluation
criteria across AI/NLP research (Shanahan
et al., 2020; Hendrycks et al., 2020). We target
compositional generalization, a particularly
important class of OOD problems (Lake et al.,
2017; Lake and Baroni, 2018). Compositional
generalization refers to the ability to systematically
generalize to test inputs containing novel
combinations of more basic elements seen at
training time (Partee et al., 1995). For example,
a model that has learned basic object tracking
and co-reference separately (tasks 2 and 11,
see Fig. 1c) could be expected to solve tasks
requiring a mixture of both object tracking and
co-reference (Fig. 1c, line 10 question on right
side). Compositional tasks are absent from bAbI
1.0 which features only IID test sets (independent,
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identically distributed).4

Compositional task generation. To create
compositional generalization tasks in practice, we
create training (and validation) splits composed of
M sub-tasks with concept sets

{
Ci

train

}M

i=1
, and a

test set Ctest such that Ctest ̸= Ci
train∀i, but Ctest =⋃M

i=1 Ci
train. In other words, each training sub-

task can be thought of focusing on a particular
subset of test concepts, so models are exposed to
all test concepts at training time, but not to all
combinations of them (Yanaka et al., 2021).
Task difficulty. We hypothesize that support
composition (fc) and supporting fact set size
(|f |) are main factors underlying a particular
instance’s difficulty, and especially novel
support compositions not seen at training time.
Additionally, the difference between train and test
splits results in potentially harder distractors, as
test-time distractors appear in novel contexts.

Our notions of concepts and support composition
resemble atoms and compounds in DBCA, a
related study on compositionality (Keysers et al.,
2020). While DBCA enables automatic creation
of compositional train and test splits, we opt
here for a more human-interpretable representation
that allows more precise manual control of the
combinations of concepts a model is exposed to
at train and test time.
Quality comparison vs. bAbI 1.0 tasks.
Intuitively, good synthetic datasets help drive the
development of better modelling approaches. Our
new compositional tasks might be harder than
bAbI 1.0, but how do we know whether they are
a more useful target? To provide a preliminary
answer to this question, we adopt the notion of
concurrence as a quality measure (Liu et al., 2021).
Two benchmarks are said to have high concurrence
when they rank a set of modelling approaches
similarly. Concurrence offers a way to formalize
the intuition above, as high concurrence between a
synthetic and natural language benchmark suggests
that the synthetic benchmark could have driven
similar innovations. We follow the setup of Liu
et al. (2021) using SQuAD for the natural language
benchmark.5 Notably, bAbI 1.0 achieved very
low concurrence with SQuAD; for example, pre-

4 Weston et al. (2016) noted that transfer learning was an
important goal out of the original work’s scope.

5 Liu et al. (2021) consider a set of 20 modelling approaches
used on SQuAD, including 10 pre-trained and 10 non-pre-
trained methods.

Split Type Avg.
length Size Avg. supp.

fact set size

concat(T2) Train 10.76 18,000 2
concat(T7) Train 13.5 63,000 1.68
inject(T7) Train 23.25 190,158 1.42
diverse(T7) Train 20 17,000 2.17
concat(T12) Train 10.8 108,000 1.42
inject(T12) Train 15.97 368,831 1.28
diverse(T12) Train 20 24,772 2.45

mix(T2) Test 13.25 1,000 2.05
mix(T7) Test 20 3,000 2.50
mix(T12) Test 20 6,000 3.70

Table 2: Splits used for our experiments. All except the
original data (concat) are created with Dyna-bAbI.

training consistently yields large gains on SQuAD,
but on bAbI 1.0, both pre-trained and non-pre-
trained models achieve perfect performance on
many tasks. The low concurrence thus suggests
that bAbI 1.0 may be an unreliable benchmark for
model development, and highlights the importance
of improving its quality.

4 Experiments

With the controllable task generation afforded by
Dyna-bAbI, we can now create datasets probing
deeper story understanding capabilities of models.

We present two main experiments targeting the
following questions:

• Exp. 1: (q1.a) What role does model
architecture play in the capacity for
compositional generalization? (q1.b) What is
the concurrence of our compositional tasks
with real datasets, compared with bAbI 1.0?

• Exp. 2: (q2) How do training data
quantity and diversity affect compositional
generalization?

Data

For our experiments we created 4 kinds of
splits over three subsets of bAbI 1.0 tasks,
summarized in Table 2. We denote a subset
of tasks T , and consider T2 = {2, 11},
T7 = {1, 2, 3, 5, 11, 12, 13}, and T12 =
{1, 2, 3, 5, ..., 13}.

• concat splits are simply concatenations of the
official data for the tasks T . We considered
the larger version where each task consists of
9,000/1,000 training/development examples;
e.g., concat(T2) consists of 18,000 training
examples and 2,000 development examples.

• inject splits enrich the concat data as follows:
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for each question in the original data, we
supplement it with all possible additional
questions of the specified types. In this work,
the supplement question types were where-P
and where-O (to provide location information
of objects and agents).

• diverse splits use rejection sampling to
generate more diverse samples, such that
the number of supporting facts per question
is roughly uniform across all sub-task
instances for a given question type. Without
rejection sampling, most generated questions
would be trivial (e.g., 1-2 supporting facts).
Compositionality is retained by holding out
certain combinations. In particular, at training
time, complex linguistic constructs (e.g., co-
reference) are only seen with MOVE events.

• mix are test splits generated using rejection
sampling like diverse, and consist of instances
which may feature elements from any of
the considered tasks. As a result, questions
in mix splits require novel/more complex
reasoning patterns compared to those seen
during training.

See appendix A.1 for examples and extended
details on task generation.

4.1 Exp. 1: Can training on bAbI 1.0
facilitate compositional generalization?

For this experiment, we compared models on T2

and T7, since they allow for a direct conversion to
an extractive QA format,6 enabling us to use the
same concurrence framework of Liu et al. (2021).
Models. We considered 3 classes of models:

• Non-pre-trained specialized architectures for
bAbI 1.0 including EntNet (Henaff et al.,
2017) and STM (Le et al., 2020), the latter
being current SOTA on bAbI 1.07.

• Non-pretrained general-purpose QA methods,
such as BiDAF (Seo et al., 2017).

• General purpose pre-trained approaches
including RoBERTa (Liu et al., 2020) and T5
(base) (Raffel et al., 2020).

The last two categories are comprised of the
20 models evaluated in Liu et al. (2021), with
the addition of T5 to the last group. For
implementation details, see appendix A.2.

6 Tasks 6-10 require generative QA, for answering yes-no,
count and list questions.

7 As of March 10, 2022.

Results & Analysis
Experiment results are summarized in Table 3.
All models perform well in IID settings, but
performance drops considerably in OOD settings
Architecture alone is not a significant
compositionality driver (q1.a). The large
OOD performance gap between pre-trained and
non-pre-trained models indicates that pre-training
plays a much greater role than specialized
architectures for QA performance, adding to
similar findings in other NLP domains (Hendrycks
et al., 2020). These results raise questions about
special purpose relational reasoning architectures
that continue to be developed today: the poor OOD
performance suggests that such models may not
be fulfilling their intended design. Either way,
these results underscore the importance of rigorous
evaluation to verify that modelling motivations are
borne out in practice (Aina et al., 2019).
Compositionality increases concurrence (q1.b).
As can be seen in the Fig. 2 plots8, increasing
compositionality is correlated with increased
concurrence. In contrast to the original bAbI 1.0
tasks which exhibited virtually no correlation with
SQuAD, our compositional task mix(T7) exhibits
high concurrence of r = 0.92, τ = 0.78 (Pearson
and Kendall correlation functions, resp.). These
results are comparable to other natural language as
well as purpose-built synthetic datasets considered
in Liu et al. (2021), which feature r, τ in the
ranges [0.87, 0.99] and [0.77, 0.94], respectively.
Our results thus extend the findings of Liu et al.
(2021); they demonstrated the existence of high
concurrence synthetic benchmarks, we additionally
suggest a guiding principle for how to create them
(incorporate compositionality evaluation).

4.2 Exp. 2: enriching bAbI 1.0 training data
The results above suggest that the bAbI data in
their current form may not be rich enough to drive
compositional generalization.9 In this experiment
we probe this question, enriching the training data
to better understand its impact on compositional
generalization. In particular, we investigate
two approaches to enriching the training data
while maintaining the compositionality evaluation,
corresponding to the inject and diverse splits.
8 See appendix A.4 for full numeric results.
9 An alternate hypothesis is that certain patterns may be too

hard for models to learn; we confirm this is not the case by
using the inoculation methodology of Liu et al. (2019), see
details in Appendix A.3.

106



Name Train Test Evaluation accuracy SQuAD Concurrence

EntNet STM BiDAF Roberta T5 ρ τ
2-task IID concat(T2) concat(T2) 98.95 99.85 100 100 99.85 [-0.35,0.08] [-0.35,-0.19]
2-task OOD concat(T2) mix(T2) 72.0 67.6 97.2 98.7 98.1 0.48 0.51
7-task IID concat(T7) concat(T7) 96.8 99.4 99.98 99.98 99.8 [-0.4,0.08] [-0.35,0.03]
7-task OOD concat(T7) mix(T7) 22.2 26.7 30.5 57.7 49.57 0.92 0.78
12-task IID concat(T12) concat(T12) 96.19 99.34 – – 99.54 – –
12-task OOD concat(T12) mix(T12) 31.97 35.65 – – 67.4 – –

Table 3: Experiment 1. OOD evaluation exposes large differences between pre-trained and non-pre-trained models,
and also achieves high concurrence with the SQuAD benchmark. We report [min,max] concurrence for bAbI 1.0.
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Figure 2: SQuAD concurrence plots for bAbI
1.0 task 2 (left; reproduced from Liu et al. (2021)
with permission) and mix(T7) (right). bAbI task
2 has the highest concurrence of all T7 tasks, yet
exhibits virtually no correlation with SQuAD. mix(T7)
exhibits high concurrence, highlighting the relevance of
compositional evaluation.

Notably, Exp. 2 can be seen as a first iteration
of the dynamic benchmarking loop depicted in
Fig. 1: based on the error analysis of Exp. 1,
we leverage Dyna-bAbI for targeted creation of
new tasks, which allow us to systematically test
our hypotheses.

In this experiment we focus on pre-trained
models, as they significantly out-performed non-
pre-trained methods. We use T5 as a representative
since its generative abilities make it straightforward
to apply also to T12 (unlike the extractive methods
which were applicable only to T7).

Injecting supplementary questions. One
hypothesis for the poor performance of models on
the mix splits could be that the original bAbI tasks
do not provide enough supervision for models to
learn the basic event semantics. For example, tasks
5 and 7 are the only bAbI 1.0 tasks featuring the
GIVE event, and neither includes any questions
about the location of participants. However, test-
time compositional questions may require models
to infer that the participants in a GIVE event

Train Test Evaluation accuracy /
# supporting facts

1 2 3+ Total
inject(T7) concat(T7) 99.83 100 93.35 99.05
inject(T7) mix(T7) 89.82 80.55 64.16 71.57
diverse(T7) concat(T7) 99.58 100 78.36 96.94
diverse(T7) mix(T7) 100 98.44 93.84 95.8

inject(T12) concat(T12) 99.94 99.97 91.91 99.35
inject(T12) mix(T12) 92.45 85.29 67.67 72.2
diverse(T12) concat(T12) 99.75 98.73 76.81 97.73
diverse(T12) mix(T12) 99.01 96.29 81.24 84.82

Table 4: Enriching the training data. Injecting
knowledge to the original bAbI tasks doesn’t
substantially improve compositionality. Sampling more
structurally diverse instances yields more significant
improvements, though is still limited, especially for
more complex compositions.

share the same location (e.g., line 10 question in
Fig. 1c). Error analysis shows that such implicit
inferences are indeed challenging for models
trained on the concat splits (see details in appendix
A.5). Perhaps the inject splits supplementing
the original tasks with relevant information will
improve compositionality performance? Table 4
displays the result of this experiment; performance
on mix is improved only marginally, despite a 3-
fold increase in training data (Table 2).

Sampling structurally diverse training data. As
shown in Table 2, though inject splits significantly
increase dataset size, their diversity remains
low: most questions require only one or two
supporting facts. Therefore, we next enrich training
data through sampling more structurally diverse
samples. This method is known to improve data
efficiency for both compositional generalization
as well as IID settings (Oren et al., 2021). As
can be seen in Table 4, training on the diverse
splits yields a more significant improvement;
similar to the findings of Oren et al. (2021),
sampling more diverse training data leads to greater
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Accuracy on where-O
questions over all

instances with f_c=
{GIVE,MOVE}, n<=2

Figure 3: Error analysis on mix(T12) for T5 trained on diverse(T12) data. The sub-plots break down performance
on questions requiring {≤ 2, 3,≥ 4} supporting facts. For each sub-plot, the left side of each row corresponds to
a particular support composition (fc), and the right side displays accuracy over inputs sharing fc, across various
question types. Performance on fc seen at training time (blue frames) is generally high, but overall generalization is
not systematic, as evidenced by high variance across different fc, especially for higher complexity (n = 3, n ≥ 4)
and more novel compositions.

generalization as well as much improved data
efficiency.10 However, as the error analysis of the
next section shows, performance on compositional
generalization is still fundamentally limited.

4.2.1 Discussion and error analysis
Figure 3 breaks down the performance of T5
on mix(T12) after training on diverse(T12). The
heatmaps plot performance across various support
compositions (fc) occurring in the test data, sub-
divided by the number of required supporting
facts n per question. Performance on support
compositions seen at training time (blue frames)
is generally high, indicating the importance of
training pattern diversity for better generalization.
The plots indicate that T5 shows some ability to
generalize to new support compositions, especially
for lower n. Furthermore, certain question types
appear to be more learned more robustly; for
list and count questions, performance remains
relatively high even for larger n and across novel
fc. We hypothesize that such questions may be
easier as simple counting rules suffice to reach
an answer, and these are “close to the surface”;
unlike other events that may implicitly convey

10The relatively low performance of diverse trained models in
the “3+” column for concat splits is predominantly due to
length discrepancies at train and test time: concat contains
some very long stories which are challenging for the model
trained on the uniform length and shorter diverse stories.

Figure 4: Example mix(T12) instance demonstrating
the question phrasing sensitivity failure mode in T5: the
model correctly answers the question in where-P form
(line 22), and incorrectly in yes-no form (line 21).

information, in our stories, changes of possession
are always explicit in the text.

In general however, the plots indicate that T5 is
far from robust compositional generalization:

Performance deteriorates with increased
complexity. Performance is near perfect for simple
compositions (n ≤ 2) but deteriorates significantly
for more complex cases (n ≥ 3).

108



Question phrasing sensitivity. The discrepancy
between the relatively high performance on
where-P questions compared with very low
performance on yes-no questions suggests that
models are learning highly question-dependent
story representations. E.g., if a model answers
y correctly to some “Where is p?” question, we
would expect it to answer “yes” correctly for the
same question in yes-no format, “Is p at y?”. Figure
4 shows a characteristic example: T5 answers
correctly in the where-P format, but incorrectly
answers “maybe” for the yes-no format, likely
thrown off by the distractor indefinite phrase in
sentence 3.

We present further empirical support for
question phrasing sensitivity in appendix A.6.
These results suggest models may be learning
shortcuts that work well for the story/question pairs
seen at training time, but not more robust rules
that also generalize to novel test instances. Such
highly question-dependent story representation
stands in contrast to more human-like narrative
comprehension, which is thought to involve the
construction of situation models, or structured
representations of entities and their relations as
depicted by the text. Situation models are less
dependent on a-priori knowledge of a question
(or its phrasing), and are often generated on-line
during the course of comprehension (Graesser et al.,
1994).

Performance below chance for certain question
types. The heatmaps expose a particularly
challenging class of yes-no questions involving
disjunctions over indefinites (center and right plots,
bottom right); accuracy for such questions is close
to zero. See appendix A.7 for an example instance.

5 Future work & conclusions

Our work opens up multiple new directions
for future research. Our new tool, Dyna-bAbI
is readily extendable for systematic probing of
more diverse linguistic phenomena. A beneficial
first step could include integration of additional
bAbI tasks. That said, our experience suggests
that the design of truly scalable synthetic and
dynamic benchmarks poses significant theoretical
and engineering challenges, warranting deeper
research on their own right.

Our results raise new questions about the
viability of learning robust situation models using
standard question-answering training, and our

datasets present new challenges for future efforts.
Additionally, Dyna-bAbI can naturally

complement parallel work probing the the situation
representations constructed by neural language
models (Li et al., 2021) by facilitating tailored data
generation for specific questions, thus broadening
and deepening the scope of possible research.

In conclusion, we introduced Dyna-bAbI, a
new framework for highly controllable bAbI task
generation. We used it to create compositional
generalization datasets providing new modelling
challenges for state-of-the-art neural language
models. More broadly, our results underscore
the importance in development of benchmarks
themselves, beyond only the models solving them.

Broader Impact

While large, neural language models are
increasingly seen as foundations for a wide array
of NLP tasks, we still lack a clear understanding
of their capabilities and failure modes. Our work
joins many recent efforts using carefully controlled
synthetic tasks to more rigorously evaluate models’
language comprehension abilities.

While our choice of a synthetic language
benchmark allows more precise control over
evaluation, the synthetic nature of the data is an
obvious limitation. Similar to the original bAbI
benchmark, our tasks are not a substitute for
real natural language datasets, but should rather
complement them. Even if a method works well
on our data, it should be shown to perform well
on real data as well. Rather, our tasks are better
thought of as comprehension “unit-tests”, where
poor performance on our tasks serves as a warning
sign suggesting the model may exhibit limited
systematicity and robustness on more difficult,
naturalistic inputs.
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A Appendix

A.1 Extended task construction details

This section provides further details of the training
and test splits used for our experiments.

Table 5 enumerates the basic “building blocks”,
or concepts underlying the tasks, as presented in
§3.2.

Tables 6 and 7 detail the concept sets for each of
the sub-tasks comprising the training and test sets,
for the T2, T7 and T12 groups of tasks.

As can be seen from the tables, the main sources
of compositionality are:

• Following the bAbI 1.0 task structure, at
training time, all of the more complex
linguistic constructs are seen only with
MOVE events (and none of the other event
types).

• Similarly, at training time, yes-no questions
are always seen only with MOVE events (and
none of the other event types), and with the
INDEF or NEGATE linguistic constructs (but
not others, such as COREF).

• where-was-O questions are never seen in
stories with GIVE events.

Language templates. For our new generated tasks
we use the same language templates as used in the
original bAbI 1.0 benchmark (e.g., the same entity
names, verb synonyms). The only modification
to the language generation engine was that we
completely omit the use of “there”; in the original
benchmark, “there” could be used in confusing
contexts, as shown in Fig. 5.

A.1.1 Example instances
Figure 6 shows examples from each of the 4
types of splits used in our experiments. The
concat instance is from the original bAbI 1.0 task
5. The inject data contains the same passages
as concat, but adds supplementary questions on
agent and object locations. diverse instances

1 Mary journeyed to the bathroom.
2 Sandra went to the garden.
3 Daniel went back to the garden.
4 Daniel went to the office.
5 Sandra grabbed the milk there.
6 Sandra put down the milk there.
7 Where is the milk? garden 6 2

Figure 5: Example from original bAbI 1.0 benchmark
with confusing usage of “there”. In Dyna-bAbI we do
not include “there”, to avoid this confusion.

contain more diverse support compositions (fc),
but certain combinations are held out. In particular,
diverse instances only feature non-default linguistic
mappings with MOVE events, never with POSS
(GRAB or DROP) or GIVE. In the mix instances,
all combinations of support compositions are
possible, as shown in the example which features
possession (POSS) events along with co-reference.

A.1.2 Long instances in the bAbI 1.0 tasks
For the T5 experiments, we used a slightly
modified version of the bAbI 1.0 tasks, where
we trimmed all training and validation examples
that didn’t fit into the 512-token input window.
This resulted in trimming 1,585 training instances
and 175 validation instances from T7 and T12
(common to both sets). These data points are
not consequential as our analysis focuses on the
effects of compositionality and not story length;
all instances in diverse and mix are substantially
shorter than the 512-token maximum input window
size.

A.2 Implementation details

T5. We use the publicly available HuggingFace
pre-trained T5-base implementation (Wolf et al.,
2020) which has 220M parameters. We similarly
use the HuggingFace tokenization pipeline. We
fine-tune T5 for 12 epochs on our bAbI data, using
the Adam optimizer (Kingma and Ba, 2017), an
initial learning rate of 5 ∗ 10−5 and training batch
size of 8.
STM. We used the official STM implementation11,
with the only change being a batch size of 32
instead of 128, due to technical constraints.
EntNet. We re-implemented the model in PyTorch,
similarly using a batch-size of 32. Following the
official Lua reference implementation12, we used
20 memory units each with dimension 100. We
used the SGD optimizer.

For both the EntNet and STM, we trained models
for 200 epochs, and took the best of 10 tries,
following Henaff et al. (2017).

For the 20-model concurrence benchmark, refer
to Liu et al. (2021) for model details, as we used
the same experimental setup.

11https://github.com/thaihungle/SAM
12https://github.com/facebookarchive/
MemNN/tree/master/EntNet-babi
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Events Template Example Notes

MOVE P {moved} to the L. John traveled to the park.
GRAB P {grabbed} the O. Mary picked up the apple.
DROP P {dropped} the O. Daniel dropped the milk.
GIVE P1 {gave} P2 the O. John handed Mary the apple.

Linguistic
Constructs

COREF
P (MOVE|GRAB|DROP)
Following that, {he}
(MOVE|GRAB|DROP).

John went to the garden.
Following that, he moved to the store Co-reference

CONJ P1 and P2 {moved} to the L1. Jeff and Fred went to the cinema. Conjunction

COMPOUND P1 and P2 {moved} to the L1.
Then they {moved} to the L2.

Jeff and Fred went to the cinema.
Then they traveled to the school. Compound co-reference

NEGATE P is not at the L. Julie is not in the park. Negation
INDEF P is either at the L1 or the L2. John is either in the park or the school. Indefinite expression

Questions

where-P Where is P? Where is John?
where-O Where is the O? Where is the football?
where-was-O Where was the O before the L? Where was the football before the hallway?
yes-no Is P at the L? Is John at the park?
list What is P carrying? What is John carrying?
counting How many objects is P carrying? How many objects is John carrying?

give-qs

Who gave the O to P2?
Who gave the O?
Who received the O?
Who did P1 give the P2 to?
What did P1 give to P2?

Who gave the football to John?
...

Constitutes multiple
question types over
GIVE events.

Table 5: Details of the events, linguistic constructs and questions constituting the bAbI tasks covered in this work.
Words in {brackets} are drawn from a small set of synonyms.

Figure 6: Example instances from each of the 4 types of splits used in our experiments.
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Events Linguistic Constructs Questions

Sub-task Type M
ov

e
Grab Drop Give Co-r

efe
ren

ce

Con
jun

cti
on

Com
po

un
d co

-re
f.

whe
re-

P

whe
re-

O

whe
re-

was-
O

giv
e

1 Train ! !

2 Train ! ! ! I/D !

3 Train ! ! ! I I !

5 Train ! ! ! ! I/D I/D !

11 Train ! ! !

12 Train ! ! !

13 Train ! ! !

mix(T2) Test ! ! ! ! !

mix(T7) Test ! ! ! ! ! ! ! ! ! !

Table 6: Concept sets for the T2 and T7 sub-set of the original bAbI tasks, and the new tasks generated with
Dyna-bAbI. Train sub-task numbering follows the original bAbI numbering. The inject and diverse tasks inherit the
same concept set from the original tasks, and additionally “I”, “D” denote question types included only in the inject
or diverse tasks, respectively. “I/D” denotes question types included in both.

Events Linguistic Constructs Questions

Task Type M
ov

e
Grab Drop Give Co-r

efe
ren

ce

Con
jun

cti
on

Com
po

un
d co

-re
f.

Neg
ati

on

Ind
efi

nit
e

whe
re-

P

whe
re-

O

whe
re-

was-
O

ye
s-n

o

co
un

tin
g

lis
t

giv
e

1 Train ! !

2 Train ! ! ! I/D !

3 Train ! ! ! I I !

5 Train ! ! ! ! I/D I/D !

6 Train ! I/D !

7 Train ! ! ! ! I I !

8 Train ! ! ! I I !

9 Train ! ! I/D !

10 Train ! ! I/D !

11 Train ! ! !

12 Train ! ! !

13 Train ! ! !

mix(T12) Test ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Table 7: Concept sets for the T12 sub-set of the original bAbI tasks, and the new tasks generated with Dyna-bAbI.
Train sub-task numbering follows the original bAbI numbering. The inject and diverse tasks inherit the same
concept set from the original tasks, and additionally “I”, “D” denote question types included only in the inject or
diverse tasks, respectively. “I/D” denotes question types included in both.
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For the T5 experiments, we used the
PyTorch Lightning (Falcon et al., 2019) trainer
implementation, and Weights & Biases (Biewald,
2020) for experiment tracking and artifacts
management.

We used standard hyper-parameter settings for
all models, with slight changes in the case of
memory issues as described above.
Experimental infrastructure details. Our
experiments were performed using an RTX-8000
GPU, with a total computational budget of roughly
1,000 GPU hours.

A.3 Inoculation experiment results
To rule out the hypothesis that certain patterns may
be too hard for models to learn, we follow the
inoculation methodology presented in Liu et al.
(2019): after training on the original tasks, we fine-
tune the T5 on small amounts of OOD data (disjoint
from the test data), and evaluate performance as a
function of “inoculation dose”. As can be seen in
Fig. 7, we find that performance quickly (with only
500 additional inoculation samples per question
type) reaches over 90% accuracy on both the
mix(T7) and mix(T12) challenge sets. These results
support the hypothesis that the training data is not
rich enough, indicating clearly that the model is
capable of quickly learning to solve the challenge
tasks, given exposure to training samples with
similar enough patterns.

A.4 Concurrence experiments
Table 8 presents the full results for the concurrence
experiments of §4.1. SQuAD and bAbI task 2
results are reproduced from Liu et al. (2021), see
there also for implementation details of the models
used.

A.5 Extended error analysis: GIVE events
We analyze the performance of models on the
mix(T7) split after being trained on concat(T7), and
in particular we focus on GIVE events. As noted in
§4.2, compositions involving GIVE are intuitively
challenging as they entail multiple inferences
which are not explicit in the text: the actors share
the same location, and the possession of the object
being given is transferred from the giver to the
recipient. The only task in concat(T7) featuring
GIVE events is task 5, which never asks about the
locations of actors or objects, but only about the
participant roles in the event (e.g., who was the
giver or recipient; see Fig. 1 example from task 5).

Model Evaluation accuracy

SQuAD mix(T2) mix(T7) babi task 2
rasor 64.86 88.20 35.03 100.00
bidaf 67.39 97.20 30.50 100.00
documentreader 69.66 90.20 40.70 100.00
documentreader
(no_features) 69.21 82.50 37.17 100.00

bidafplusplus 69.49 99.50 44.20 80.70
mnemonicreader 73.02 98.20 39.63 100.00
mnemonicreader
(no_features) 72.67 97.50 38.20 100.00

qanet 72.41 67.70 - 100.00
fusionnet 72.90 99.50 39.73 100.00
fusionnet
(no_features) 72.24 88.10 37.80 100.00

bert 81.46 95.50 47.63 100.00
bert_large 84.17 98.30 59.10 100.00
bert_large_wwm 87.33 98.70 67.63 99.90
albert 81.86 98.20 56.70 100.00
albert_xxlarge 89.07 99.80 80.00 100.00
roberta 83.37 98.70 57.70 100.00
roberta_large 86.96 99.80 64.07 100.00
electra 85.88 98.70 53.47 100.00
spanbert 86.20 98.40 55.70 99.50
spanbert_large 88.74 98.60 62.27 95.40

Table 8: Full results of concurrence experiments
presented in §4.1.

Figure 7: Inoculation experiment results.

Num.
supporting facts

Num.
samples Evaluation accuracy

BiDAF RoBERTa T5
1 334 53.3 93.4 86.8
2 (w/o GIVE) 734 51.50 82.3 71.8
2 (with GIVE) 99 3.03 7.07 5.05
3 (w/o GIVE) 1365 24.6 47.2 44.3
3 (with GIVE) 468 4.27 7.05 15.2

Table 9: Breakdown of model performance on mix(T7)
for questions including (or not) GIVE events in the
supporting fact set. The poor performance on questions
including GIVE indicates that training on the bAbI
1.0 data does not facilitate generalization to novel
compositions of GIVE.
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where-P (→)
yes-no (↓)

correct incorrect

correct 209 4
incorrect 145 88

Table 10: Confusion matrix displaying question
phrasing sensitivities in T5. We pose a question in two
formats: (1) yes-no: “Is X at L? yes” vs (2) where-P:
“Where is X? L”. We find performance is considerably
higher for questions posed in the where-P format,
indicating the model isn’t learning the equivalence of
both forms.

To measure this intuition empirically, we analyze
a subset of 567 questions including GIVE events
in the supporting facts set. As shown in Table 9,
performance for all models on questions including
GIVE is extremely low, far below performance for
questions without it. Qualitative analysis indicates
many failure cases follow the pattern shown in the
right-side example of Fig. 1c, question on line
10: the location of an entity (e.g., Daniel) must be
inferred via the known (co-)location of a second
participant in the GIVE event (e.g., Jeff). These
results strengthen the hypothesis that standard QA
training on the original bAbI data does not drive
strong event comprehension in models.

A.6 Extended error analysis: question
phrasing sensitivity

This section presents further empirical analysis
of the question phrasing sensitivities discussed in
§4.2.1, relating to the performance of the T5 model
trained on the diverse(T12) data and evaluated on
the challenge set mix(T12).

We collected all yes-no questions from mix(T12)
for which the answer was “yes”, yielding 446
questions in total. For each such (question, answer)
pair, of the form (“Is person at the location?”,
“yes”), we created an equivalent pair in the format
of a where-P question, (“Where is person?”,
location). Figure 4 shows a characteristic
example. Ideally, we would expect a model to
be agnostic to equivalent phrasings of a question.
However, as displayed in Table 10, we find that T5
is considerably more accurate for questions posed
in the where-P format, likely due to exposure to a
larger variety of such questions at training time.

1 Bill grabbed the milk.
2 Bill put down the milk.
3 John is either in the bedroom or the kitchen.
4 Fred journeyed to the kitchen.
5 John grabbed the football.
6 Following that he put down the football.
7 Bill picked up the milk.
8 Following that he went to the bedroom.
9 Bill is in the office.
10 Bill is in the cinema.
11 Bill passed the milk to Julie.
12 Julie handed the milk to Bill.
13 Jeff is not in the school.
14 John took the football.
15 Fred and Jeff moved to the school.
16 Afterwards they journeyed to the bathroom.
17 Bill handed the milk to Julie.
18 John dropped the football.
19 Daniel is either in the school or the
bedroom.
20 Daniel took the football.
21 Is John in the bedroom? yes 3 18 19 20

Figure 8: Double disjunction example from mix(T12).

A.7 Extended error analysis: double
disjunctions

As the shown in the §4.2.1 error analysis, a
particularly difficult class of questions are double
disjunctions over indefinite expressions. Figure 8
displays a typical example from mix(T12), where
the locations of two actors are given in indefinite
form (sentences 3 and 19), and are also known to
be co-located, since they share the location of the
object “football”, as inferred from sentences 18 and
20. Hence it is possible to infer their location as the
intersection of the two indefinite expressions (here
“bedroom”). Rather than answering “yes” to the
question “Is John in the bedroom?”, T5 invariably
answers “maybe” for such cases. This pattern
is likely due to the fact that in the training data
“maybe” is a typical answer for yes-no questions
about actors mentioned by indefinite expressions
(task 10 in bAbI 1.0).
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B Datasheet for datasets

Motivation

For what purpose was the dataset created?
Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please
provide a description.

Few synthetic resources for probing NLP
models’ performance on discourse-level narrative
understanding texts. Existing resources lack
customizability (control over data created +
amenable to extension).

Who created this dataset (e.g., which
team, research group) and on behalf of
which entity (e.g., company, institution,
organization)?
Joint team of researchers at Hebrew University

of Jerusalem (Israel) and the Allen Institute for
Artifical Intelligence.

Who funded the creation of the dataset? If
there is an associated grant, please provide
the name of the grantor and the grant name
and number.

Work was supported by the Center for
Interdisciplinary Data-science Research (CIDR)
at HUJI. This work was also supported by the
European Research Council (ERC) under the
European Union’s Horizon 2020 research and
innovation programme (grant no. 852686, SIAM)
and NSF-BSF grant no. 2017741 (Shahaf). Part of
this research is also supported by the European
Research Council, ERC-StG grant no. 677352
(Tsarfaty).

Any other comments?

Composition

What do the instances that comprise the
dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types
of instances (e.g., movies, users, and ratings;
people and interactions between them; nodes
and edges)? Please provide a description.
Instances represent variable length stories.

How many instances are there in total (of
each type, if appropriate)?
Any size dataset can be created (programmatic

generation).

Does the dataset contain all possible
instances or is it a sample (not necessarily

random) of instances from a larger set?
If the dataset is a sample, then what is the
larger set? Is the sample representative of the
larger set (e.g., geographic coverage)? If so,
please describe how this representativeness
was validated/verified. If it is not representative
of the larger set, please describe why not
(e.g., to cover a more diverse range of
instances, because instances were withheld
or unavailable).
Used rejection sampling for some datasets to cover
more diverse instances.

What data does each instance consist
of? “Raw” data (e.g., unprocessed text or
images) or features? In either case, please
provide a description.
Simple textual stories generated using templates

(“John went to the kitchen. He grabbed the apple.”).

Is there a label or target associated with
each instance? If so, please provide a
description.
Each instance is accompanied by a (question,

answer) pair, both in natural language.

Is any information missing from individual
instances? If so, please provide a description,
explaining why this information is missing (e.g.,
because it was unavailable). This does not
include intentionally removed information, but
might include, e.g., redacted text.
N/A

Are there recommended data splits (e.g.,
training, development/validation, testing)?
If so, please provide a description of these
splits, explaining the rationale behind them.
The data is organized in splits, which are explained
in section 4 of the paper.

Are there any errors, sources of noise, or
redundancies in the dataset? If so, please
provide a description.
Template based language generation may result in
somewhat unnatural texts.

Is the dataset self-contained, or does it link
to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If
it links to or relies on external resources, a)
are there guarantees that they will exist, and
remain constant, over time; b) are there official
archival versions of the complete dataset
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(i.e., including the external resources as they
existed at the time the dataset was created); c)
are there any restrictions (e.g., licenses, fees)
associated with any of the external resources
that might apply to a future user? Please
provide descriptions of all external resources
and any restrictions associated with them,
as well as links or other access points, as
appropriate.
Self contained.

Does the dataset contain data that,
if viewed directly, might be offensive,
insulting, threatening, or might otherwise
cause anxiety? If so, please describe why.
No.

Does the dataset relate to people? If not,
you may skip the remaining questions in this
section.
No.

Any other comments?

Collection Process

How was the data associated with each
instance acquired? Was the data directly
observable (e.g., raw text, movie ratings),
reported by subjects (e.g., survey responses),
or indirectly inferred/derived from other
data (e.g., part-of-speech tags, model-
based guesses for age or language)? If
data was reported by subjects or indirectly
inferred/derived from other data, was the data
validated/verified? If so, please describe how.
Programmatically generated using logical rules

and templates.

If the dataset is a sample from a larger
set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific
sampling probabilities)?

Rejection sampling was used in some cases,
described in Section 4.

Does the dataset relate to people? If not,
you may skip the remaining questions in this
section.
No.

Any other comments?

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling
of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech
tagging, SIFT feature extraction, removal of
instances, processing of missing values)?
If so, please provide a description. If not, you
may skip the remainder of the questions in this
section.
No.

Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so,
please provide a link or other access point to
the “raw” data.
N/A

Is the software used to
preprocess/clean/label the instances
available? If so, please provide a link or other
access point.
N/A

Any other comments?

Uses

Has the dataset been used for any tasks
already? If so, please provide a description.

Benchmark to guide model development for
reading comprehension and textual reasoning tasks.

Is there a repository that links to any or all
papers or systems that use the dataset?
If so, please provide a link or other access
point.

Not currently, we will use the https://
paperswithcode.com/ integration to track
results.

What (other) tasks could the dataset be
used for?
N/A

Is there anything about the composition of
the dataset or the way it was collected and
preprocessed/cleaned/labeled that might
impact future uses? For example, is there
anything that a future user might need to
know to avoid uses that could result in
unfair treatment of individuals or groups (e.g.,
stereotyping, quality of service issues) or
other undesirable harms (e.g., financial harms,
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legal risks) If so, please provide a description.
Is there anything a future user could do to
mitigate these undesirable harms?
N/A

Are there tasks for which the dataset
should not be used? If so, please provide a
description.
Similar to the original bAbI benchmark, our

tasks are not a substitute for real natural language
datasets, but should rather complement them. Even
if a method works well on our data, it should be
shown to perform well on real data as well. Rather,
our tasks are better thought of as comprehension
“unit-tests”, where poor performance on our tasks
serves as a warning sign suggesting the model
may exhibit limited systematicity and robustness
on more difficult, naturalistic inputs.

Any other comments?

Distribution

Will the dataset be distributed to third
parties outside of the entity (e.g., company,
institution, organization) on behalf of which
the dataset was created? If so, please
provide a description.
N/A

How will the dataset will be distributed (e.g.,
tarball on website, API, GitHub) Does the
dataset have a digital object identifier (DOI)?
Github + Weights and Biases. No DOI currently.

When will the dataset be distributed?
Data and code-base for task generation to be

uploaded upon publication.

Will the dataset be distributed under a
copyright or other intellectual property (IP)
license, and/or under applicable terms of
use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access
point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees
associated with these restrictions.
Will be available with standard MIT license.

Have any third parties imposed IP-based or
other restrictions on the data associated
with the instances? If so, please describe
these restrictions, and provide a link or other
access point to, or otherwise reproduce, any

relevant licensing terms, as well as any fees
associated with these restrictions.
N/A

Do any export controls or other regulatory
restrictions apply to the dataset or to
individual instances? If so, please describe
these restrictions, and provide a link or other
access point to, or otherwise reproduce, any
supporting documentation.
N/A

Any other comments?

Maintenance

Who will be
supporting/hosting/maintaining the
dataset?
Corresponding author of paper.

How can the owner/curator/manager of
the dataset be contacted (e.g., email
address)?
Via email with corresponding author, and through
dedicated GitHub repository.

Is there an erratum? If so, please provide a
link or other access point.
N/A

Will the dataset be updated (e.g., to correct
labeling errors, add new instances, delete
instances)? If so, please describe how
often, by whom, and how updates will be
communicated to users (e.g., mailing list,
GitHub)?
Extensions will be maintained via GitHub.

If the dataset relates to people, are there
applicable limits on the retention of the
data associated with the instances (e.g.,
were individuals in question told that their
data would be retained for a fixed period
of time and then deleted)? If so, please
describe these limits and explain how they will
be enforced.
N/A

Will older versions of the dataset continue
to be supported/hosted/maintained? If so,
please describe how. If not, please describe
how its obsolescence will be communicated to
users.

121



Data versioning supported natively through
Weights and Biases.

If others want to extend/augment/build
on/contribute to the dataset, is there a
mechanism for them to do so? If so, please
provide a description. Will these contributions
be validated/verified? If so, please describe
how. If not, why not? Is there a process for
communicating/distributing these contributions
to other users? If so, please provide a
description.
The codebase can be freely extended, we will only
be responsible of course for changes to the main
branch.

Any other comments?
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