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Abstract

Recognizing and categorizing lexical colloca-
tions in context is useful for language learning,
dictionary compilation and downstream NLP.
However, it is a challenging task due to the
varying degrees of frozenness lexical colloca-
tions exhibit. In this paper, we put forward a
sequence tagging BERT-based model enhanced
with a graph-aware transformer architecture,
which we evaluate on the task of collocation
recognition in context. Our results suggest that
explicitly encoding syntactic dependencies in
the model architecture is helpful, and provide
insights on differences in collocation typifica-
tion in English, Spanish and French.'

1 Introduction

Native speech is idiosyncratic. Of special promi-
nence are syntactically-bound restricted binary co-
occurrences of lexical items, in which one of the
items conditions the selection of the other item.
Consider a CNN sports headline from 02/15/2021:

Rafael Nadal eases into Australian Open
quarterfinals, remains on course for
record-breaking grand slam (cnn.com).

In this short headline, we see already three of
such co-occurrences: ease [into] quarterfinals, re-
main [on] course, and record-breaking grand slam.
Quarterfinals conditions the selection of [fo] ease
[into], course of remain [on], and grand slam of
record-breaking. The idiosyncrasy of these co-
occurrences becomes obvious when we look at
them from a multilingual angle. Thus, in French,
instead of the literal translation of ease [into], we
would use se qualifier ‘qualify [oneself]’, in Span-
ish, remain [on] will be translated as seguir [en]
‘continue in’, and in Italian record-breaking will be
da record, lit. ‘of record’ — while the translation of
'Data and code are available at

https://github.com/TalnUPF/
graph-aware-collocation-recognition.
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quarterfinals, course, and grand slam will be literal.
In lexicology, such binary co-occurrences are re-
ferred to as collocations (Hausmann, 1985; Cowie,
1994; Mel’Cuk, 1995; Kilgarriff, 2006), with the
conditioning item called the base and the condi-
tioned item the collocate. Collocations in this sense
are of high relevance to second language learning,
lexicography and NLP alike, and constitute a chal-
lenge for computational models because of their
heterogeneity in terms of idiosyncrasy and degree
of semantic composition (Mel’Cuk, 1995).

Research in NLP has already addressed a num-
ber of collocation-related tasks, in particular: (1)
collocation error detection, categorization, and cor-
rection in writings of second language learners
(Ferraro et al., 2011; Wanner et al., 2013; Ferraro
et al., 2014; Rodriguez-Fernandez et al., 2015); (2)
creation of collocation-enriched lexical resources
(Espinosa-Anke et al., 2016; Maru et al., 2019;
Di Fabio et al., 2019); (3) use of knowledge on
collocations in downstream NLP tasks, among
them, e.g., machine translation (Seretan, 2014),
word sense disambiguation (Maru et al., 2019), nat-
ural language generation (Wanner and Bateman,
1990), or semantic role labeling (Scozzafava et al.,
2020); (4) probes involving collocations for under-
standing to which extent language models are able
to identify non-compositional meanings (Shwartz
and Dagan, 2019; Garcia et al., 2021); and (5)
detection and categorization of collocations with
respect to their semantics (Wanner et al., 2006;
Espinosa Anke et al., 2019; Levine et al., 2020;
Espinosa-Anke et al., 2021). It is this last task
which is the focus of this paper.

In general, collocation identification and cate-
gorization tend to be treated as two disjoint tasks.
Most of the research deals only with collocation
identification (Smadja, 1993; Lin, 1999; Pecina
and Schlesinger, 2006; Bouma, 2009; Dinu et al.,
2014; Levine et al., 2020). Some works deal with
the categorization of manually precompiled lists
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of collocations, either in isolation (Wanner, 2004,
Wanner et al., 2006; Espinosa Anke et al., 2019) or
with their original sentence-level contextual infor-
mation (Wanner et al., 2017). Only a few works
in the early phase of the neural network era of
NLP address the problem of collocation identifica-
tion and semantic categorization as a joint task in
monolingual settings (Rodriguez-Ferndndez et al.,
2015; Espinosa-Anke et al., 2016). Accordingly,
the performance of the models put forward in these
works is still rather low. In this paper, we pro-
pose a sequence tagging framework for simultane-
ous collocation identification and categorization,
with respect to the taxonomy of lexical functions
(LFs) (Mel’¢uk, 1996). The proposed framework
is based on mono- and multilingual BERT-based
sequence taggers, which are enhanced by a Graph-
aware Transformer (Mohammadshahi and Hender-
son, 2020, 2021a) in order to ensure that the spe-
cific syntactic dependencies between the base and
the collocate are taken into account. The sequence
taggers are executed as part of a multitask learning
setup, which is complemented by a sentence classi-
fication task, which predicts the occurrence of an
instance of a specific LF instance in the sentence un-
der consideration. Our results for English, French
and Spanish show the flexibility of our framework
and shed light on the multilingual idiosyncrasies of
collocations.

2 Background on Collocations

Although widely used in lexicology in the sense de-
fined above, the term collocation is ambiguous in
linguistics. As introduced by Firth (1957), it refers
to common word co-occurrences in discourse in
general. Thus, cast and vote, strong and tea, but
also public and sector, night and porter, supermar-
ket and price form collocations in English in Firth’s
sense. In computational linguistics, Firth’s defini-
tion has been taken up, e.g., by (Church and Hanks,
1989; Lin, 1999; Evert, 2007; Pecina, 2008; Bouma,
2009; Dinu et al., 2014; Levine et al., 2020). To
avoid confusion between the two different senses,
Krenn (2000) proposed to use the narrower term
lexical collocation to refer to restricted binary lexi-
cal item co-occurrences. In what follows, we will
use this term to refer to the definition underlying
our work.

Lexical collocations can be typified with respect
to the meaning of the collocate and the syntac-
tic structure formed by the base and the collocate.
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relation example LF label
intense heavyc ~ smokerp Magn

minor occasionalc ~ smokerg AntiMagn
genuine legitimatec ~ demandp Ver
non-genuine illegitimatec ~ demandg ~ AntiVer
Increase.existence temperaturep ~ risec IncepPredPlus
End.existence fireg ~ go outc FinFuncO
A0.Come.to.effect avalanchep ~ strikec Fact0
A0/A1.Cause.existence raisec ~ hopep CausFunc0

A0/A1.Cause.function
Cause.decrease
A0/A1.Cause.involvement

startc ~ enginep
relievec ~ tensiong
raisec hopeg [in]

CausFactO
CausPredMinus
CausFuncl

Emit.sound elephanty ~ trumpetc Son
AO0/Al.act lendc ~ supportg Operl
A0/A1.begin.act gaing ~ impressiong IncepOperl
AO0.end.act withdrawc ~ supportp FinOperl
AO0/Al.Act.acc.expectation provec ~ accusationp Reall
A2.Act.acc.expectation enjoyc ~ supportg Real2
A2.Act.x.expectation betrayc ~ trustg AntiReal2

Table 1: LF relations used in this paper. ‘A;’ refer to
AMR argument labels (Banarescu et al., 2013).

Practical collocations dictionaries such as, e.g., the
Oxford Collocations Dictionary® or the McMillan
Collocations Dictionary®, already offer a coarse-
grained semantic typification. However, their typi-
fication still does not make a distinction between,
e.g., control and cut in co-occurrence with expen-
diture or between cavernous and palatial in co-
occurrence with room — distinctions which are
essential in the context of both second language
learning and NLP. To the best of our knowledge,
lexical Functions (LFs) (Mel’Cuk, 1996) are the
most fine-grained taxonomy of lexical collocations.

A lexical function (LF) is defined as a func-
tion f(B) that delivers for a base B a set of
synonymous collocates that express the meaning
of f. LFs are assigned Latin abbreviations as
labels; cf., e.g., “Operl” (“operare” ‘perform’):
Operl(condolences) = {convey, express, extend};
“Magn” (“magnum” ‘big’/‘intense’): Magn(grief) =
{deep, inconsolable, great, ...}. Each LF can also
be considered as a specific lexico-semantic relation
between the base and the collocate of a collocation
in question (Evens, 1988). Table 1 displays the
subset of the relations we experiment with, along
with their corresponding LF names and illustrative
examples.

As seen in Table 1, where pertinent, an LF label
also encodes the subcategorization structure of the
base+collocate combination; cf., e.g., FinFunc0,
Operl, Real2, etc. Thus, the index ‘1’ in Operl
encodes the information that the first argument of
the base (A0/A1) is realized as grammatical sub-
ject and the base itself as object; the ‘2’ in Real2

Zhttps://www.freecollocation.com/
3https://www.macmillandictionary.com/collocations



encodes the realization of the second argument of
the base (A2) as grammatical subject and the base
as object; etc. This generic structure translates into
a number of Universal Dependency (UD) patterns.

3 Related Work

Previous works that consider collocations in a
Firthian sense look at word adjacency in terms
of n-grams (Smadja, 1993), although most often,
statistical measures of co-occurrence are used; cf.
Pearce et al. (2002); Pecina and Schlesinger (2006);
Pecina (2010); Garcia et al. (2019). Some comple-
ment statistical measures by morphological (Krenn
and Evert, 2001; Evert and Krenn, 2001) and/or
syntactic (Heid and Raab, 1989; Lin, 1999; Seretan
and Wehrli, 2006) patterns. In view of the asym-
metrical nature of the relation between the base
and the collocate, e.g., Gries (2013) proposes to
investigate “directional measures” as an addition
to association measures; Carlini et al. (2014) ex-
plicitly encode this asymmetry in terms of NPMI
(Bouma, 2009), which is a normalized version of
PMI; see also (Garcia et al., 2019). In the colloca-
tion classification task, substantial research focused
on the identification of Light Verb Constructions,
which are captured by the Oper- (and partially by
the Real-) families of LFs; cf., e.g., (Dras, 1995;
Vincze et al., 2013; Kettnerova et al., 2013; Chen
et al., 2016; Cordeiro and Candito, 2019; Shwartz
and Dagan, 2019), whereas Huang et al. (2009)
and Wanner et al. (2017) focus on broad seman-
tic collocation categories. Several works also use
LFs as a collocation taxonomy. Thus, Wanner et al.
(2006) leverage a vector-based similarity metric on
a subset of LFs, whereas Gelbukh and Kolesnikova
(2012) explore a suite of classical supervised ML
algorithms.

More recently, word embeddings have been suc-
cessfully applied in unsupervised setups, e.g., Ro-
driguez Ferndndez et al. (2016a) use simple vec-
tor arithmetic. In supervised setups, we find, first,
the “collocate retrieval” approach proposed by Ro-
driguez Ferndndez et al. (2016b), who train a linear
transformation to go from a “base” to a “collocate”
vector space, exploiting regularities in multilingual
word embeddings (Mikolov et al., 2013), and sec-
ond, Espinosa Anke et al. (2019), who train an
SVM on a dedicated relation vector space for base
and collocate. Embeddings have also been used in
multilingual English/Spanish (Rodriguez Fernéan-
dez et al., 2016b) and English/Portuguese/Spanish
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Figure 1: Graph-to-Collocation Transformer, which gen-
erates a BIO-tagged sequence given a sentence with,
optionally, its parsed tree.

(Garcia et al., 2017) LF classification. While suc-
cessful, none of these approaches explicitly lever-
aged in the language model the crucial syntactic
dependency information between base and collo-
cate, or considered how sentence-level information
could benefit the extraction task — as we do.

4 Graph-to-Collocation Transformer

We propose a Graph-to-Collocation Transformer
(G2C-Tr) to: (1) cast collocation identification and
classification as a sequence tagging problem: as
pointed out above, lexical collocations are lexico-
semantic relations, and relation extraction has been
recently successfully addressed as sequence tag-
ging (Ji et al., 2021); (2) boost performance by
enabling multitask learning via joint sentence clas-
sification and LF-instance BIO tagging; and (3)
capture the asymmetric semantic and syntactic
dependency between the base and the collocate by
the use of a modified attention mechanism.

The G2C-Tr is implemented as a suite of BERT-
based models for joint sentence classification and
sequence tagging. The syntactic dependency graph
of the sentence is input to a G2C-Tr model through
its attention mechanism. Figure 1 illustrates the
framework of our model. Given the input sen-



tence W = (wy,wa, ..., wy), we first use a pre-
trained dependency parser DP() to build the de-
pendency graph G, and Part-of-Speech (PoS) tags
P = (p1, P2, ---, PN ). Due to the fact that each LF
is characterized by the PoS of its lexical items and
the syntactic dependency between them, this infor-
mation is of significant importance. Then, G2C-Tr

predicts the tagged sequence Y = (y1,y2,--,YN)
as follows:
P,G = DP(W)
H = Enc(W, P,G) (1)
Y = Dec(H)

where Enc(), Dec() are the encoder and decoder
parts of our model, described below. H
[hy, ..., h7] is the contextualised vector represen-
tation, and 7' is the length of the tokenized se-
quence. The parameters of DP() are frozen for
training.

4.1 Encoder

To compute the contextualised vector embeddings
H, we use a modified version of the Graph-to-
Graph Transformer model proposed by Moham-
madshahi and Henderson (2021a) to encode both
PoS tags (P) and the dependency graph (G). Let
us first introduce the encoding mechanism.

4.1.1 Input Embeddings

Given an input sentence (W) with its associated
PoS tags (P), the G2C-Tr model first computes
the input embeddings (X = (x1, X2, ...,x7)). To
make it compatible with BERT (Devlin et al., 2019),
we append two special tokens, CLS, and SEP to
the start and end of the tokenized sequence, re-
spectively. The input embeddings are calculated as
the summation of pre-trained token embeddings of
BERT, position embeddings, and PoS tag embed-
dings (as shown in the green part of Figure 1).

4.1.2 Self-attention Mechanism

Given the input embeddings (X), and a depen-
dency graph (), we compute the contextualised
vector representations (H) using a modified ver-
sion of the Transformer architecture. The origi-
nal Transformer model (Vaswani et al., 2017) is
composed of several Transformer layers. Each
Transformer layer includes a self-attention module
and a position-wise feed-forward network. Previ-
ous work (Ying et al., 2021; Mohammadshahi and
Henderson, 2020, 2021a,b) modified the attention
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Algorithm 1: Build Relation Matrix R
Inmput: Graph G = {(4,5,0)},j =1, ..,

/* i,j,l are parent node id,

T

*/
*/

dependent id and label
/+ CLS is the root node
Output: Relation Matrix R
1 R=zeros(T,T)
2 for (i,5,1) € Gdo
3 Tig = k‘l
4 rji = ki + ’G|

/* k; is the index of label [ */

mechanism by adding scalar biases to the atten-
tion scores (Ying et al., 2021), or multiplying the
query representation with relation vectors (Moham-
madshahi and Henderson, 2021a, 2020) to encode
graph structures.

Since in collocations, base and collocate are syn-
tactically related and LFs are characterized by spe-
cific dependency relations, we modify the attention
mechanism of the base transformer model to in-
ject syntactic information. In each Transformer
layer, given Z,, = (z1,22,...,27) as the output
representations of the previous layer, the attention
weights are calculated as a Softmax over the atten-
tion scores «;;, defined as:

1
Ny = —F— ZiWQZ'W/KT
RVEY (= W™)

+ ZiWQ (rij WE)T + I'Z'ij(Zj WK)T}
2
where W@ WK ¢ R%*? are learned query and
key parameters. W4 € RGI+1Xd s the graph
relation embedding matrix, learned during training,
dp, is the dimension of hidden vectors, d is the
head dimension of self-attention module, and |G|
is the overal number of dependency labels. r;; is
the one-hot vector representing both the relation
and direction of syntactic relation between token
x; and X, SO Iy; Wf selects the embedding vector
for the appropriate syntactic relation. Algorithm 1
shows the procedure of building relation matrix R.
Finally, we also add the graph information to the
value computation of the Transformer as:
exp( aw

Z Z exp ozlj)
cxp(a”)
> exp(aij)
weights, WV € R4 x4 is the learned value ma-
trix, WR R2IGI+1xd s the graph embedding

WV + rijW‘I,—%) 3)

where is the Softmax for the attention



parameter, and v; is the output representation of the
self-attention mechanism for the token ¢. To find
the output representations (H), we use the same
mechanism for position-wise feed-forward layer,
and layer normalisation as proposed in Vaswani
et al. (2017).

Intuitively, additional terms in Equation 2 (second
and third multiplications), and Equation 3 (second
addition) add a soft bias toward the syntactic in-
formation. The model can still decide to use the
injected syntactic information, or just rely on the
context information (first terms in both Equation 2
and 3).

4.2 Decoder

BERT-based joint sentence classification and se-
quence tagging has already been used, e.g., for nat-
ural language understanding in the context of ques-
tion answering and goal-oriented dialogue systems,
where it serves for speaker intent identification
and semantic frame slot filling (Chen et al., 2019;
Castellucci et al., 2019). In the context of sentence
classification, we can specify such a model as:

y' = softmax (W'hy + b), “4)

with ¢ as the index of the sentence that is to be
classified, and h; as the hidden state of the first
pooled special token (CLS in the case of BERT).
For sequence tagging, this equation is extended
such that the sequence [ho, ..., hy] is fed to word-
level softmax layers:

y5 = softmax (W'h, + b,,) ,n € 1...|[W| (5)

where h,, is the hidden state corresponding to wy,.
Finally, the joint model combines both architec-
tures and is trained, end-to-end, by minimizing the
cross-entropy loss for both tasks.

N
p (v W) =p (v'|H) [[ p il H)

n=1

(6)

S Experimental setup

5.1 Dataset Construction

We carry out experiments on English, French, and
Spanish datasets constructed from manually com-
piled instances of LFs. For English and French, we
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start from Fisas et al. (2020). For English, Fisas
et al.’s list is enriched by 500 instances of low-
resourced LFs in order to obtain a more balanced
distribution of samples across different LFs; for
French, we work with their original list. To obtain
the LF instances for Spanish, we use the English
list: for each English LF instance, we retrieve from
the web via the multilingual search index Reverso-
Context* its translation equivalents, which are then
examined and filtered manually.

In all three lists, the bases and collocates are an-
notated with PoS and lemmas. As corpora, we use
the 2019 Wikipedia dumps. First, we preprocess
(removing metadata and markups) and parse the
dumps with the UDPipe2.5 parsers.’> Then, we ex-
tract from the parsed dumps sentences that contain
LF instances from any of our collocation lists, ob-
serving the PoS of the base and collocate and the
dependency relation between them. To further filter
the remaining erroneous samples in which the base
and the collocate items do not form a collocation,
an additional manual check is performed.

The validated sentences and the collocations they
contain are labeled. As sentence label, the sen-
tence’s most frequent LF or the first one in case of
a draw is chosen. In practice, this most often means
that the label of the only LF instance in the sentence
is chosen. For instance, in the case of CausFuncO,
in the French dataset, only in 1.63% of the cases its
instances appear together with instances of other
LFs in a sentence, in the Spanish dataset these are
1.85% and in the English dataset 3.42%. However,
it should be noted that this varies from LF to LF
and for some of the LFs our labeling strategy might
be an oversimplification. The highest percentage of
“cohabitation” with instances of other LFs can be
observed for Operl: in the French dataset in 7.19%
of the cases, in the Spanish dataset in 14.32% and
in the English dataset in 25.61%. A more detailed
study is necessary to identify potential correlations
between different LFs.°

To annotate collocations, we use the BI la-
bels of the BIO sequence annotation schema (‘B-
<LF>;’ and ‘I-<LF>};’ for the base, ‘B-<LF>.’,
‘I-<LF>.’ for the collocate, and ‘O’ for other to-
kens) (Figure 1). The BIO annotation facilitates a
convenient labeling of multi-word elements, and
the separate annotation of the base and collocate

*https://context.reverso.net/

5https://ufal.mff.cuni.cz/udpipe

®We would like to thank an anonymous reviewer for point-
ing out the relevance of the correlation between LFs.
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allows for flawless annotation of cases where they
are not adjacent.

For the experiments, the annotated datasets are
split into training, development, and test subsets in
proportion 80—10-10 in terms of LF-wise unique
instances, such that all occurrences of a specific
instance, i.e., a specific lexical collocation, appear
only in one of the subsets. Sentences with sev-
eral collocations that belong to different splits are
dropped. The distribution of samples per LF and
language is shown in Figure 2.

= English ® French = Spanish

% within a language

Ml

10.0

by g ®
o o

n
o

0.0

'\ <l < S O S
S ; 0 N 4 N o O
o Qi” @"’ oQ <<° <<*>Q Q@ oQ Qp v“\ I SO oég’ °&
S
¥ \Qo"' d"\) C;o" ®§ @‘2& @ <
« Ofb°

Figure 2: Distribution of examples across lexical func-
tions within a language.

5.2 Experiments

In our experiments, we compare the following ar-
chitectures:’

¢ Baseline BERT (or similar)-based models
(denoted as — in the results tables), specif-
ically BERT-base and large (Devlin et al.,
2019), RoBERTa-base and large (Liu et al.,
2019); CamemBERT (Martin et al., 2019)
and RoBERTa-BNE (Gutiérrez-Fandiio et al.,
2021) as monolingual French and Spanish
models; and XLM-R for cross-lingual experi-
ments (Conneau et al., 2019).

Enhanced architectures with the G2C archi-
tecture, but without access to the PoS embed-
dings (G2C (wo) PoS).

The full model, as depicted in Figure 1, which
we refer to as ‘G2C’.

In terms of hyperparameter tuning, we fine-tune
learning rate and warmup independently for the
baseline, G2C(wo)PoS and G2C English models,

"In all cases, we report only results for the joint architec-
ture, as initial experiments showed a consistent improvement
with respect to a sequence tagging-only setup.
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and fix these values for both French and Spanish.
We also use early stopping on the validation set
for selecting the best performing models in each
configuration.

6 Results

In what follows, we first present the outcome of
the sentence classification and collocation extrac-
tion and categorization experiments for the three
datasets and then analyze the performance with
respect to the individual LFs.

6.1 Sentence classification and collocation
extraction results

Tables 2—4 show the performance of various joint
models in their original form (marked by ‘-), as
well as of their G2C(wo)PoS and G2C enhanced
variants. We display results on the development
(‘Dev*’) and test sets (‘Test*’) for the tasks of both
sentence classification (“*SentClf”) and collocation
extraction (“*CollExt’). Sentence classification re-
sults are reported in terms of accuracy (there are
18 distinct LF labels), whereas for the collocation
extraction task, we report macro F1 over correctly
predicted spans. For all experiments, we report
average score and standard deviation after three
independent runs.

DevSentClf DevCollExt TestSentClf TestCollExt

- 66.86+-5.08 63.21+-1.41 66.04+-1.13 62.95+-3.51
BERT,, G2C(wo)PoS 61.72+-2.92 59.90+-1.50 65.18+-1.61 63.61+-1.25
G2C 64.23+-1.34 62.48+-0.94 67.25+-0.82 64.44+-1.12
- 66.79+-1.89 65.69+-1.66 63.05+-1.23 61.61+-1.15
BERT; G2C(wo)PoS 67.58+-1.19 66.13+-1.48 66.24+-3.30 64.38+-3.36

G2C 70.30+-1.89 68.82+-0.86 64.57+-3.60

58.09+-0.49 55.93+-1.52 60.96+-1.72
RoBERTa;, G2C(wo)PoS 59.89+-1.06 58.05+-0.40 62.51+-0.37
G2C 59.76+-0.78 58.00+-0.35 62.17+-0.67
67.47+-2.77 66.97+-1.14 65.55+-0.83
RoBERTa; G2C(wo)PoS 67.40+-3.49 67.97+-4.77 65.95+-2.44
G2C 61.71+-2.57 59.85+-2.95 65.10+-3.24

62.70+-3.74
59.20+-3.31
62.17+-0.74
61.90+-0.97
64.79+-3.12
64.84+-1.29
64.98+-2.85

Table 2: Main results for the English dataset, comparing
BERT and RoBERTa, in their base (;) and large (;)
variants, and in vanilla (-) and G2C versions.

The results let us conclude, firstly, that the pro-
posed model is considerably more competitive
for the task of the compilation of LF-classified
collocation resources than competitive baselines.
Secondly, incorporating the G2C architecture con-
tributes to an improvement in performance across
the board, for all three languages and for most of
the models. Thus, for English we see that BERT
base sees an improvement of 1 and 2 points in the



sentence classification and sequence labeling re-
sults on both the development and test sets, with
the improvement on BERT large and RoBERTa
base being even more pronounced. ROBERTa large
seems to be the model that benefits least from G2C
architectures in relative terms, although compara-
tively, this model is the best performing one on the
collocation extraction task on the test set.

With respect to the experiments on French,
we can observe that the French camemBERT
model does not profit from an enhancement with
G2C(wo)PoS; just on the contrary, for the collo-
cation extraction task, performance drops signif-
icantly when expanded with either of the G2C
variants. This is not the case for XLM-R with
its different training variants; its performance is
largely maintained in collocation extraction with
G2C regimes. The best performance is achieved
when XLM-R is enhanced with G2C and trained
on both French and English. This also true for the
sentence classification task. It is interesting to ob-
serve that when trained on English, XLLM shows on
the development set a higher performance than its
extensions for both tasks.

DevSentClf DevCollExt TestSentClf TestCollExt
66.69+-2.37 62.18+-3.32 54.52+-3.10 51.96+-2.78

camembert _

Tr FR G2C(wo)PoS 64.38+-1.79 38.99+-2.45 50.43+-3.09 30.63+-3.50
G2C 63.60+-1.33 39.36+-6.38 50.16+-0.46 30.62+-5.24
- 62.22+-2.40 59.30+-5.04 56.38+-3.47 55.23+-3.33

")l"(rLI\:l: G2C(wo)PoS 67.08+-4.07 64.32+-6.20 58.41+-3.51 56.97+-2.24
G2C 64.63+-5.93 61.05+-5.57 56.99+-1.54 55.92+-1.78
- 67.18+-1.99 64.54+-5.65 54.60+-0.69 52.84+-0.04

;f:‘l\él; G2C(wo)PoS 65.86+-1.83 64.42+-6.84 54.23+-3.12 50.96+-1.05
G2C 65.46+-1.49 64.09+-1.03 55.20+-3.62 52.43+-3.77

XLM.r - 63.07+-2.46 61.59+-1.88 63.35+-2.15 61.32+-1.27
G2C(wo)PoS 64.40+-0.34 63.88+-1.27 64.95+-0.85 63.55+-0.84

Tr: FR+EN

G2C 62.02+-1.53 61.03+-3.72 66.48+-1.55 64.96+-2.02

Table 3: Main results for French, comparing the
monolingual model CamemBERT with XLM-R vari-
ants trained on different slices of the dataset, and
G2C(wo)PoS-based extensions.

For Spanish, the performance of the monolingual
RoBERTa is in clear contrast to its performance on
English. Although it somewhat profits from the
G2C enhancement, it seems to underperform com-
pared to XLM-R (which is not the case for English).
The reason might be the corpus on which it has
been pre-trained (the National Library of Spain cor-
pus) or under-tuning of the set of hyperparameters,
which we optimized on the English dataset. We
also experiment with XLLM-R, trained also only on
the Spanish monolingual data (Tr: ES), as well as
on the English training set (Tr: EN), and both com-
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DevSentClf DevCollExt TestSentClf TestCollExt
34.42+-0.65 26.65+-1.20 37.90+-0.67 27.94+-0.16

RoBERTacs

Tr: ES G2C(wo)PoS 35.62+-1.90 28.42+-2.20 38.60+-1.33 29.73+-2.05
G2C 37.60+-3.14 31.20+-1.63 40.49+-0.84 31.20+-5.47
XIMor - 66.44+-1.02 62.77+-0.01 52.99+-0.29 51.57+-0.12
Te: BS G2C(wo)PoS 68.69+-1.96 66.08+-1.95 54.96+-0.35 53.74+-0.42
G2C 63.96+-5.06 65.32+-2.20 56.42+-0.84 55.07+-0.71
XLMor - 65.02+-1.61 63.16+-1.93 60.56+-0.52 56.95+-2.48
Te: EN G2C(wo)PoS 63.00+-0.72 62.21+-0.67 58.82+-1.41 57.90+-0.62
G2C 62.54+-0.45 61.37+-0.48 57.65+-1.81 54.50+-1.57
XILMor - 65.91+-0.13 62.73+-0.59 64.26+-1.97 63.37+-0.72
Tr: ES+EN G2C(wo)PoS 74.18+-1.01 71.20+-0.88 75.42+-0.02 72.89+-0.07
G2C 74.52+-0.18 71.64+-0.01 75.55+-0.18 72.18+-0.92

Table 4: Main results for Spanish, comparing the
monolingual model RoBERTa-bne with XLM-R vari-
ants trained on different slices of the dataset, and
G2C(wo)PoS-based extensions.

bined (Tr: ES+EN). Surprisingly enough, XLM-R
(stand-alone and G2C+POS-enhanced) performs
somewhat better on the test set for both sentence
classification and LF-classification when trained on
English than when trained on Spanish. In general,
the increase in performance provided by the mul-
tilingual setting becomes apparent®, with the G2C
model yielding the best results in 3 out of 4 met-
rics. The best test results of a non-G2C-enhanced
model on the collocation extraction task are almost
10 points below the G2Cs models. Moreover, com-
bining both EN and ES training sets into a multi-
lingual language model results in an increase of
6% F1 score. Finally, the differences in the per-
formance of sentence classification and collocation
extraction for all three datasets suggest that the pre-
dicted sentence label does not always match the
label predicted by the BIO-tagger. However, since
our primary intention was to use the sentence classi-
fier as an auxiliary task that boosts the performance
of the BIO-tagger in a multitask learning setup,
we did not analyze the behavior of the sentence
classifier and these mismatches in detail.

6.2 Lexical Function analysis

To obtain a more detailed picture, we report in Ta-
ble 5 the results of a run for the best performing
models for each language and LF, for both of its
collocation elements, the base (_b) and the collo-
cate (_c). While there is certain consistency across
LFs and languages, there are also notable cases
of discrepancies. For instance, we see that Real2
(as, e.g., enjoy support), Ver (as, e.g., legitimate

8We leave for future work an analysis of whether these
results can be fully attributed to multilingual transfer, to having
access to more training data, or to a combination of the two.
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Figure 3: LF analysis visualization. Top row shows confusion matrices for the three languages under study, for all
LFs and their corresponding base and collocate label. Bottom row shows scatter plot where we show frequency in
the x axis, and F1 score in the y axis, again, for each LF.

demand) and Magn (as, e.g., heavy smoker) have
been better captured in Spanish than in English
and French. This can probably be explained by
the number of unique instances of the LFs in our
training / test data. For instance, in the case of
Magn, the ratio between the total number of in-
stances and the number of the unique number of
instances in the English test set is 16.8, while in
the Spanish test set it is 31.8. In other words, our
Spanish dataset contains less variety to express the
meaning of intensification than English and French,
and is thus easier to capture. Conversely, the perfor-
mance on FactO (as, e.g., an avalanche strike(s)) is
much better for English, which is likely due to the
limitations of the training dataset: out of the 2,112
occurrences of FactO instances in total, [el] avion
vuela ‘the airplane flies’ is counted 602 times.

Note the overall high figures of the recognition
of the Magn and AntiMagn instances, and thus
a clear distinction between these antonymic LFs,
which is a well-known challenge (Rodriguez Fer-
nandez et al., 2016b; Wanner et al., 2017). In the
case of AntiVer (as, e.g., illegitimate demand), the
figures are lower in the case of Spanish, which
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may again hint at the limitations of the Spanish
dataset. For the prediction of the individual col-
location items, in general, similar results are ob-
tained for the base and collocate. However, some
interesting outliers emerge. For instance, for the
Spanish CausFactO (as, e.g., start an engine), the
performance for the base elements (in our exam-
ple, engine) is more than twice as high as for the
collocate elements (in our example, start). We hy-
pothesize that this is because most of the CausFact0
base elements in the Spanish dataset denote arte-
facts and the model learns to recognize them well.
Finally, note that only the Spanish model is able to
correctly identify a few FinFuncO collocations (as,
e.g., fire going out), possibly due to the fact that
Spanish contains less multiword expressions and
certainly less phrasal verbs associated with this LF.

To understand whether there are obvious sources
of confusion across LFs, and whether we can at-
tribute performance to frequency in the datasets,
we plot in Figure 3 confusion matrices, as well
as the relationship between results and frequency.
In English and French, Operl and Reall are great
sources of confusion for Real2, especially when it



EN ES FR
P R F1 |P R F1 |P R F1

AntiMagn_b 90.99 93.15 92.06|85.92 89.46 87.65|86.55 81.78 84.10
AntiMagn_c 90.16 94.39 92.23|82.11 91.72 86.65|85.60 83.55 84.56
AntiReal2_b 77.13 83.19 80.05|66.47 86.39 75.14|83.69 65.71 73.62
AntiReal2_c 83.83 93.19 88.26|70.81 92.10 80.07|79.57 68.40 73.62
AntiVer_b 96.05 83.81 89.51|78.53 46.53 58.44(89.57 45.78 60.59
AntiVer_c 93.52 88.88 91.14|78.81 44.95 57.25(86.90 46.12 60.26

CausFact0_b 25.81 08.26 12.51(62.79 16.39 25.99(66.93 19.47 30.17
CausFact0_c 18.33 06.31 09.39|28.36 7.79 12.22{67.20 19.55 30.29
CausFunc0_b 76.94 30.66 43.85|66.27 38.24 48.49(50.02 32.86 39.66
CausFunc0_c 72.05 34.67 46.81|71.04 42.84 53.44|52.19 32.27 39.88
CausFuncl_b 91.15 75.79 82.76|78.37 70.94 72.05(89.00 79.40 83.93
CausFuncl_c 89.40 77.52 83.04|78.37 71.84 74.96|87.63 78.48 82.80
CausPredMinus_b |88.44 68.09 76.94|82.31 91.81 86.80|78.34 62.86 69.75
CausPredMinus_c [86.97 69.70 77.38|82.57 95.26 88.46|86.97 71.05 78.21

FactO_b 80.10 45.82 58.30{10.28 6.65 8.07/19.40 3.64 6.13
Fact0_c 73.89 49.14 59.02110.59 7.26 8.61]26.78 4.63 7.90
FinFunc0_b 0.00 0.00 0.00{10.28 6.65 8.07| 0.00 0.00 0.00
FinFunc0_c 0.00 0.00 0.00{36.69 12.36 18.50| 0.00 0.00 0.00
FinOperl_b 98.44 99.53 98.98193.83 99.16 96.42192.20 95.96 94.04
FinOperl_c 97.44 99.69 98.55|64.52 99.46 96.93|92.20 95.96 94.04

IncepOperl_b 78.54 74.91 76.68160.40 62.15 61.26/96.30 97.25 96.77
IncepOperl_c 82.10 85.59 83.81|58.47 66.09 62.04|71.41 53.95 61.46
IncepPredPlus_b |95.53 99.10 97.28|87.12 90.50 88.78|71.41 53.95 61.46
IncepPredPlus_c |93.75 98.85 96.24|88.21 92.87 90.48|95.42 90.34 92.81

Magn_b 40.35 85.01 54.72|58.21 82.08 68.05(49.24 63.03 55.27
Magn_c 36.94 97.22 51.90|64.44 83.91 70.94|48.63 63.92 55.23
Operl_b 38.11 79.47 51.90|41.61 59.48 48.97|34.81 68.95 46.26
Operl_c 37.11 82.24 51.14{39.06 72.75 50.83|32.85 74.13 45.52
Reall_b 41.22 46.48 43.69(29.13 25.30 27.08|37.55 60.57 46.36
Reall_c 37.11 82.24 51.14|29.16 30.07 29.61{39.02 63.45 48.32
Real2_b 50.82 42.43 46.25|59.61 95.56 73.42|54.64 54.53 54.59

Real2_c 50.66 42.53 46.24|59.86 94.65 73.34|55.67 48.91 52.07

Ver_b 80.97 31.99 45.86|84.16 85.30 84.73/89.17 70.31 78.62
78.52 32.74 46.21|84.16 85.30 84.73|88.72 70.17 78.36

Ver_c

Table 5: Results breakdown per language and per LF,
where, for each LF, we list individual results for base
and collocate categorization.

comes to categorizing Real2 collocates. However,
this is not the case for Spanish. In this context, we
need to keep in mind that Reall and Real?2 differ
only with respect to their subcategorization pattern
(in Reall, it is AO/A1, which is realized grammat-
ical subject, and in Real2, it is A2) and that the
semantic difference betweeen Oper and Real is
rather fine. Still, for Spanish this difference is cap-
tured, while for English and French it is not. This
is similar for the distinction between CausFact; /
Oper; and Real;. Why the confusions are minor for
Spanish requires a deeper analysis. We can also
see that Magn and Oper bases are often confused
in French, but not in English and Spanish. This
might be due to parsing and PoS tagging errors. Fi-
nally, in the lower part of Figure 3, we see that for
English, there is a clear correlation between results
and LF frequencies (p=0.76), followed by French

(p=0.46) and, finally, Spanish (p=0.38), where we
also find highest dispersion across all F1 bins.

7 Conclusions and Future Work

We have proposed an architecture for joint collo-
cation extraction and lexical function typification
by explicitly encoding syntactic dependencies in
the attention mechanism. Our experiments show
that our proposed architecture drastically improves
over its language model-only counterparts, and that
joint multilingual training is a promising direction
for less resourced languages. For the future, we
would like to extend these experiments to other lan-
guages and explore zero or few-shot prompt-based
methods.
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