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Abstract

A central question in natural language under-
standing (NLU) research is whether high perfor-
mance demonstrates the models’ strong reason-
ing capabilities. We present an extensive series
of controlled experiments where pre-trained
language models are exposed to data that have
undergone specific corruption transformations.
These involve removing instances of specific
word classes and often lead to non-sensical sen-
tences. Our results show that performance re-
mains high on most GLUE tasks when the mod-
els are fine-tuned or tested on corrupted data,
suggesting that they leverage other cues for
prediction even in non-sensical contexts. Our
proposed data transformations can be used to
assess the extent to which a specific dataset con-
stitutes a proper testbed for evaluating models’
language understanding capabilities.

1 Introduction

The super-human performance of recent
Transformer-based pre-trained language models
(Devlin et al., 2019; Liu et al., 2019) on natural
language understanding (NLU) tasks has raised
scepticism regarding the quality of the benchmarks
used for evaluation (Wang et al., 2018, 2019).
There is increasing evidence that these datasets
contain annotation artefacts and other statistical
irregularities that can be leveraged by machine
learning models to perform the tasks (Gururangan
et al., 2018; Poliak et al., 2018b; Tsuchiya, 2018;
Glockner et al., 2018; Talman and Chatzikyriakidis,
2019; Pham et al., 2020; Talman et al., 2021).
These studies have so far largely focused on the
natural language inference (NLI) and textual
entailment tasks. The scope of our work is wider,
in the sense that we address all but one NLU tasks

Sentence 1 Sentence 2
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Easynews Inc. was
subpoenaed late last
week by the FBI, which
was seeking account
information related
to the uploading of
the virus to the ISP’s
Usenet news group
server.

Easynews Inc. said
Monday that it was co-
operating with the FBI
in trying to locate the
person who uploaded
the virus to a Usenet
news group hosted by
the ISP.
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se Arison said Mann may
have been one of the
pioneers of the world
music movement and
he had a deep love of
Brazilian music.

Arison said Mann was
a pioneer of the world
music movement – well
before the term was
coined – and he had a
deep love of Brazilian
music.

Table 1: Example sentence pairs from the corrupted
MRPC training dataset where all instances of nouns
have been removed.

comprised in the GLUE benchmark, specifically:
linguistic acceptability (COLA), paraphrasing
(MRPC and QQP), sentiment prediction (SST-2),
and semantic textual similarity (STS-B).

We present a series of experiments where the
datasets used for model training and evaluation
undergo a number of corruption transformations,
which involve removing specific word classes from
the data. We remove words pertaining to a specific
class (e.g., nouns, verbs), instead of random words,
to see the relative importance of word classes for
the NLU tasks. For instance, verbs arguably play
a significant role in sentence level semantics and
removing them is expected to have a bigger impact
on the GLUE scores, compared to say determiners.

The transformations seriously affect the qual-
ity of the sentences found in the datasets, making
them in many cases unintelligible (cf. examples
in Table 1); a decrease in performance for mod-
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Task Baseline Metric
COLA The Corpus of Linguistic Acceptability (Warstadt et al., 2018) 64.05 Matthew’s correlation
MNLI-M Multi-Genre Natural Language Inference (Williams et al., 2018) 87.89 accuracy
MRPC Microsoft Research Paraphrase Corpus (Dolan and Brockett, 2005) 88.73 accuracy
QNLI Question Natural Language Inference (Rajpurkar et al., 2016) 92.64 accuracy
QQP Quora Question Pairs 91.32 accuracy
RTE Recognizing Textual Entailment (Dagan et al., 2006) 70.04 accuracy
SST-2 The Stanford Sentiment Treebank (Socher et al., 2013) 94.61 accuracy
STS-B Semantic Textual Similarity Benchmark (Cer et al., 2017) 90.08 Pearson correlation

Table 2: Baseline results obtained for different GLUE tasks with RoBERTa-base and the relevant metric.

els fine-tuned on these corrupted datasets would,
thus, be expected. High performance would, in-
stead, indicate that the models rely on lexical cues
that remain after corruption, and possibly on other
dataset artefacts, to perform a task without neces-
sarily understanding the meaning of the processed
utterances.

Our results show that performance after the cor-
ruptions remains high for most GLUE tasks, sug-
gesting that the models leverage other cues for pre-
diction even in non-sensical contexts.

2 Related Work

Annotation artefacts and statistical biases in NLI
datasets are easily leveraged by the models and
can guide prediction (Lai and Hockenmaier, 2014;
Marelli et al., 2014; Poliak et al., 2018a; Gururan-
gan et al., 2018). Examples include explicit nega-
tion being indicative of contradiction, and generic
nouns suggesting entailment. Artefacts are also
present in other types of datasets, for example in
the ROC Story dataset where models can provide
story endings without looking at the actual stories
(Schwartz et al., 2017; Cai et al., 2017). Several
works have proposed more challenging and cleaner
NLI datasets where artefacts have been removed
(McCoy et al., 2019). An efficient way to do this is
using adversarial filtering (Nie et al., 2020; Zellers
et al., 2018). The superior quality of the resulting
NLI datasets is confirmed by Talman et al. (2021)
in a series of experiments where it is shown that
data corruption affects these higher quality datasets
to a greater extent than previous datasets.

This work follows the same experimental direc-
tion where text perturbations serve to explore the
sensitivity of language models to specific phenom-
ena (Futrell et al., 2019; Ettinger, 2020; Takta-
sheva et al., 2021; Dankers et al., 2021). It has
been shown, for example, that shuffling word or-
der causes significant performance drops on a wide
range of QA tasks (Si et al., 2019; Sugawara et al.,

2019), but that state-of-the-art NLU models are not
sensitive to word order (Pham et al., 2020; Sinha
et al., 2021). Syntax-based perturbations have also
been studied in relation to robustness and faithful-
ness of machine translation models (Parthasarathi
et al., 2021).

We add to this line of research by applying data
corruption transformations that involve removing
entire word classes (Talman et al., 2021) to all but
one GLUE tasks.1 We interpret high performance
of models fine-tuned and/or tested on corrupted
datasets as an indication of the presence of lexical
cues, and possibly artefacts, guiding prediction,
since the meaning of the corrupted utterances is
often hard to recover.

3 Datasets and Corruptions

In our experiments, we address eight tasks included
in the General Language Understanding Evalua-
tion (GLUE) benchmark for the English language
(Wang et al., 2018): CoLa, MNLI, MRPC, QNLI,
QQP, RTE, SST-2, STS-B. Following Talman et al.
(2021), we corrupt the training and development
sets available for these tasks by removing words
of specific word classes.2 We use the develop-
ment sets for evaluation, since annotated test data
have not been made publicly available.3 We create
three configurations for each task: (a) CORRUPT-
TRAIN: fine-tuning on the corrupted training set,
evaluation on the original development set; (b)
CORRUPT-TEST: fine-tuning on the original train-
ing set, evaluation on the corrupted test set; (c)
CORRUPT-TRAIN AND TEST: training and evalua-
tion on corrupted data. The corruption procedure

1We exclude WNLI as its development dataset was de-
signed to be adversarial (Wang et al., 2018) and hence the
corruptions do not have any impact on this dataset when eval-
uating with the development set.

2We annotate the original texts with universal part of
speech (POS) tags using the NLTK library (https://www.
nltk.org/) and the averaged perceptron tagger.

3For MNLI, we use the matched development set
(Williams et al., 2018).
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Data CORRUPT-TRAIN ∆ CORRUPT-TEST ∆ CORRUPT-TRAIN AND TEST ∆
COLA-NOUN 39.72 -24.34 17.75 -46.30 34.33 -29.73
MNLI-M-NOUN 85.64 -2.24 72.85 -15.04 77.46 -10.42
MRPC-NOUN 86.27 -2.45 82.35 -6.37 80.15 -8.58
QNLI-NOUN 89.13 -3.51 71.02 -21.62 82.02 -10.62
QQP-NOUN 86.69 -4.63 72.57 -18.75 84.17 -7.16
RTE-NOUN 47.29 -22.74 53.79 -16.25 47.29 -22.74
SST-2-NOUN 94.04 -0.57 87.27 -7.34 88.76 -5.85
STS-B-NOUN 81.67 -8.41 56.12 -33.96 63.52 -26.56
COLA-VERB 23.26 -40.79 4.30 -59.75 20.22 -43.83
MNLI-M-VERB 86.95 -0.94 77.61 -10.28 80.32 -7.57
MRPC-VERB 85.54 -3.19 85.54 -3.19 85.05 -3.68
QNLI-VERB 92.00 -0.64 87.41 -5.24 90.15 -2.49
QQP-VERB 89.49 -1.84 86.01 -5.31 89.05 -2.27
RTE-VERB 65.34 -4.69 65.70 -4.33 65.34 -4.69
SST-2-VERB 93.69 -0.92 89.33 -5.28 89.56 -5.05
STS-B-VERB 87.63 -2.46 85.54 -4.54 86.22 -3.86

Table 3: Example results for the RoBERTa-base model fine-tuned on CORRUPT-TRAIN and tested on the original
evaluation set (columns 2 and 3); fine-tuned on the original data and tested on CORRUPT-TEST; fine-tuned on
CORRUPT-TRAIN and tested on CORRUPT-TEST (columns 6 and 7). ∆ is the difference to the baseline scores
obtained by RoBERTa-base on the original dataset, given in Table 2.

involves removing all instances of a specific word
class from the corresponding dataset (ADJ, ADV,
CONJ, DET, NOUN, NUM, PRON, VERB). We label
the corrupted datasets by indicating the class of the
words that have been removed (e.g., COLA-NOUN,
QNLI-VERB). Given the possible combinations of
tasks, datasets and corruptions, we end up with 192
setups for our experiments.

Note that the resulting sentence fragments do not
constitute propositions. Although not ideal, this is
not necessarily problematic for tasks such as senti-
ment analysis. For inference, the assumption that
the task can only be performed at the propositional
level is a strong claim, especially given that ex-
amples which are not propositions are abundant in
existing benchmarks such as MNLI (e.g., examples
extracted from dialogue).

4 Models

We fine-tune the pre-trained RoBERTa-base
model (Liu et al., 2019) from the Huggingface
Transformers library (Wolf et al., 2020a) in each
of our 192 configurations. We use the same fine-
tuning and evaluation set up for all the experiments.
We retrieve the GLUE datasets using the Hugging-
face Datasets library (Wolf et al., 2020b). We fine-
tune the models for 3 epochs, using a batch size of
32 and a learning rate of 0.00002.

5 Results

The baseline results using the original (non-
corrupted) datasets are shown in Table 2. Given
the large number of configurations, we only re-
port the exact evaluation results for the -NOUN and
-VERB settings in Table 3, as these content word

Figure 1: Impact of specific data corruptions in the
CORRUPT-TRAIN setting. The columns correspond to
the removed word class and the rows to the GLUE tasks.

classes arguably contribute a lot to the meaning of
utterances. For the remaining configurations, we vi-
sualise the effect of the corruptions using heatmaps
that show the difference in performance compared
to the baseline results (Figures 1 to 3).

Figure 2: Impact of specific data corruptions in the
CORRUPT-TEST setting for each task.

Our results for the -NOUN and -VERB corrup-
tions in CORRUPT-TRAIN (Table 3), and for all
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Original Sentences CORRUPT-TEST-NOUN CORRUPT-TEST-ADJ Labels Gold label
An unclassifiably awful study in
self - and audience-abuse.

an unclassifiably awful in
- and.

an unclassifiably study in
self - and audience-abuse.

positive negative

It proves quite compelling as an
intense, brooding character study.

it proves quite compelling
as an intense, brooding.

it proves quite as an,
brooding character study.

positive positive

Table 4: Labels assigned by NRCLex to sentences from the SST-2 CORRUPT-TEST-NOUN/-ADJ datasets.

Figure 3: Impact of specific data corruptions in the
CORRUPT-TRAIN AND TEST setting for each task.

configurations in Figure 1, show a notable decrease
in performance on COLA and RTE, especially when
nouns are removed. The impact on MNLI-M and
QNLI datasets is small, confirming previous find-
ings regarding the presence of annotation artefacts
and lexical cues that can guide model prediction.
Our results suggest that this is the case also in other
GLUE datasets, such as MRPC and SST-2, where
the models still manage to perform fairly well com-
pared to the baseline when fine-tuned on corrupted
data.

Our CORRUPT-TEST results in Table 3 and in
Figure 2 show that removing nouns from the data
used for evaluation has a much larger impact across
tasks, compared to CORRUPT-TRAIN. The biggest
drop in performance is observed on COLA, MNLI-M

and STS-B. However, accuracy on MRPC and SST-2
is still very high, suggesting that good performance
does not require sentence-level understanding but
can be achieved by relying on lexical cues present
in the data. In the CORRUPT-TRAIN AND TEST set-
ting (Table 3 and Figure 3), we observe the biggest
drop in performance on COLA, MNLI-M and STS-B,
and a lower impact on QNLI, QQP and SST-2.

6 Discussion and Analysis

6.1 Lexical Cues

Our results show that model performance in many
tasks is marginally affected by the imposed corrup-
tions which, however, in many cases alter the mean-

Word class Dataset Accuracy
NOUN CORRUPT-TEST 14.7%
NOUN original 34.1%
VERB CORRUPT-TEST 31.1%
VERB original 66.4%

Table 5: Accuracy of RoBERTa-BASE in predicting a
masked word in the MRPC development set.

ing of utterances. We conduct additional analyses
aimed at identifying the lexical cues that remain af-
ter corruption and can guide model prediction. We
focus on MRPC (Microsoft Research Paraphrase
Corpus) and SST-2 (Stanford Sentiment Treebank),
where the impact of CORRUPT-TEST transforma-
tions was the smallest.

MRPC addresses the paraphrase relationship be-
tween sentence pairs. We explore the semantic
similarity of the information that remains after cor-
ruption. Our assumption is that if a sentence pair
(from which nouns or verbs have been removed)
still contains synonyms or longer paraphrases, this
can guide the model towards detecting a similarity
or entailment relationship. For this analysis, we use
the unigram paraphrases in the L (large) package of
PPDB 2.0 (Pavlick et al., 2015). We find that in the
CORRUPT-TEST-NOUN MRPC dataset, 76% of the
sentence pairs for which the model made correct
predictions still include a lexical paraphrase.

SST-2 involves detecting the sentiment expressed
in individual sentences. We use the NRCLex tool4

to measure the sentiment expressed by lexical cues
in the CORRUPT-TEST sentences for which model
predictions are correct. Given that sentiment can
be expressed in a text by words pertaining to dif-
ferent grammatical categories, we explore whether
lexical cues indicating the polarity of the text still
remain after removing instances of a specific word
class. In Table 4, we show the labels predicted by
NRCLex for corrupted test sentences, where the
nouns and adjectives have been dropped. We ob-
serve that even if sentences become non-sensical

4NRCLex is based on the expanded version of the NRC
Word-Emotion Association Lexicon (Mohammad and Turney,
2010, 2013). We only use the ‘positive’ and ‘negative’ keys.
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after corruption, it is still possible to detect the (pos-
itive or negative) polarity of the sentences from the
remaining words. Relying on these lexical cues,
RoBERTa often manages to predict the correct sen-
timent. Specifically, according to the NRCLex pre-
dictions, the correct sentiment is still present in 383
out of 761 corrupted sentences where RoBERTa
made correct predictions in the CORRUPT-TEST-
NOUN setting. If both nouns and adjectives are
removed (CORRUPT-TEST-NOUN-ADJ), NRCLex
detects that the correct sentiment is still present in
125 out of the 672 examples that were correctly
predicted by RoBERTa.

6.2 Can RoBERTa Guess the Missing Tokens?

As RoBERTa has been pre-trained using a Masked
Word Prediction task, it is reasonable to ask if high
model performance with our corrupted datasets
could be due to the model’s ability to “fill in the
gaps” and predict the missing words. To test this,
in each sentence of the MRCP development set,
we replace the first token that is aimed by a spe-
cific corruption procedure (-NOUN/VERB) with the
[MASK] token. We do this in the original sen-
tence (by removing only the first noun/verb in-
stance) and in the corrupted sentence (where all
other nouns/verbs are missing). For example, from
the first sentence in Table 4, we generate two cloze-
task queries in the -NOUN setting:

(a) An unclassifiably awful [MASK] in self - and
audience-abuse.

(b) An unclassifiably awful [MASK] in - and.

We use these queries to test RoBERTa’s token
prediction capability. As shown in Table 5, it is
easier to predict the masked token in the original
sentences, but the model is still able to make correct
predictions in the corrupted sentences. This could
partly explain the high performance observed for
MRPC in the corrupted setting (cf. Section 5).

7 Conclusion

We apply a set of controllable corruption transfor-
mations to the datasets of NLU tasks in the GLUE
benchmark, and study their impact on model perfor-
mance. The proposed transformations are generic
enough to be applicable to other NLU tasks, and
can enrich the available artillery for dataset quality
assessment in terms of how efficiently they trigger
and test the language understanding capabilities of
the models. Our results indicate that understanding

the meaning of utterances is not required for high
performance in most GLUE tasks. This finding
suggests caution in interpreting leaderboard results
and in the conclusions that can be drawn regard-
ing the language understanding capabilities of the
models. We make our code available5 in order
to promote the application of these tests to other
NLU datasets, and to favour the development of
benchmarks addressing the actual capability of the
models to reason about language.
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