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Abstract
The standard approach for inducing narrative
chains considers statistics gathered per individ-
ual document. We consider whether statistics
gathered using cross-document relations can
lead to improved chain induction. Our study is
motivated by legal narratives, where cases typ-
ically cite thematically similar cases. We con-
sider four novel variations on pointwise mutual
information (PMI), each accounting for cross-
document relations in a different way. One
proposed PMI variation performs 58% better
relative to standard PMI on recall@50 and in-
duces qualitatively better narrative chains.

1 Introduction

Narrative chains are sets of events centered around
a common protagonist. They can be induced from
corpora using various unsupervised methods, many
using pointwise mutual information (PMI) between
events. To our knowledge, no prior work has used
the information available in relations between doc-
uments in a corpus when inducing narrative chains.

To illustrate the potential for improved narrative
chain induction based on document relations, we
develop four novel variants of pointwise mutual
information (PMI) that assume a directed graph
structure between documents (i.e. relations that
are edges). We test these1 on a corpus of all U.S.
federal court cases, which has a readily accessible
relation between documents: citation. One case
will cite prior cases as precedent in explaining its
decision. We find that one of our four variants
of PMI performs particularly well in the standard
event cloze evaluation (Chambers and Jurafsky,
2008) and in inducing meaningful narrative chains.

2 Background

Unsupervised narrative chain induction from a
corpus was introduced by Chambers and Jurafsky

1Code is at https://github.com/BlairStanek/
cross-doc

(2008), inspired by the notion of scripts owing to
Schank and Abelson (1977). Coreference chains
were extracted over the Gigaword corpus (Graff,
2002) to extract event chains with the same pro-
tagonist. A syntactic parser identified each event
in which the protagonist was involved, defined as
the combination of a verb and dependency relation,
such as (convict, obj). They then calculated the
pointwise mutual information (PMI) (Church and
Hanks, 1989, 1990) for each combination of two
events and used this PMI to do agglomerative clus-
tering to induce narrative chains. We follow the
basic approach of Chambers and Jurafsky (2008),
with the major extension that we take relations be-
tween the documents into account for the first time.

There have been numerous improvements on
the Chambers and Jurafsky (2008) approach,
including using language modeling approaches
(Rudinger et al., 2015), neural networks (Pichotta
and Mooney, 2016; Weber et al., 2018), and graphs
where events are the vertices (Li et al., 2018, 2021).
None of these improvements has considered rela-
tions between documents in the corpus.

3 Alternative Measures

Much of the narrative chain induction literature,
following Chambers and Jurafsky (2008), has used
PMI. Specifically, for any given coreference chain
C anywhere in the corpus, the standard PMI of two
events e1 and e2 is defined by,

pmistandard(e1, e2) = log
P (e1 ∈ C ∧ e2 ∈ C)

P (e1 ∈ C)P (e2 ∈ C)

PMI provides a measure of how often e1 and e2
actually occur together, as compared to what we
would expect if they were independent. If they
were independent, then:

P (e1 ∈ C ∧ e2 ∈ C) = P (e1 ∈ C)P (e2 ∈ C)

Note that the definition of pmistandard has the
equation above’s left hand side in the numerator
and right hand side in the denominator.
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Figure 1: Illustration of events considered in the denominator of each PMI variant. Case A cites case B.

Given some relation between the documents
making up the corpus, e.g. case citations, we con-
sider four different ways to define an extension of
PMI. One is document-by-document, and three are
chain-by-chain.

To develop the three chain-by-chain measures,
we define A and B to be documents with a relation
(e.g. case A cites case B), and define CA to be
a chain of events in document A, and CB to be a
chain of events in document B. Thus, assuming
independence between all occurrences of e1 and
e2, we can derive four equivalent expressions:

P (e1 ∈ CA ∧ e2 ∈ CA ∧ e1 ∈ CB ∧ e2 ∈ CB)

=P (e1 ∈ CA ∧ e2 ∈ CA)P (e1 ∈ CB ∧ e2 ∈ CB)

=P (e1 ∈ CA ∧ e1 ∈ CB)P (e2 ∈ CA ∧ e2 ∈ CB)

=P (e1 ∈ CA)P (e2 ∈ CA)·
P (e1 ∈ CB)P (e2 ∈ CB)

These are the probabilities that, if you randomly
select a chain CA and a chain CB where case A
cites case B, that these chains have these events.
For example, if you’ve randomly selected CA and
CB , then P (e1 ∈ CA) is the probability that the
event e1 appears in CA.

By taking the first expression above as the nu-
merator and using the last three expressions above
as the denominators, we get three different exten-
sions of PMI:

pmidual(e1, e2) =

log
P (e1, e2 ∈ CA ∧ e1, e2 ∈ CB)

P (e1, e2 ∈ CA)P (e1, e2 ∈ CB)

pmicross(e1, e2) =

log
P (e1, e2 ∈ CA ∧ e1, e2 ∈ CB)

P (e1 ∈ CA, CB)P (e2 ∈ CA, CB)

pmiatom(e1, e2) =

log
P (e1, e2 ∈ CA ∧ e1, e2 ∈ CB)

P (e1∈CA)P (e2∈CA)P (e1∈CB)P (e2∈CB)

A fourth approach can come from considering
an analogous measure that works document-by-
document, rather than chain-by-chain. Given re-
lated documents A and B (e.g. case A cites case
B), if we assume that occurrences of e1 and e2 are
independent, then the following must be true:

P (∃CA : e1, e2 ∈ CA ∧ ∃CB : e1, e2 ∈ CB)

=P (∃CA : e1, e2 ∈ CA)P (∃CB : e1, e2 ∈ CB)

This expression, unlike the chain-by-chain ex-
pression, cannot be further factored into two other
alternatives. Why? There can be (and typically
are) multiple chains in each document. Within a
document, there may exist no chains with both e1
and e2, even though there exists a chain with e1
and another chain with e2.

We can get the fourth extension of PMI by divid-
ing the two sides of the equation directly above:

pmidoc(e1, e2) =

log
P (∃CA: e1,e2∈CA∧∃CB : e1,e2∈CB)

P (∃CA: e1,e2∈CA)P (∃CB : e1,e2∈CB)

4 Experimental Setup

4.1 Dataset
We used all U.S. federal court cases since 1970
that have at least 800 total characters and that ei-
ther cite to or are cited by another U.S. federal
court case. All text came from the Caselaw Access
Project (CAP). Cases with under 800 characters
and cases neither cited to or by other federal were
summary dispositions or procedural rulings that
lacked meaningful description of the underlying
facts of the case. The resulting corpus had 965,467
cases. (Each case is exactly one document.)

209



4.2 Coreference

Following Chambers and Jurafsky (2008) and sub-
sequent literature, we extract all coreference chains
from each document in the corpus. Since court de-
cisions may be quite long (often exceeding 100,000
characters), we use the efficient long-coreference
methodology of Xia et al. (2020). We hand-
annotated coreference on 35 randomly selected
cases (with average length of 3,518 words per case)
aiming to fine-tune that model.2 We only hand-
annotated 35 cases since annotating a long docu-
ment for coreference takes substantial human effort.
We found that Xia et al. (2020)’s original model
achieved 0.931 F1 on those 35 cases. Unfortu-
nately, fine-tuning on splits of these 35 cases, with
a variety of hyperparameters, uniformly reduced
performance below this baseline.

So, we proceeded with (Xia et al., 2020)’s origi-
nal model on all 965,467 cases, which took approxi-
mately 4100 hours of Quadro RTX GPU processing
time. The coreference spans are available to down-
load,3 and we will share the spans plus tokens with
those with researcher approval from the Caselaw
Access Project.

4.3 Parsing and Chain Extraction

We use Stanford CoreNLP (Manning et al., 2020)
for syntactic parsing, including POS tagging,
lemmatization, and dependency parsing. We then
use PredPatt (White et al., 2016) to extract predi-
cates and arguments from the dependency parse. If
an argument matches one of the entities identified
during coreference, we consider the event as a 2-
tuple of the predicate’s lemma and the dependency
type (e.g. (convict, obj)). Although the predicate
is often a verb, it need not be, unlike in Chambers
and Jurafsky (2008), which restricted predicates to
being verbs. We retained all chains of length 2 or
more; most cases had multiple chains. We do not
follow Chambers and Jurafsky (2008) in attempt-
ing partial temporal ordering of events. Thus, each
chain is an unordered set of events that shares the
same co-referring entity.

Using these chains, we calculated all four of our
proposed PMI variations that rely on the relations
between documents (i.e., citations between cases).
We also calculated pmistandard, which does not
rely on the relations. All these training calculations

2The full 35 annotations are at https://doi.org/10.
7281/T1/QVAHMD

3https://doi.org/10.7281/T1/QVAHMD

Measure R@1 R@5 R@50 MRR
pmistandard 1.7% 4.9% 15.9% 0.037
pmidual 0.4% 1.2% 6.1% 0.011
pmicross 2.1% 6.6% 25.2% 0.050
pmiatom 1.4% 4.5% 19.0% 0.036
pmidoc 0.4% 1.2% 6.3% 0.012

Table 1: Cloze Performance on test set of 27,324 held-
out chains, measured by Recall@1, Recall@5, Re-
call@50, and Mean Reciprocal Rank.

were by CPU and ran on the entire corpus, except
for some cases held out for testing. So, the calcu-
lations were run on 955,810 cases, between which
there were 10,606,964 citation relations, containing
a total of 27,166,457 chains and 24,364,877,760
combinations of chain CA from case A and chain
CB from case B, where case A cites case B. The
complete set of event chains from each case are
available for download.4

5 Results and Discussion

5.1 Quantitative evaluation

We measure the effectiveness of the different mea-
sures of PMI using the event cloze task, following
Chambers and Jurafsky (2008), where we randomly
remove an event from each test chain and use the
PMI measures to predict what event should fill that.
For test, we used 0.3 percent of the corpus (2783
cases) that had been held back and not used to cal-
culate any of the PMI measures, either as a citing
case or cited case. We used all chains with 3 or
more events, which resulted in 27,324 chains used
for the cloze test, each with one event randomly
removed. (We used chains with 3 or more events
because, when removing one event for cloze, that
leaves chains with 2 or more events.) Each possible
event that might complete the cloze is evaluated as
the sum of the PMIs with the other events in the
chain (i.e. other than the one removed). We mea-
sure performance in several ways: the percentage
of chains where the correct event is the top predic-
tion (recall@1); within the top 5 predictions (re-
call@5); within the top 50 predictions (recall@50);
and, finally, mean reciprocal rank (MRR).

Looking at Table 1, we see that two of our four
PMI variants substantially underperform standard
PMI: pmidoc and pmidual. It is worth noting that
the former is just a document-by-document version

4https://doi.org/10.7281/T1/QVAHMD
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Figure 2: Performance of the five types of PMI, measured by mean reciprocal rank, by length of the test chain. For
example, a test chain of length 2 originally had 3 events, one of which is removed for cloze prediction, and the
reported performance is how well that PMI measure predicts the actual removed event.

of the latter. Both compare the frequency of both
events e1 and e2 in both a cited and citing case to
the frequency of both events in cases by themselves.
We hypothesize that the decision of a court to cite
a previous decision is noisy and unpredictable, so
that even when both an earlier case and a later case
have a chain with both e1 and e2, the decision of
the judge authoring the later case to cite the earlier
case is noisy.

By contrast, pmicross normalizes out the noisi-
ness of the decision of whether to cite or not. Its
denominator uses the probability that e1 is in both
CA and CB multiplied by the probability that e2 is
in both CA and CB . By definition, these probabil-
ities already take into account the decision of the
author of the later case A to cite the earlier case
B. We observe that pmicross substantially outper-
forms the standard pmistandard that has been the
foundation for most narrative chain induction work,
achieving a recall@50 of 25.2% (versus 15.9%, a
58% relative improvement) and a mean reciprocal
rank (MRR) of 0.050 (versus 0.037).

Note that the cloze test used for this evaluation
runs entirely on chains within a single case, not
relying in any way on citation relations between
cases. Yet our newly introduced pmicross, which is
calculated using the citation relations, outperforms
pmistandard, which is calculated solely on chains
within single cases and does not use the relations.

To determine whether these trends in perfor-
mance are attributable to chains of a particular
length, in Figure 2 we graph all five variations
of PMI by chain length. We see that pmicross out-

performs all other measures, including pmistandard
for all chain lengths.

5.2 Qualitative evaluation

High-quality narrative chains should correspond to
sensible groupings of events actually encountered.
A U.S.-trained lawyer reviewed a sample of chains
from both and found that the narrative chains in-
duced using pmicross and agglomerative clustering
are qualitatively better than those induced in the
same way but using pmistandard. To do agglom-
erative clustering, we build a cluster around every
set of two events that appears in any chain, and
we repeatedly add the event with the highest sum
of PMIs with the existing events, until we reach
a desired maximum set size (we used 6). These
sets are the narrative chains. We use dynamic pro-
gramming to avoid duplication, and we rank the
final clusters by the total sum of PMIs between all
elements. Here are two 6-event-long example nar-
rative chains induced using pmicross that were not
induced using pmistandard. One relates to a crimi-
nal defendant and the other relates to a trademark
being found generic and thus invalid (as happened
to Kleenex’s trademark):

(have, nsubj) (trademark, nsubj)
(commit, nsubj) (mark, nsubj)
(perpetrate, nsubj) (term, nsubj)
(plead, nsubj) (use, nsubj:pass)
(sentence, obj) (descriptive, nsubj)
(serve, nsubj) (generic, nsubj)
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6 Conclusion

We have explored four new measures of PMI that
can take advantage of relationships between doc-
uments in corpora. Applying them to the corpus
of federal cases, we find that one such measure,
pmicross shows substantial improvement over stan-
dard PMI. Future work may consider the use of
these new PMI measures on other corpora where
the documents may have relationships that can be
characterized as directed edges, including hyper-
links and references.5

We focused on a PMI-based approach to induc-
ing narrative chains owing to its familiarity within
the community. Based on these results demonstrat-
ing the benefits of utilizing document-to-document
relations, future work can consider extensions such
as using temporal relations, causality, and neural
modeling.
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