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Abstract

Prior to deep learning the semantic pars-
ing community has been interested in under-
standing and modeling the range of possi-
ble word alignments between natural language
sentences and their corresponding meaning
representations. Sequence-to-sequence mod-
els changed the research landscape suggesting
that we no longer need to worry about align-
ments since they can be learned automatically
by means of an attention mechanism. More
recently, researchers have started to question
such premise. In this work we investigate
whether seq2seq models can handle both sim-
ple and complex alignments. To answer this
question we augment the popular GEO seman-
tic parsing dataset with alignment annotations
and create GEO-ALIGNED. We then study the
performance of standard seq2seq models on
the examples that can be aligned monotoni-
cally versus examples that require more com-
plex alignments. Our empirical study shows
that performance is significantly better over
monotonic alignments. 1

1 Introduction

In semantic parsing, the goal is to map natural
language (NL) sentences into machine-readable
meaning representations (MR) which allow for
automated reasoning. For example, consider the
following pair:

NL : What is the population of Georgia ?
MR : answer (population (state (georgia) ) )

Prior to deep learning models, a popular ap-
proach was to learn a grammar-based parser that
explicitly models alignments between the NL and
MR sequences (Wong and Mooney, 2006; Zettle-
moyer and Collins, 2005, 2007; Lu et al., 2008;

1The code and data is publicly available at https://
github.com/interact-erc/geo-aligned

Kwiatkowksi et al., 2010; Kwiatkowski et al.,
2011). The emergence of sequence-to-sequence
(seq2seq) semantic parsers with attention mecha-
nisms changed the research landscape: one of the
initial premises of seq2seq models is that align-
ments no longer need to be explicitly modeled
because the attention mechanisms will automat-
ically learn them (Bahdanau et al., 2015). More re-
cently, researchers started to question such premise,
having observed that seq2seq models fail to make
proper generalizations on out-of-distribution test
sets on which traditional grammar-based models
excel (Liu et al., 2020, 2021; Wang et al., 2021).

In this paper we follow this line of research and
ask the questions: Can standard seq2seq models
handle arbitrary alignments? And if not, what kind
of alignment bias do they have? To answer these
questions, we augment the GEO semantic parsing
benchmark (Zelle and Mooney, 1996) with align-
ment annotations and create GEO-ALIGNED. We
then compare the performance of seq2seq models
on examples that can be easily aligned with simple
monotonic alignments to the performance of these
models on examples that require word reordering.
Our empirical study shows that seq2seq parsers
perform significantly better over examples that can
be monotonically aligned. In other words, the flex-
ibility of not having to explicitly model alignments
comes at a cost: seq2seq models have difficulties
in learning complex alignments.

The main contributions of this paper are:

1. We introduce a new dataset: GEO-ALIGNED

that augments the GEO semantic benchmark
with alignment annotations. We used the En-
glish and German versions of the original
dataset, and we additionally introduce a new
Italian version.

2. Using GEO-ALIGNED we define new evalua-
tion splits to distinguish parsing performance
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over easier and harder examples.

3. Our empirical study shows that seq2seq
parsers are significantly better in handling
monotonic alignments, and quantifies the im-
pact of using attention.

4. As a side contribution we offer a measure of
the complexity of the GEO dataset, showing
that more than half of the examples involve
monotonic alignments.

2 The GEO-ALIGNED Benchmark

In this section we describe the GEO-ALIGNED

dataset, an augmentation of the popular GEO se-
mantic parsing benchmark first introduced by Zelle
and Mooney (1996). We start by providing a
brief formal definition of word alignments follow-
ing standard notation from the statistical machine
translation literature, and we define monotonic and
non-monotonic alignments (Wu, 2010). We then
detail how we augment the GEO dataset and pro-
vide statistics that measure the complexity of the
dataset.

2.1 Bi-text alignments

Given an input sequence of N words x =
x1, . . . , xN , and a target sequence of M words
y = y1, . . . , yM , a bi-text is defined as the tuple
(x,y). A bi-text word alignment is a set of bi-
symbols A, where each bi-symbol (xi, yj) couples
a word xi in the input sequence at position i to a
word yj in the target sequence at position j.

If a word xi from the input sequence does not
need an alignment to a word in the target, we in-
troduce an ε in y at position i. This bi-symbol
(xi, εi) amounts to a deletion, i.e. mapping from
input to target involves deleting a word from the
input. Conversely, if a word yj from the target does
not require an alignment to a word in the input, we
introduce an ε in x at position j. This bi-symbol
(εj , yj) amounts to an insertion, i.e. mapping from
input to target involves inserting an extra word in
the target. We refer to the number of insertions
and deletions in an alignment as the gap length.
Figure 1 shows examples of alignments from the
GEO-ALIGNED dataset.

2.2 Monotonic and non-monotonic
alignments

Monotonic alignments are bi-text alignments where
A contains bi-symbols of the forms (xi, yj),

Figure 1: Examples alignments from the GEO-
ALIGNED benchmark. Each bi-symbol is represented
as a vertical line coupling words in the NL with words
in the corresponding MR. The monotonic alignment
(a) does not involve crossings of bi-symbols, while the
non-monotonic alignment (b) involves considerable re-
ordering.

(xi, εj) or (εi, yj) where i = j. In other words,
a monotonic alignment does not involve any re-
ordering of the words. Conversely, non-monotonic
alignments also include bi-symbols of the form
(xi, yj) where i 6= j. Figure 1 shows an example
of a monotonic alignment versus a non-monotonic
one.

2.3 Alignment annotation

The original GEO dataset contains 880 English
questions about US geography, paired with a mean-
ing representation. Several MR formalisms have
been introduced for this dataset, including a first-
order logic as in Zelle and Mooney (1996), a
variable-free functional language introduced by
Kate et al. (2005) and SQL (Popescu et al., 2003;
Giordani and Moschitti, 2013; Iyer et al., 2017).
In GEO-ALIGNED, we use the variable-free func-
tional language formalism. Similarly to Wang et al.
(2021), we further simplify the MR by removing
the brackets. This is done to avoid introducing nu-
merous ε in the alignments, and also to better reveal
the structural similarity between the NL and MR
sequences. Similarly to Dong and Lapata (2016),
we remove constants used to identify states, rivers,
cities, places and countries by substituting them
with their type.

Alignments were provided by four expert an-
notators. For each pair, the annotators were first
asked to decide whether there was a monotonic or
non-monotonic alignment. Secondly, annotators
were asked to provide the actual alignment from
NL to MR words. More specifically, two annotators
aligned the entire dataset, while the other two each
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annotated fifty disjoint examples. Inter-annotation
agreement was calculated by comparing the align-
ments provided. A first agreement metric is Co-
hen’s Kappa statistic (Cohen, 1960) to measure the
agreement of monotonic versus non-monotonic la-
bels: the average score obtained is 0.803, which
corresponds to substantial agreement. We then cal-
culated the average percentage of exact matches
between the alignments of the two main annotators
and each of the other three, which resulted in a
90% average match. Disagreements were resolved
by keeping the annotation that best matched the
alignment strategy taken by the majority.

Bi-text word alignments vary depending on the
order in which the words appear both in the natural
language and the meaning representation (Steed-
man, 2020). If we keep the MR fixed, a sentence
in one language might be monotonically aligned,
while the same sentence in another language might
not be. To better understand the range of align-
ments between natural language utterances and
meaning representations one should ideally con-
sider multiple languages. With this objective in
mind, we additionally annotated the German ver-
sion (Jones et al., 2012) of GEO, and a new Italian
version that we introduce, obtained by translations
of the English sentences provided by an Italian
native speaker.

The resulting dataset contains the NL and MR
data pairs, augmented with

• a label indicating whether there is a monotonic
alignment;

• the alignment that maps NL and MR words.

Table 1 reports annotation statistics for GEO-
ALIGNED. In general, it can be observed that
across all languages the majority of the alignments
are monotonic and the average gap length is less
than three. For non-monotonic alignments the av-
erage number of reordered words is below three.

With respect to differences between the three
languages, Figure 2 shows a histogram of the
gap lengths of monotonic alignments. As we can
see the distributions are quite similar, but slightly
shifted towards longer gaps for German and Italian.
In particular, there are significantly more align-
ments with no gap in English. The proportion of
monotonic alignments reflects the structural simi-
larity between the variable-free MRs and the NL
sequences. It is highest in the case of English, after
which the MR formalism was modeled. German

Lang Len MP MG M0 NMR
EN 7.67 0.75 2.52 8.2 2.14
DE 7.72 0.65 2.91 0.55 2.52
IT 7.92 0.52 2.54 1.5 2.23

Table 1: Alignment annotation statistics for different
languages. Len is the mean length of input NL sen-
tences, MP is the percentage of monotonic alignments,
MG is the average gap in monotonic alignments, M0
is the percentage of monotonic alignments with no gap,
and NMR is the average number of words reordered in
the non-monotonic alignments.
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Figure 2: Distribution of gap lengths for the monotonic
alignments.

is syntactically more similar to English than Ital-
ian and as a result it can be more easily aligned
with the MR sequences. An exemplary syntactic
difference is adjective placement: in English and
German adjectives come before nouns, whilst in
Italian they are usually placed after. When a su-
perlative is used in the NL sentence, the MR, being
modeled after English, places it before the noun.
This creates a monotonic alignment with English
and German sentences and a non-monotonic one
with Italian ones. For example, if the question is
What is the largest state ? the corresponding MR
will be answer(largest(state(all))). Because largest
comes before state in both English and German
as well as in the MR, the alignment will be mono-
tonic. In Italian, largest comes after state and the
alignment will require reordering.

3 Measuring Alignment Bias

3.1 Models and Experiments

The goal of our study is to compare the perfor-
mance of neural seq2seq models over monotonic
and non-monotonic alignments. Our hypothesis is
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that seq2seq models can implicitly learn monotonic
alignments more easily than non-monotonic align-
ments. To evaluate this hypothesis we compared
the performance of two seq2seq architectures on
GEO-ALIGNED.

LSTM SEQ2SEQ A standard seq2seq model
based on a bidirectional-LSTM encoder (Hochre-
iter and Schmidhuber, 1997; Schuster and Paliwal,
1997), and a unidirectional LSTM decoder that
uses attention (Bahdanau et al., 2015). We
then ablate the decoder of the attention layer to
investigate its impact on the performance for the
different alignments.

BART A pre-trained seq2seq model based on a
bidirectional encoder and a left-to-right decoder
(Lewis et al., 2020). Since it was pre-trained on
English corpora, we only used this model on the
English version of the dataset.

For our experiment we use exact-match accuracy
as the evaluation metric, i.e. the percentage of exact
matches between the predicted and ground-truth
MRs. The alignment labels in GEO-ALIGNED al-
low us to break down the accuracy score for the
two classes of alignments and observe whether the
seq2seq framework has an implicit bias towards
monotonic alignments. Further implementation
and experimental setup details can be found in Ap-
pendix A.

3.2 Results

Table 2 shows the performance for the different
models and languages. As we can observe ac-
curacy for all models is significantly lower over
non-monotonic alignments and this is true for all
languages. The difference in performance between
monotonic and non-monotonic alignments is more
pronounced for models with no attention, but it
holds true for all of them.

The performance follows the same pattern across
languages and models: accuracies are higher for
monotonic sequences than for non-monotonic ones.
For English and Italian the differences are quite
similar: models with attention score 0.13 point
higher for monotonic sequences; without attention
the difference is 0.19 for English and 0.17 for Ital-
ian. German has a lower accuracy overall. One
possible explanation (as shown in Figure 2) is that
the monotonic gap distribution for these two lan-

Lang Model Acc MAcc NMAcc

EN

LSTM 0.83 0.87 0.74
LSTM-attn 0.75 0.80 0.61
BART 0.85 0.87 0.80

DE
LSTM 0.63 0.73 0.54
LSTM-attn 0.57 0.69 0.46

IT
LSTM 0.77 0.84 0.71
LSTM-attn 0.71 0.80 0.63

Table 2: Summary of results for the different models
and languages: LSTM is the seq2seq model based on
a bidirectional LSTM encoder and an LSTM decoder
with attention. LSTM-attn ablates the attention layer
in the decoder. Acc reports the overall accuracy for
each model, MAcc and NMAcc are the accuracy over
sequences with monotonic and non-monotonic align-
ments respectively.
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Figure 3: Accuracy for monotonic examples as a func-
tion of gap length.

guages has a slight shift towards shorter gaps and
in particular the sequences with no gap could help
the models to implicitly induce better alignments.
Moreover, the difference between monotonic and
non-monotonic performance is starker: the model
scored 0.19 and 0.23 better on monotonic examples
with and without attention respectively. This might
be due to the fact that more words are reordered
on average for German than for the other two lan-
guages (see Table 1). Figure 3 shows accuracy for
monotonic sequences binned by gap length. We
observe that for all languages there is a negative
correlation between accuracy and gap length.

We performed a qualitative analysis of the
predictions by categorizing errors based on how
many steps are needed to correct the mistake.
Simpler errors are those where the correct MR can
be recovered by inserting, deleting or changing at
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Lang Align Model 1T 2T Other

EN

M LSTM 0.46 0.19 0.32
NM LSTM 0.24 0.15 0.61
M BART 0.67 0.25 0.08
NM BART 0.29 0.17 0.54

DE
M LSTM 0.72 0.08 0.20
NM LSTM 0.32 0.27 0.41

IT
M LSTM 0.72 0.05 0.23
NM LSTM 0.43 0.18 0.39

Table 3: Statistics of qualitative analysis on prediction
errors. Align indicates the type of alignment: M stands
for monotonic, NM for non-monotonic. 1T is the pro-
portion of examples requiring a one-token correction
without reordering. Similarly, 2T is for two-token cor-
rections without reordering. Other is the proportion of
examples requiring more complex corrections of three
or more tokens, occasionally with reordering.

most two tokens, without reordering. An example
is:

MR: answer river loc 2 stateid state name
prediction: answer loc 2 stateid state name

where the gold MR can be recovered by insert-
ing river in the second position. More complex
errors require correcting three or more tokens, and
can also require reordering of the output. Table 3
reports statistics of our analysis. In general, we
found that errors on monotonic examples are of
the simpler category in much higher proportion
than for non-monotonic: across languages, non-
monotonic sequences require much more complex
corrections involving three or more tokens as well
as considerable reordering.

Another interesting finding is that, despite BART
and our LSTM-based seq2seq model achieve sim-
ilar results in English (see Table 2), the LSTM-
based model makes more complex mistakes, par-
ticularly in the monotonic case. For these exam-
ples, the vast majority of the errors for BART were
one-token, and we found that most of these were
minor mistakes such as predicting the token loc 2
instead of loc 1. The predictions of the LSTM-
based model are more dissimilar to the gold MR.

4 Related Work

Several grammar formalisms have been proposed
for semantic parsing, including categorical gram-
mars (Steedman, 1996, 2000; Zettlemoyer and
Collins, 2005; Clark and Curran, 2003; Zettle-

moyer and Collins, 2007; Kwiatkowksi et al., 2010;
Kwiatkowski et al., 2011) and synchronous context
free grammars (Wong and Mooney, 2006). Both ap-
proaches model alignments explicitly and they are
induced from data. There have also been attempts
to derive a more general formalism to unify the
different grammar based approaches to semantic
parsing (Jones et al., 2011).

More recently, neural seq2seq models were pro-
posed for semantic parsing in Dong and Lapata
(2016); Jia and Liang (2016); Iyer et al. (2017).
The seq2seq approach aims to relax the reliance
upon high-quality lexicons, i.e. domain-specific
word alignments. Most seq2seq systems implement
an attention mechanism such as those proposed by
Bahdanau et al. (2015); Luong et al. (2015); Xu
et al. (2015), which can be seen as a strategy to
learn soft alignments (Dong and Lapata, 2016).

Recently there has been an interest in testing the
generalization abilities of neural semantic parsers,
which resulted in the creation of several new bench-
marks (Bastings et al., 2018; Lake and Baroni,
2018; Loula et al., 2018; Ruis et al., 2020; Keysers
et al., 2020; Kim and Linzen, 2020) on which re-
cent work has shown improved performance by in-
troducing more alignment bias in the models either
explicitly (Liu et al., 2021), or implicitly (Wang
et al., 2021).

5 Conclusion

In this paper we introduced the GEO-ALIGNED

dataset that offers an evaluation framework for test-
ing the performance of semantic parsers over exam-
ples of varying alignment complexity. Our experi-
ments have shown that seq2seq neural parsers per-
form significantly better over simpler monotonic
alignments, suggesting that they have an implicit
bias. We hope that GEO-ALIGNED can be used by
other researchers to further test alignment biases.
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A Implementation and training details

We based our LSTM-based seq2seq model on Bah-
danau et al. (2015). We use a one-layer bidirec-
tional LSTM for our encoder and a one-layer uni-
directional LSTM for our decoder. At training we
minimize the cross entropy loss between the predic-
tions and the ground-truth MR sequences. We use a
batch size of 32, Adam optimizer and learning rate
of 0.001. We manually tune the hyperparameters,
and train for 100 epochs on one NVIDIA TESLA
V100 16GB GPU.
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For BART, we used the pre-trained BART-base
model provided by the HuggingFace transform-
ers library (Wolf et al., 2020). We fine-tune for
100 epochs with a learning rate of 0.00001 on one
NVIDIA TESLA V100 16GB GPU. Fine-tuning
took approximately 1h30mins.
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