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Abstract

Incorporating stronger syntactic biases into neu-
ral language models (LMs) is a long-standing
goal, but research in this area often focuses
on modeling English text, where constituent
treebanks are readily available. Extending
constituent tree-based LMs to the multilin-
gual setting, where dependency treebanks are
more common, is possible via dependency-to-
constituency conversion methods. However,
this raises the question of which tree formats
are best for learning the model, and for which
languages. We investigate this question by
training recurrent neural network grammars
(RNNGs) using various conversion methods,
and evaluating them empirically in a multilin-
gual setting. We examine the effect on LM
performance across nine conversion methods
and five languages through seven types of syn-
tactic tests. On average, the performance of
our best model represents a 19 % increase in
accuracy over the worst choice across all lan-
guages. Our best model shows the advantage
over sequential/overparameterized LMs, sug-
gesting the positive effect of syntax injection in
a multilingual setting. Our experiments high-
light the importance of choosing the right tree
formalism, and provide insights into making an
informed decision.

1 Introduction

The importance of language modeling in recent
years has grown considerably, as methods based
on large pre-trained neural language models (LMs)
have become the state-of-the-art for many problems
(Devlin et al., 2019; Radford et al., 2019). However,
these neural LMs are based on general architectures
and therefore do not explicitly model linguistic
constraints, and have been shown to capture only
a subset of the syntactic representations typically
found in constituency treebanks (Warstadt et al.,
2020). An alternative line of LM research aims
to explicitly model the parse tree in order to make
the LM syntax-aware. A representative example of

this paradigm, reccurent neural network grammar
(RNNG, Dyer et al., 2016), is reported to perform
better than sequential LMs on tasks that require
complex syntactic analysis (Kuncoro et al., 2019;
Hu et al., 2020; Noji and Oseki, 2021).

The aim of this paper is to extend LMs that inject
syntax to the multilingual setting. This attempt is
important mainly in two ways. Firstly, English has
been dominant in researches on syntax-aware LM.
While multilingual LMs have received increasing
attention in recent years, most of their approaches
do not explicitly model syntax, such as multilingual
BERT (mBERT, Devlin et al., 2019) or XLM-R
(Conneau et al., 2020). Although these models have
shown high performance on some cross-lingual
tasks (Conneau et al., 2018), they perform poorly
on a syntactic task (Mueller et al., 2020). Secondly,
syntax-aware LMs have interesting features other
than their high syntactic ability. One example is
the validity of RNNG as a cognitive model under
an English-based setting, as demonstrated in Hale
et al. (2018). Since human cognitive functions are
universal, while natural languages are diverse, it
would be ideal to conduct this experiment based on
multiple languages.

The main obstacle for multilingual syntax-aware
modeling is that it is unclear how to inject syn-
tactic information while training. A straightfor-
ward approach is to make use of a multilingual
treebank, such as Universal Dependencies (UD,
Nivre et al., 2016; Nivre et al., 2020), where trees
are represented in a dependency tree (DTree) for-
malism. Matthews et al. (2019) evaluated parsing
and language modeling performance on three ty-
pologically different languages, using a generative
dependency model. Unfortunately, they revealed
that dependency-based models are less suited to
language modeling than comparable constituency-
based models, highlighting the apparent difficulty
of extending syntax-aware LMs to other languages
using existing resources.
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Figure 1: The illustration of stack-RNNG behavior.
Stack-LSTM represents the current partial tree, in which
adjacent vectors are connected in the network. At RE-
DUCE action, the corresponding vector is updated with
composition function (as underlined).

This paper revisits the issue of the difficulty of
constructing multilingual syntax-aware LMs, by ex-
ploring the performance of multilingual language
modeling using constituency-based models. Since
our domain is a multilingual setting, our focus
turns to how dependency-to-constituency conver-
sion techniques result in different trees, and how
these trees affect the model’s performance. We
obtain constituency treebanks from UD-formatted
dependency treebanks of five languages using nine
tree conversion methods. These treebanks are in
turn used to train an RNNG, which we evaluate on
perplexity and CLAMS (Mueller et al., 2020).

Our contributions are: (1) We propose a method-
ology for training multilingual syntax-aware LMs
through the dependency tree conversion. (2) We
found an optimal structure that brings out the po-
tential of RNNG across five languages. (3) We
demonstrated the advantage of our multilingual
RNNG over sequential/overparameterized LMs.

2 Background

2.1 Recurrent Neural Network Grammars

RNNGs are generative models that estimate joint
probability of a sentence x and a constituency tree
(CTree) y. The probability p(x,y) is estimated
with top-down constituency parsing actions a =(a1, a2,⋯, an) that produce y:

p(x,y) = n∏
t=1 p(at∣a1,⋯, at−1)

Kuncoro et al. (2017) proposed a stack-only
RNNG that computes the next action probability
based on the current partial tree. Figure 1 illustrates
the behavior of it. The model represents the current
partial tree with a stack-LSTM, which consists of
three types of embeddings: nonterminal, word, and
closed-nonterminal. The next action is estimated
with the last hidden state of a stack-LSTM. There
are three types of actions as follows:

• NT(X): Push nonterminal embedding of X
(eX ) onto the stack.

• GEN(w): Push word embedding of w (ew)
onto the stack.

• REDUCE: Pop elements from the stack un-
til a nonterminal embedding shows up. With
all the embeddings which are popped, com-
pute closed-nonterminal embedding eX′ using
composition funcion COMP:

eX′ = COMP(eX ,ew1 ,⋯,ewm)
RNNG can be regarded as a language model that

injects syntactic knowledge explicitly, and various
appealing features have been reported (Kuncoro
et al., 2017; Kuncoro et al., 2017; Hale et al., 2018).
We focus on its high performance on syntactic eval-
uation, which is described below.

Difficulty in extending to other languages In
principle, RNNG can be learned with any corpus as
long as it contains CTree annotation. However, it is
not evident which tree formats are best in a multilin-
gual setting. Using the same technique as English
can be inappropriate because each language has its
own characteristic, which can be different from En-
glish. This question is the fundamental motivation
of this research.

2.2 Cross-linguistic Syntactic Evaluation
To investigate the capability of LMs to capture
syntax, previous work has attempted to create an
evaluation set that requires analysis of the sentence
structure (Linzen et al., 2016). One typical example
is a subject-verb agreement, a rule that the form of
a verb is determined by the grammatical category
of the subject, such as person or number:

The pilot that the guards love laughs/*laugh. (1)

In (1), the form of laugh is determined by the
subject pilot, not guards. This judgment requires
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Algorithm 1: lf is short for left-first conversion. We
omit right-first conversion because it can be defined just
by swapping the codeblocks 6-9 and 10-13 of left-first
conversion.

1 Function flat(w, ldeps, rdeps):
2 lNT← [flat(lw, lw.ldeps, lw.rdeps) for lw

in ldeps];
3 rNT← [flat(rw, rw.ldeps, rw.rdeps) for

rw in rdeps];
4 return [lNT [w] rNT].removeEmptyList;
5 Function lf(w, ldeps, rdeps):
6 if ldeps is not empty then

/* Pop left-most dependent */
7 lw ← ldeps.pop();
8 lNT← [lf(lw, lw.ldeps, lw.rdeps)];
9 rNT← [lf(w, ldeps, rdeps)];

10 else if rdeps is not empty then
/* Pop right-most dependent */

11 rw ← rdeps.pop();
12 lNT← [lf(w, ldeps, rdeps)];
13 rNT← [lf(rw, rw.ldeps, rw.rdeps)];
14 else return [w];
15 return [lNT rNT];

syntactic analysis; guards is not a subject of target
verb laugh because it is in the relative clause of the
real subject pilot.

Marvin and Linzen (2018) designed the En-
glish evaluation set using a grammatical frame-
work. Mueller et al. (2020) extended this frame-
work to other languages (French, German, Hebrew,
and Russian) and created an evaluation set named
CLAMS (Cross-Linguistic Assessment of Models
on Syntax). CLAMS covers 7 categories of agree-
ment tasks, including local agreement (e.g. The au-
thor laughs/*laugh) and non-local agreement that
contains an intervening phrase between subject and
verb as in (1). They evaluated LMs on CLAMS
and demonstrated that sequential LMs often fail to
assign a higher probability to the grammatical sen-
tence in cases that involve non-local dependency.

Previous work has attempted to explore the syn-
tactic capabilities of LMs with these evaluation sets.
Kuncoro et al. (2019) compared the performance
of LSTM LM and RNNG using the evaluation set
proposed in Marvin and Linzen (2018), demon-
strating the superiority of RNNG in predicting the
agreement. Noji and Takamura (2020) suggested
that LSTM LMs potentially have a limitation in
handling object relative clauses. Since these analy-
ses are performed on the basis of English text, it is
unclear whether they hold or not in a multilingual
setting. In this paper, we attempt to investigate this
point by learning RNNGs in other languages and
evaluating them on CLAMS.

3 Method: Dependency Tree Conversion

As a source of multilingual syntactic information,
we use Universal Dependencies (UD), a collection
of cross-linguistic dependency treebanks with a
consistent annotation scheme. Since RNNG re-
quires a CTree-formatted dataset for training, we
perform DTree-to-CTree conversions, which are
completely algorithmic to make it work regardless
of language. Our method consists of two proce-
dures: structural conversion and nonterminal la-
beling; obtaining a CTree skeleton with unlabeled
nonterminal nodes, then assigning labels by lever-
aging syntactic information contained in the depen-
dency annotations. While our structural conversion
is identical to the baseline approach of Collins et al.
(1999), we include a novel labeling method that
relies on dependency relations, not POS tags.

Structural conversion We performed three types
of structural conversion: flat, left-first, and right-
first. Algorithm 1 shows the pseudo code and Fig-
ure 2 illustrates the actual conversions. These ap-
proaches construct CTree in a top-down manner
following this procedure: 1) Introduce the root non-
terminal of the head of a sentence (NTgive). 2) For
each NTw, introduce new nonterminals according
to the dependent(s) of w. Repeat this procedure
recursively until w has no dependents.

The difference between the three approaches is
the ordering of introducing nonterminals. We de-
scribe their behaviors based on the example in Fig-
ure 2. (a) flat approach lets w and its dependents
be children in CTree simultaneously. For example,
NTgive has four children: NTman, NTgive, NThim,
NTbox, because they are dependents of the head
word give. As the name suggests, this approach
tends to produce a flat-structured CTree because
each nonterminal can have multiple children. (b)
left-first approach introduces the nonterminals from
the left-most dependent. If there is no left depen-
dent, the right-most dependent is introduced. In
the example of Figure 2, the root NTgive has a left
child NTman because man is the left-most depen-
dent of the head give. (c) right-first approach is
the inversed version of left-first; handling the right-
most dependent first. For methods (b) and (c), the
resulting CTree is always a binary tree.

Nonterminal labeling We define three types of
labeling methods for each NTw; 1) X-label: Assign
“X” to all the nonterminals. 2)POS-label: Assign
POS tag of w. 3) DEP-label: Assign dependency
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Figure 2: The illustration of structural conversion. NTw is a temporal label of nonterminal which will be assigned at
nonterminal labeling phase.

X-label POS-label DEP-label
NTThe X DETP det
NTman X NOUNP nsubj
NTgive X VERBP root
NThim X PRONP iobj
NTa X DETP det
NTbox X NOUNP obj

Table 1: Actual labels assigned to nonterminals.

relation between w and its head. Table 1 shows the
actual labels that are assigned to CTrees in Figure 2.

Each method has its own intent. X-label drops
the syntactic category of each phrase, which min-
imizes the structural information of the sentence.
POS-label would produce the most common CTree
structure because traditionally nonterminals are la-
beled based on POS tag of the head word. DEP-
label is a more fine-grained method than POS-label
because words in a sentence can have the same
POS tag but different dependency relation, as in
man and box in Figure 2.

Finally, we performed a total of nine types of
conversions (three structures × three labelings). Al-
though they have discrete features, they are com-
mon in that they embody reasonable phrase struc-
tures that are useful for capturing syntax. Figure 3
shows the converted structure of an actual instance
from CLAMS. In all settings, the main subject
phrase is correctly dominated by NTpilot, which
should contribute to solving the task.

4 What Is the Robust Conversion Which
Works Well in Every Language?

In Section 3, we proposed language-independent
multiple conversions from DTree to CTree. The
intriguing question is; Is there a robust conversion

that brings out the potential of RNNG in every
language? To answer this question, we conducted a
thorough experiment to compare the performances
of RNNGs trained in each setting.

4.1 Experimental Setup

Treebank preparation Following Mueller et al.
(2020), we extracted Wikipedia articles of target
languages using WikiExtractor1 to create corpora2.
We fed it to UDify (Kondratyuk and Straka, 2019),
a multilingual neural dependency parser trained on
the entire UD treebanks, to generate a CoNLL-U
formatted dependency treebank. Sentences are tok-
enized beforehand using Stanza (Qi et al., 2020) be-
cause UDify requires tokenized text for prediction.
The resulting dependency treebank is converted
into the constituency treebank using methods pro-
posed in Section 3. Our treebank contains around
10% non-projective DTrees for all the language
(between 9% in Russian and 14% in Hebrew), and
we omit them in the conversion phase because we
cannot obtain valid CTrees from them3. As a train-
ing set, we picked sentences with 10M tokens at
random for each language. For a validation and a
test set, we picked 5,000 sentences respectively.

Training details We used batched RNNG (Noji
and Oseki, 2021) to speed up our training. Follow-
ing Noji and Oseki (2021), we used subword units
(Sennrich et al., 2016) with a vocabulary size of

1https://github.com/attardi/
wikiextractor

2Although Mueller et al. (2020) publishes corpora they
used, we extracted the dataset ourselves because they contain
<unk> token which would affect parsing.

3Since other language can contain more non-projective
DTrees, we have to consider how to handle it in the future.
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Figure 3: Examples of converted CTrees. A sentence is taken from CLAMS, which requires recognition of long
distance dependency intervened by object relative clause (sentence (1)). For simplicity, we omit the corresponding
word of each nonterminal except for pilot, the main subject of the sentence.

30K. We set the hyperparameters so as to make
the model size 35M. We trained each model for 24
hours on a single GPU.

Evaluation metrics To compare the performance
among conversions, we evaluated the model trained
on each dataset in two aspects: perplexity and
syntactic ability based on CLAMS.

Perplexity is a standard metric for assessing the
quality of LM. Since we adopt subword units, we
regard a word probability as a product of its sub-
words’ probabilities. To compute it on RNNG, we
performed word-synchronous beam search (Stern
et al., 2017), a default approach implemented in
batched RNNG. Following Noji and Oseki (2021),
we set a beam size k as 100, a word beam size
kw as 10, and fast-track candidates ks as 1. Syn-
tactic ability is assessed by accuracy on CLAMS,
which is calculated by comparing the probabilities
assigned to a grammatical and an ungrammatical
sentence. If the model assigns a higher probabil-
ity to a grammatical sentence, then we regard it as
correct. Chance accuracy is 0.5.

We run the experiment three times with different
random seeds for initialization of the model, and
report the average score with standard deviation.

4.2 Result

From now on, we refer to each conversion method
according to a naming of the procedure, such as
“left-first structure” or “flat-POS conversion”.

Perplexity Table 2 shows the perplexities in each
setting. As a whole, flat structures show the low-
est perplexity, followed by left-first and right-first,
which is consistent across languages. While flat
structure produces stable and relatively low per-
plexity regardless of labeling methods and lan-
guages, left-first and right-first structures perform
very poorly on X-label.

flat left right
X 259±1 707±19 1507±14

EnglishPOS 278±3 417±2 512±3
DEP 241±30 390±4 463±1

X 133±0 405±10 691±10
FrenchPOS 129±1 206±2 262±1

DEP 137±22 190±5 223±2
X 341±1 830±8 1124±18

GermanPOS 366±1 321±3 482±2
DEP 330±43 291±3 398±4

X 100±1 294±3 450±8
HebrewPOS 97±0 153±1 183±1

DEP 93±1 143±1 161±1
X 508±5 1413±16 1910±59

RussianPOS 527±3 845±2 1067±16
DEP 473±61 834±5 1030±27

Table 2: Test set perplexity of each setting. Lower is
better. “left” and “right” in the table are abbreviations
of “left-first” and “right-first”, respectively.

Syntactic ability Figure 4 shows the accuracies
of CLAMS in each setting, and Table 3 shows the
average scores. From Table 3, we observe clear
distinctions across methods; the best model (shown
in bold) is 19% more accurate in average than the
worst one (shown in italic), across all languages,
indicating the model’s certain preference for the
structure. Similar to perplexity, flat structure per-
forms better and more stably than the others, re-
gardless of labels and languages. While Mueller
et al. (2020) reported a high variability in scores
across languages when an LSTM LM is used, flat
structure-based RNNGs do not show such a ten-
dency; almost all the accuracies are above 90%.

Looking closely at the Figure 4, we can see that
left-first and right-first structures exhibit unstable
behavior depending on the labeling; the accuracy
on X-label tends to be lower especially for the cate-
gories that require the resolution of a long-distance
dependency, such as ‘VP coord (long)’, ‘Across
subj. rel.’, ‘Across obj. rel.’, and ‘Across prep’.
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Figure 4: Accuracies of CLAMS for RNNGs trained on each setting.

flat left right
X 0.89±.01 0.68±.01 0.75±.01

EnglishPOS 0.87±.02 0.89±.01 0.67±.01
DEP 0.90±.02 0.84±.01 0.78±.04

X 0.99±.00 0.75±.00 0.88±.02
FrenchPOS 0.99±.00 0.93±.02 0.92±.01

DEP 0.98±.01 0.96±.01 0.94±.01
X 0.95±.00 0.78±.01 0.86±.01

GermanPOS 0.95±.01 0.93±.01 0.88±.01
DEP 0.96±.01 0.95±.02 0.87±.02

X 0.91±.01 0.72±.01 0.78±.01
HebrewPOS 0.91±.01 0.91±.03 0.87±.01

DEP 0.90±.01 0.92±.00 0.86±.01
X 0.93±.00 0.84±.01 0.89±.02

RussianPOS 0.90±.01 0.87±.01 0.83±.01
DEP 0.93±.01 0.89±.00 0.82±.01

Table 3: CLAMS scores averaged by task category.

Discussion Basically, we observed a similar ten-
dency in perplexity and CLAMS score; (1) flat
structures show the highest scores. (2) left-first
and right-first structures perform poorly on X-label.
We conjecture that these tendencies are due to
the resulting structure of each conversion; while
flat structure is non-binary, the rest two are bi-
nary. Since nonterminals in a non-binary tree can
have multiple words as children, parsing actions
obtained from it contain more continuous GEN
actions than a binary tree. This nature helps the
model to predict the next word by considering lexi-

cal relations, which would contribute to its lower
perplexity. Although binary trees get better with
the hint of informative labels (POS/DEP), it is diffi-
cult to reach the performance of flat structures due
to their confused actions; GEN actions tend to be
interrupted by other actions. Besides, there are too
many NT actions in a binary tree, which can hurt
the prediction because the information of an impor-
tant nonterminal (e.g. NTpilot in Figure 3) can be
diluted through the actions. The situation becomes
worse on X-label; the model cannot distinguish
the nonterminal of the main subject and that of the
other, resulting in missing what the subject is.

It is worth noting that perplexity does not always
reflect the CLAMS accuracy. For example, while
right-X conversion produces the worst perplexity
for all the languages, it achieves better CLAMS
accuracy than left-X conversion for almost all the
cases. This observation is in line with Hu et al.
(2020), who report a dissociation between perplex-
ity and syntactic performance for English.

4.3 Why Does Flat Structure Perform Well?

As one possible reason why flat structure is optimal
among the three structures presented, we conjec-
ture that the parseability of the structure is involved.
To test this hypothesis, we calculated the F1 score
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flat left right
X 0.80±.00 0.34±.00 0.48±.00

EnglishPOS 0.79±.00 0.57±.00 0.70±.00
DEP 0.82±.01 0.59±.01 0.70±.00

X 0.79±.00 0.37±.00 0.58±.00
FrenchPOS 0.86±.00 0.63±.00 0.74±.00

DEP 0.86±.01 0.65±.01 0.75±.00
X 0.90±.00 0.44±.00 0.59±.00

GermanPOS 0.85±.00 0.74±.00 0.76±.00
DEP 0.91±.08 0.76±.00 0.77±.00

X 0.81±.01 0.41±.00 0.58±.00
HebrewPOS 0.83±.00 0.65±.00 0.73±.00

DEP 0.83±.00 0.65±.00 0.72±.00
X 0.80±.00 0.41±.00 0.59±.00

RussianPOS 0.83±.00 0.62±.00 0.73±.00
DEP 0.82±.01 0.58±.00 0.68±.00

Table 4: F1 score of predicted CTree. We regard a
resulting CTree of each conversion as a gold tree.

Figure 5: Structures of a CLAMS example predicted by
{flat, left-first, right-first}-POS RNNG. This example is
solvable only by flat-POS RNNG across all seeds.

between the gold CTrees of the test set and the
structures predicted by RNNG for each setting. Ta-
ble 4 shows the result. The tendencies of F1 scores
are consistent across languages: 1) Flat structures
show highest F1 score. 2) While scores of flat struc-
tures are stable regardless of their labelings, the rest
two structures exhibit lower score on X-label. As a
whole, the result reflects the tendency discussed in
Section 4.2, which supports our hypothesis.

To further investigate the link between parseabil-
ity and the capability of solving the task, we ob-
tained parse trees of CLAMS examples that are
solvable only by flat RNNG across all seeds. We
found that only flat RNNG produces a correct con-
stituency tree, and structures obtained from left-
first and right-first RNNGs are incorrect on a crit-
ical point. For example, in Figure 5, while the
relation between the subject “author” and the target
verb “laughs” is analyzed clearly in the flat struc-
ture, it is ambiguous in the rest, possibly causing

the misinterpretation that the subject is “guards”.
These findings indicate the importance of choos-

ing the correct tree structure for syntax-aware lan-
guage modeling; it should be not only hierarchical,
but also as parseable as possible.

Through analysis of the conversions, we found
that (1) flat structure performs stably well in every
setting. (2) while CLAMS accuracy of flat structure
does not differ significantly depending on its label-
ing, for perplexity, flat-DEP performs the best for
more than half of the languages and no inferiority
can be observed for the other languages. Therefore,
we conclude that flat-DEP conversion is the most
robust conversion among languages.

5 Advantage of Syntax Injection to LMs
in a Multilingual Setting

In this section, we demonstrate the benefits of in-
jecting syntactic biases into the model in a multi-
lingual setting. We obtained the CLAMS score of
RNNG trained on the flat-DEP treebank (flat-DEP
RNNG for short) and compared it against baselines.

Experimental setup The experiment was con-
ducted in as close setting to the previous work as
possible. Following Mueller et al. (2020), we ex-
tracted Wikipedia articles of 80M tokens as train-
ing set. The hyperparameters of LSTM LM are
set following Noji and Takamura (2020) because
it performs the best for the dataset of Marvin and
Linzen (2018)4. We used subword units with a vo-
cabulary size of 30K, and the sizes of RNNG and
LSTM LM are set to be the same (35M).

Result Table 5 shows the result. In addition
to scores from the models we trained (flat-DEP
RNNG, LSTM (N20)), we display scores of LSTM
LM and mBERT reported in the original paper
(LSTM (M20) and mBERT (M20), Mueller et al.,
2020). Overall, we can see the superiority of
RNNG across languages, especially for the tasks
that require analysis on long distance dependency;
‘VP coord (long)’, ‘Across subj. rel.’, ‘Across obj.
rel.’, and ‘Across prep’. While previous work sug-
gested that LSTM LMs potentially have a limita-
tion in handling object relative clauses (Noji and
Takamura, 2020), our result suggests that RNNG
does not have such a limitation thanks to explicitly
injected syntactic biases.

4Since English set of CLAMS is a subset of Marvin and
Linzen (2018), it is reasonable to choose this model to validate
the multilingual extendability.
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Simple VP coord
(short)

VP coord
(long)

Across
subj. rel.

Within
obj rel.

Across
obj rel.

Across
prep.

Average

flat-DEP RNNG 0.99±.01 0.87±.02 0.91±.04 0.95±.02 0.92±.05 0.92±.06 0.93±.04 0.93±.02
EnglishLSTM (N20) 0.93±.03 0.85±.01 0.83±.04 0.85±.04 0.83±.05 0.77±.04 0.87±.02 0.85±.02

LSTM (M20) 1.00±.00 0.94±.01 0.76±.06 0.60±.06 0.89±.01 0.55±.05 0.63±.02 0.77±.03
mBERT (M20) 1.00 1.00 0.92 0.88 0.83 0.87 0.92 0.92

flat-DEP RNNG 1.00±.00 1.00±.00 1.00±.00 1.00±.00 1.00±.00 1.00±.00 1.00±.00 1.00±.00
FrenchLSTM (N20) 1.00±.00 1.00±.00 0.97±.03 0.92±.06 0.85±.03 0.75±.01 1.00±.00 0.93±.01

LSTM (M20) 1.00±.00 0.97±.01 0.85±.05 0.71±.05 0.99±.01 0.52±.01 0.74±.02 0.83±.02
mBERT (M20) 1.00 1.00 0.98 0.57 — 0.86 0.57 0.83

flat-DEP RNNG 1.00±.00 0.99±.01 0.98±.01 1.00±.00 0.88±.04 0.99±.01 0.97±.02 0.97±.01
GermanLSTM (N20) 0.99±.01 0.97±.03 0.92±.05 0.99±.01 0.72±.01 0.97±.02 0.94±.01 0.93±.01

LSTM (M20) 1.00±.00 0.99±.02 0.96±.04 0.94±.04 0.74±.03 0.81±.09 0.89±.06 0.90±.04
mBERT (M20) 0.95 0.97 1.00 0.73 — 0.93 0.95 0.92

flat-DEP RNNG 0.97±.01 0.99±.00 0.92±.03 0.95±.02 1.00±.00 0.84±.05 0.95±.01 0.95±.01
HebrewLSTM (N20) 0.97±.00 0.95±.04 0.85±.02 0.89±.02 0.94±.01 0.63±.04 0.93±.01 0.88±.00

LSTM (M20) 0.95±.01 1.00±.01 0.84±.06 0.91±.03 1.00±.01 0.56±.01 0.88±.03 0.88±.02
mBERT (M20) 0.70 0.91 0.73 0.61 — 0.55 0.62 0.69

flat-DEP RNNG 0.89±.02 0.94±.02 1.00±.00 0.93±.00 0.99±.01 0.92±.02 0.85±.03 0.93±.01
RussianLSTM (N20) 0.91±.01 0.97±.00 0.97±.02 0.98±.00 0.90±.04 0.85±.07 0.86±.02 0.92±.01

LSTM (M20) 0.91±.01 0.98±.02 0.86±.04 0.88±.03 0.95±.04 0.60±.03 0.76±.02 0.85±.03
mBERT (M20) 0.65 0.80 — 0.70 — 0.67 0.56 0.68

Table 5: CLAMS scores for flat-DEP RNNG and baselines. LSTM (N20) is a model of which hyperparameters are
set as with Noji and Takamura (2020). LSTM (M20) and mBERT (M20) scores are quoted from Table 1, 2 and 5 in
Mueller et al. (2020). Hyphen means that all focus verb for the corresponding setting were out-of-vocabulary.

6 Discussion

We discussed the CTree structure that works ro-
bustly regardless of the language and the supe-
riority of injecting syntactic bias to the model.
Our claim is that we can construct language-
independent syntax-aware LMs by seeking the best
structure for learning RNNGs, which is backed
up by our experiments based on five languages.
To make this claim firm, more investigations are
needed from two aspects: fine-grained syntactic
evaluation and experiment on typologically di-
verse languages.

Fine-grained syntactic evaluation The linguis-
tic phenomenon covered in CLAMS is only an
agreement. However, previous works have invented
evaluation sets that examine more diverse syntactic
phenomena for English (Hu et al., 2020, Warstadt
et al., 2020). We need such a fine-grained evalua-
tion even in a multilingual setting, as superiority
in agreement does not imply superiority in every
syntactic knowledge; Kuncoro et al. (2019) sug-
gested that RNNG performs poorer than LSTM
LM in capturing sentential complement or simple
negative polarity items. It is challenging to design
a multiliugnal syntactic test set because even an
agreement based on grammatical categories is not
a universal phenomenon. It is required to seek
reasonable metrics that cover broad syntactic phe-
nomena and are applicable to many languages.

Experiment on typologically diverse languages
Languages included in CLAMS (English, French,
German, Hebrew and Russian) are actually not ty-

pologically diverse. Apart from language-specific
features, all of them take the same ordering of (1)
subject, verb, and object (SVO) (2) relative clause
and noun (Noun-Relative clause) (3) adposition and
noun phrase (preposition), and so on5. If we run
the same experiment for a typologically different
language, the result could be somewhat different.
Although some previous work focused on syntac-
tic assessment of other languages (Ravfogel et al.,
2018; Gulordava et al., 2018), such attempts are
scarce. As future work, it is needed to design an
evaluation set based on other languages and explore
the extendability to more diverse languages.

7 Conclusion

In this paper, we propose a methodology to learn
multilingual RNNG through dependency tree con-
version. We performed multiple conversions to
seek the robust structure which works well multilin-
gually, discussing the effect of multiple structures.
We demonstrated the superiority of our model over
baselines in capturing syntax in a multilingual set-
ting. Since our research is the first step for multilin-
gual syntax-aware LMs, it is necessary to conduct
experiments on more diverse languages to seek a
better structure. We believe that this research would
contribute to the field of theoretical/cognitive lin-
guistics as well because an ultimate goal of lin-
guistics is finding the universal rule of natural lan-
guage. Finding a reasonable structure in engineer-
ing would yield useful knowledge for that purpose.

5Typological information is obtained from WALS:
https://wals.info/
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