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Abstract

The last few years have witnessed an exponen-
tial rise in the propagation of offensive text on
social media. Identification of this text with
high precision is crucial for the well-being of
society. Most of the existing approaches tend
to give high toxicity scores to innocuous state-
ments (e.g., “I am a gay man”). These false
positives result from over-generalization on the
training data where specific terms in the state-
ment may have been used in a pejorative sense
(e.g., “gay”). Emphasis on such words alone
can lead to discrimination against the classes
these systems are designed to protect. In this
paper, we address the problem of offensive lan-
guage detection on Twitter, while also detecting
the type and the target of the offense. We pro-
pose a novel approach called SyLSTM, which
integrates syntactic features in the form of the
dependency parse tree of a sentence and seman-
tic features in the form of word embeddings
into a deep learning architecture using a Graph
Convolutional Network. Results show that the
proposed approach significantly outperforms
the state-of-the-art BERT model with orders of
magnitude fewer number of parameters.

1 Introduction

Offensive language can be defined as instances
of profanity in communication, or any instances
that disparage a person or a group based on some
characteristic such as race, color, ethnicity, gender,
sexual orientation, nationality, religion, efc. (Nock-
leby, 2000). The ease of accessing social network-
ing sites has resulted in an unprecedented rise of
offensive content on social media. With massive
amounts of data being generated each minute, it
is imperative to develop scalable systems that can
automatically filter offensive content.

The first works in offensive language detection
were primarily based on a lexical approach, utiliz-
ing surface-level features such as n-grams, bag-of-
words, efc., drawn from the similarity of the task
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to another NLP task, i.e., Sentiment Analysis (SA).
These systems perform well in the context of foul
language but prove ineffective in detecting hate
speech. Consequently, the main challenge lies in
discriminating profanity and hate speech from each
other (Zampieri et al., 2019). On the other hand,
recent deep neural network based approaches for
offensive language detection fall prey to inherent
biases in a dataset, leading to the systems being
discriminative against the very classes they aim to
protect. Davidson et al., (2019) presented the evi-
dence of a systemic bias in classifiers, showing that
such classifiers predicted tweets written in African-
American English as abusive at substantially higher
rates. Table 1 presents the scenarios where a tweet
may be considered hateful.

Syntactic features are essential for a model to
detect latent offenses, i.e., untargeted offenses, or
where the user might mask the offense using the
medium of sarcasm (Schmidt and Wiegand, 2017).
Syntactic features prevent over-generalization on
specific word classes, e.g., profanities, racial terms,
etc., instead examining the possible arrangements
of the precise lexical internal features which fac-
tor in differences between words of the same class.
Hence, syntactic features can overcome the sys-
temic bias, which may have arisen from the pejo-
rative use of specific word classes. A significant
property of dependency parse trees is their ability
to deal with morphologically rich languages with
a relatively free word order (Jurafsky and Martin,
2009). Motivated by the nature of the modern Twit-
ter vocabulary, which also follows a relatively free
word order, we present an integration of syntactic
features in the form of dependency grammar in a
deep learning framework.

In this paper, we propose a novel architecture
called Syntax-based LSTM (SyLSTM), which inte-
grates latent features such as syntactic dependen-
cies into a deep learning model. Hence, improving
the efficiency of identifying offenses and their tar-
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S.No. | Hateful Tweet Scenarios
1 uses sexist or racial slurs.
2 attacks a minority.
3 seeks to silence a minority.
4 criticizes a minority (without a well-founded argument).
5 promotes but does not directly use hate speech or violent crime.
6 criticizes a minority and uses a straw man argument.
7 blatantly misrepresents truth or seeks to distort views on a minority with unfounded claims.
8 shows support of problematic hashtags. E.g. “#Banlslam,” “#whoriental,” “#whitegenocide”
9 negatively stereotypes a minority.
10 defends xenophobia or sexism.
11 contains an offensive screen name

Table 1: Hateful Tweet Scenarios (Waseem and Hovy, 2016)

gets while reducing the systemic bias caused by lex-
ical features. To incorporate the dependency gram-
mar in a deep learning framework, we utilize the
Graph Convolutional Network (GCN) (Kipf and
Welling, 2016). We show that by subsuming only a
few changes to the dependency parse trees, they can
be transformed into compatible input graphs for the
GCN. The final model consists of two major com-
ponents, a BILSTM based Semantic Encoder and a
GCN-based Syntactic Encoder in that order. Fur-
ther, a Multilayer Perceptron handles the classifica-
tion task with a Softmax head. The state-of-the-art
BERT model requires the re-training of over 110M
parameters when fine-tuning for a downstream task.
In comparison, the SyLSTM requires only ~ 9.5M
parameters and significantly surpasses BERT level
performance. Hence, our approach establishes a
new state-of-the-art result for offensive language
detection while being over ten times more parame-
ter efficient than BERT.

We evaluate our model on two datasets; one
treats the task of hate speech and offensive lan-
guage detection separately (Davidson et al., 2017).
The other uses a hierarchical classification system
that identifies the types and targets of the offensive
tweets as a separate task (Zampieri et al., 2019).

Our Contribution: The major contribution of
this paper is to incorporate syntactic features in
the form of dependency parse trees along with se-
mantic features in the form of feature embeddings
into a deep learning architecture. By laying partic-
ular emphasis on sentence construction and depen-
dency grammar, we improve the performance of
automated systems in detecting hate speech and of-
fensive language instances, differentiating between
the two, and identifying the targets for the same.
Results (Section 5) show that our approach signif-
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icantly outperforms all the baselines for the three
tasks, viz., identification of offensive language, the
type of the offense, and the target of the offense.

The rest of the paper is organized as follows.
In Section 2, we discuss related work in this field.
Section 3 presents the design of SyLSTM. Section 4
elaborates on the datasets and the experimental pro-
tocol. Section 5 presents the results and discussion,
and Section 6 concludes the paper.

2 Related Work

Hate speech detection, as a topical research prob-
lem, has been around for over two decades. One of
the first systems to emerge from this research was
called Smokey (Spertus, 1997). It is a decision-tree-
based classifier that uses 47 syntactic and semanti-
cally essential features to classify inputs in one of
the three classes ( flame, okay or maybe). Smokey
paved the way for further research in using classical
machine learning techniques to exploit the inherent
features of Natural Language over a plethora of
tasks such as junk filtering (Sahami et al., 1998),
opinion mining (Wiebe et al., 2005) efc.

Owing to the unprecedented rise of social net-
works such as Facebook and Twitter, most of the
research on hate speech detection has migrated to-
wards the social media domain. To formalize this
new task, a set of essential linguistic features was
proposed (Waseem and Hovy, 2016). Initial re-
search in this direction focused more on detecting
profanity, pursuing hate speech detection implic-
itly (Nobata et al., 2016; Waseem et al., 2017). Us-
ing these systems, trained for detecting profanities,
to detect hate speech reveals that they fall prey to
inherent biases in the datasets while also proving
ineffective in classifying a plethora of instances of
hate speech (Davidson et al., 2019).



Research has also shown the importance of syn-
tactic features in detecting offensive posts and
identifying the targets of such instances (Chen
et al., 2012). On social media, it was found that
hate speech is primarily directed towards specific
groups, targeting their ethnicity, race, gender, caste,
etc. (Silva et al., 2016). ElSherief et al. (2018)
make use of linguistic features in deep learning
models, which can be used to focus on these di-
rected instances. The problem with this approach
is two-fold. First, these linguistic features learn
inherent biases within the datasets, thus discrimi-
nating against the classes they are designed to pro-
tect. Second, the use of explicit linguistic features
to detect hate speech leaves the model prone to
the effects of domain shift. Altogether, there is a
need to develop more robust techniques for hate
speech detection to address the above mentioned
issues. While the use of syntactic features for the
task has proven useful, there has been little effort
towards incorporating non-Euclidean syntactic lin-
guistic structures such as dependency trees into the
deep learning sphere.

Graph Neural Networks (GNNs) provide a nat-
ural extension to deep learning methods in deal-
ing with such graph structured data. A special
class of GNNs, known as Graph Convolutional
Networks (GCNs), generalize Convolutional Neu-
ral Networks (CNNSs) to non-Euclidean data. The
GCNs were first introduced by Bruna et al. (2013),
following which, Kipf et al. (2016) presented a
scalable, first order approximation of the GCNs
based on Chebyshev polynomials. The GCNs have
been extremely successful in several domains such
as social networks (Hamilton et al., 2017), natu-
ral language processing (Marcheggiani and Titov,
2017) and natural sciences (Zitnik et al., 2018).

Marcheggiani and Titov (2017) were the first to
show the effectiveness of GCNs for NLP by pre-
senting an analysis over semantic role labelling.
Their experiments paved the way for researchers to
utilize GCNss for feature extraction in NLP. Since
then, GCNs have been used to generate embedding
spaces for words (Vashishth et al., 2018), docu-
ments (Peng et al., 2018) and both words and doc-
uments together (Yao et al., 2019). Even though
GCNs have been used in NLP, their inability to
handle multirelational graphs has prevented re-
searchers from incorporating the dependency parse
tree in the deep feature space.

In this paper, we present a first approach towards
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transforming the dependency parse tree in a man-
ner that allows the GCN to process it. The final
model is a combination of a BILSTM based Seman-
tic Encoder, which extracts semantic features and
addresses long-range dependencies, and a GCN-
based Syntactic Encoder, which extracts features
from the dependency parse tree of the sentence.
Results show that the proposed approach improves
the performance of automated systems in detecting
hate speech and offensive language instances, dif-
ferentiating between the two, and identifying the
targets for the same.

3 Methodology

Traditionally, grammar is organized along two
main dimensions: morphology and syntax. While
morphology helps linguists understand the struc-
ture of a word, the syntax looks at sentences and
how each word performs in a sentence. The mean-
ing of a sentence in any language depends on the
syntax and order of the words. In this regard, a sen-
tence that records the occurrence of relevant nouns
and verbs (e.g., Jews and kill) can prove helpful in
learning the offensive posts and their targets (Gi-
tari et al., 2015). Further, the syntactic structure
I (intensity) (userintent) (hatetarget), e.g., “I
f*cking hate white people,” helps to learn more
about offensive posts, their targets, and the inten-
sity of the offense (Silva et al., 2016). Our ap-
proach incorporates both semantic features and the
dependency grammar of a tweet into the deep fea-
ture space. The following subsections present a
detailed discussion on the proposed methodology.

3.1 Preprocessing

Raw tweets usually have a high level of redundancy
and noise associated with them, such as varying
usernames, URLSs, efc. In order to clean the data,
we implement the preprocessing module described
in Table 2.

3.2 Model

The proposed model SyLSTM (Figure 1) has the
following six components:

1. Input Tokens: The tweet is passed through a
word-based tokenizer after the preprocessing
step. The tokenized tweet is then given as
input to the model;

Embedding Layer: A mapping for each word
to a low-dimensional feature vector;



Preprocessing

Description

Replacing usernames
Replacing URLs
Hashtag Segmentation
Emoji Normalization
Compound Word Splitting
Reducing Word Lengths

replacing all usernames with ‘@user’. Eg. ‘@india’ to ‘@user’.
replacing URLSs in a tweet with the word ‘url’.
Eg. ‘#banislam’ becomes ‘# banislam’.
normalizing emoji instances with text. Eg. ‘:)’ becomes ‘smiley face’.
split compound words. E.g. ‘putuporshutup’ to ‘put up or shut up’.
reduce word lengths, exclamation marks, E.g. ‘waaaaayyyy’ to ‘waayy’.

Table 2: Preprocessing Modules

Output Layer T
Feed Forward Layer
Concatenating Final [ e l
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FFNN Layer | Feed Forward Layer |
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Figure 1: Model Architecture for SyLSTM

BiLSTM Layer: used to extract a high-level
feature space from the word embeddings;

GCN Layer: produces a weight vector ac-
cording to the syntactic dependencies over
the high-level features from step 3. Multiply
with high-level feature space to produce new
features with relevant syntactic information.

. Feed Forward Network: reduces the dimen-
sionality of the outputs of step 4.

Output Layer: the last hidden states from step
3 are concatenated with the output of step 5
as a residual connection and fed as input. The
feature space is finally used for hate speech
detection.

The detailed description of these components is
given below.

Word Embeddings: Given a sentence consisting
of T'words S = {z1,x9, ...,z }, every word x; is
converted to a real valued feature vector e;. This
is done by means of an embedding matrix which
serves as a lookup table,

g(word) c R\V\ Xd(w)’

(D
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where, |V| is the size of the vocabulary and d(*)
is the dimensional size of the embeddings. Each
word in S is then mapped to a specific entry in
this matrix,

€; — g(wOTd).’Ui,

2

where, v; is a one hot vector of size |V|. The en-
tire sentence is fed into the proceeding layers as
real-valued vectors emb = {ej,ea,...,er}. The
embedding matrix can be initialized randomly and
learned via backpropagation, or one can also use a
set of pretrained embeddings. Twitter posts gener-
ally use the modern internet lexicon and hence have
a unique vocabulary. For our model, we use two
different instances for the embedding space - first,
a randomly initialized embedding space learned
at the training time. Second, a pretrained embed-
ding space where we utilize the GloVe-Twitter Em-
beddings' (d(™) = 200). These embeddings have
been trained on 27B tokens parsed from a Twitter
corpus (Pennington et al., 2014). Results indicate
that models trained on the GloVe-Twitter Embed-
dings learn a stronger approximation of semantic

"https://nlp.stanford.edu/projects/
glove/
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relations in the twitter vocabulary, showcasing a
more robust performance than their randomly ini-
tialized counterparts.

Semantic Encoding with BILSTM: Most of the
existing research on GCNs focuses on learning
nodal representations in undirected graphs. These
are suited to single relational edges and can suffer
from a severe semantic gap when operating on mul-
tirelational graphs. To codify the relational edges’
underlying semantics and resolve language on a
temporal scale, we utilize the Bidirectional LSTM.

Using an adaptive gating mechanism, the
LSTMs decide the degree of importance between
features extracted at a previous time step to that at
the current time step (Hochreiter and Schmidhuber,
1997). Consequently, they prove extremely useful
in the context of hate speech detection, where hate
speech can be distributed randomly at any part of
the sentence. Standard LSTMs process sequences
in a temporal order hence ignoring future context.
Bidirectionality allows us access to both future and
past contexts, which helps improve the cognition
of hate speech in a tweet (Xu et al., 2019).

We pass the sentence embedding vectors emb =
{e1, e, ...,er} through a two-layered BiLSTM
network with 32 hidden units and a dropout of 0.4.
As outputs, we extract the sequential vectors and
the final hidden states for the forward and back-
ward sequences. The final hidden states for the
forward and backward sequences are concatenated
and used as a residual connection at a later stage,
as shown in Figure 1. The sequential vectors are
passed through a batch normalization layer with a
momentum of 0.6 and then fed into the GCN layer
along with the dependency parse trees.

Syntactic Encoding with GCN: The depen-
dency parse trees have specific characteristics
which are rarely considered in general graphs. On
the one hand, they have multirelational edges. And
on the other hand, the definition of each type of
edge is relatively broad, resulting in a huge dif-
ference in the semantics of edges with the same
relationship. For instance, an ‘amod’ dependency
may be presented in <Techniques, Computational>
and <Techniques, Designed>, but their semantics
are obviously different.

The GCN (Kipf and Welling, 2016) cannot
handle such scenarios without introducing some
changes to the structure of the input dependency
parse tree. First, inverse edges corresponding to
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each of the respective dependencies are introduced
between all connected nodes. Furthermore, to high-
light the importance of specific words in the given
context, we add self-loops over each node. The
dependency parse tree of a sentence is extracted
using the NLP open-source package spaCy>.

Hence, the extracted dependency parse tree is
transformed into a graph G = (V, E), where V' is
the set of all vertices which represent the words in
a tweet and FE is the set of all edges which high-
light the dependency and their inverse relations.
The result is an undirected graph with self-loops
(see Figure 2). This comes as a natural extension
to the dependency structure of the sentence, high-
lighting the importance of word positioning and
combating possible confusions in identifying the
direction of the dependency. The graph is then fed
into the GCN as a sparse adjacency matrix, with
each dependency represented by a weight a.. With
the setup in place, the GCN performs a convolu-
tion operation over the graph G represented by the
adjacency matrix A. Formally, the GCN performs
the following computation:

3)

where, A = A + I is the adjacency matrix of the
undirected graph GG with added self-connections.
Iy is the identity matrix, D;; = %;A;; and W
is a layer-specific trainable weight matrix. o(-)
denotes an activation function, in our case the
ReLU(-) = max(0,-). H® € RV*P is the ma-
trix of activations in the I*" layer; H(®) = L. The
model learns hidden layer representations that en-
code both local graph structure (the dependencies)
and nodal features (the importance of the word
in that context). Furthermore, the Semantic En-
coder complements the Syntactic Encoder by ad-
dressing the long range spatial inabilities of the
GCN (Marcheggiani and Titov, 2017). The sparse
adjacency matrix leads to a problem with vanish-
ing gradients. We combat this by applying a batch
normalization layer with a momentum of 0.6 and
applying a dropout of 0.5. We use the Xavier dis-
tribution to initialize the weight matrix and set the
output dimension of the GCN as 32.

Feed Forward Neural Network (FFNN): The
output of the GCN is then passed through a single
layered FFNN to learn high-level features based
on dependency structure. The FFNN is activated
using the non-linear ReLU activation function.

HHY = o(D 2 AD 2 HOW®)

https://github.com/explosion/spaCy
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Figure 2: (a) Dependency Graph G with Nodal Embeddings (b) Adjacency Matrix A for the graph G

Output Layer: The output from the FFNN is
then concatenated with the last hidden states of the
BiLSTM which is added as a residual connection.
The concatenated vector is then passed through a
linear layer with a softmax head that produces a
probability distribution over the required outputs.

4 Experimental Setup

This section describes the dataset and the experi-
mental setup for the models reported in the paper.

4.1 Datasets

The primary motivation of this paper is the design
of a methodology to integrate a neural network
model with syntactic dependencies for improved
performance over fine-grained offensive language
detection. Keeping in line with this ideology, we
test our model on two separate datasets. The fol-
lowing section describes these datasets at length.

Offensive Language Identification Dataset:
This dataset was presented for a shared task on
offensive language detection in the SemEval Chal-
lenge 2019. This was the first time that offensive
language identification was presented as a hierar-
chical task. Data quality was ensured by selecting
only experienced annotators and using test ques-
tions to eliminate individuals below a minimum
reliability threshold. Tweets were retrieved using a
keyword approach on the Twitter API. The dataset
forms a collection of 14,000 English tweets an-
notated for three subtasks proceeding in a hierar-
chy (Zampieri et al., 2019):

1. whether a tweet is offensive or not (A);
2.

whether the offensive tweet is targeted (B);

whether the target of the offensive tweet is an
individual, a group, or other (i.e., an organiza-
tion, an event, an issue, a situation) (C).

39

We choose this dataset because of the extended
subtasks B and C. An increase in performance over
these will posit that our model has been successful
in tackling its objectives. We evaluate our model
on all three subtasks.

Hate Speech and Offensive Language Dataset:
Motivated by the central problem surrounding the
separation of hate speech from other instances of
offensive language, Davidson et al. (2017) curated
a dataset annotating each tweet in one of three
classes, hate speech (HATE), offensive language
(OFF), and none (NONE). They use a hate speech
lexicon containing words and phrases identified by
internet users as hate speech, compiled by Hate-
base. These lexicons are used to extract English
tweets from the Twitter APL. From this corpus,
a random sample of 25k tweets containing terms
from the lexicon was extracted. The tweets were
manually coded by CrowdFlower (CF) workers,
with a final inter-annotator agreement of 92%.

4.2 Baseline Models

In the following section, we describe the design of
all the baseline models used for comparison.

Linear-SVM: SVMs have achieved state-of-the-
art results for many text classification tasks and sig-
nificantly outperform many neural networks over
the OLID dataset (Zampieri et al., 2019). Hence,
we use a Linear-SVM trained on word unigrams as
a baseline. We employ a Grid-search technique to
identify the best hyperparameters.

Two-channel BIiLSTM: We design a two-
channel BiLSTM as a second baseline, with the
two input channels differentiated only by their em-
bedding space. One of the input channels learns
the embedding space via backpropagation after a
random initialization, while the other uses the pre-
trained BERT embeddings. This choice is moti-
vated by the contextual nature of the BERT embed-
dings. This conforms with the ideation that certain



words may be deemed offensive depending upon
the context they are used in. The BiLSTM itself
is two layers deep and consists of 32 hidden-units.
The final hidden states for the forward and back-
ward sequences of each channel are concatenated
and passed through an MLP with a softmax head
for classification.

Fine-tuned BERT: We also fine-tune a BERT
model (Devlin et al., 2018) for this task. We adapt
the state-of-the-art BERT model which won the
SemEval Challenge 2019 (Liu et al., 2019) and
tune the hyperparameters of the model to get the
best performance on our preprocessing strategy.
While fine-tuning this model, the choices over the
loss function, optimizer, and learning rate schedule
remain the same as those for the SyLSTM.

4.3 Training

We train our models using the standard cross-
entropy loss. The AdamW optimizer (Loshchilov
and Hutter, 2018) is chosen to learn the param-
eters. To improve the training time and chances
of reaching the optima, we adopt a cosine anneal-
ing (Loshchilov and Hutter, 2017) learning rate
scheduler. The vocabulary of the models is fixed
to the top 30, 000 words in the corpus. The initial
learning rate is set to 0.001, with a regularization
parameter of 0.1.

4.4 Evaluation Metric

The datasets exhibit large class imbalances over
each task. In order to address this problem, we use
the Weighted F1-measure as the evaluation metric.
We also provide the precision and recall scores for
a deeper insight into the model’s performance.

5 Results

We evaluate two instances of our model, (1) with a
randomly initialized embedding matrix (referred to
as SyLSTM) and (2) utilizing the pretrained GloVe
Twitter embeddings (referred to as SyLSTM*). A
paired Student’s t-test using the Weighted-F1 mea-
sure of the model’s performance shows that our
models significantly outperform each of the base-
lines across all the tasks (p < 0.001).

5.1 Performance on Offensive Language
Identification Dataset

In this section, we present performance compar-
isons between the baselines and the SyLSTM for
the three subtasks. We split the training data, using
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10% of the tweets to get a dev set. The hyperpa-
rameters are tuned according to the performance on
the dev set. The results presented here demonstrate
the performance over the predefined test set. We
also present the performance metrics for the trivial
case, notably where the model predicts only a sin-
gle label for each tweet. By comparison, we show
that the chosen baselines and our models perform
significantly better than chance for each task.

Offensive Language Detection: The perfor-
mance comparisons for discriminating between of-
fensive (OFF) and non-offensive (NOT) tweets are
reported in Table 3. Neural network models per-
form substantially better than the Linear-SVM. Our
model (in gray) outperforms each of the baselines
in this task.

System Precision Recall F1-score
All OFF 8.4 28.2 12.1
AIINOT 524 72.7 60.4
SVM 77.7 80.2 78.6
BiLSTM  81.7 82.8 82.0
BERT 87.3 85.8 85.7
SyLSTM  85.2 88.1 86.4
SyLSTM* 87.6 88.1 87.4

Table 3: Offensive Language Detection

Categorization of Offensive Language: This
sub-task is designed to discriminate between tar-
geted insults and threats (TIN) and untargeted
(UNT) offenses, generally referring to profan-
ity (Zampieri et al., 2019). Performance compar-
isons for the same are reported in Table 4. Our
model (in gray) shows a significant 4% relative
improvement in performance in comparison to the
BERT model.

System Precision Recall F1-score
All TIN 78.7 88.6 834
AILUNT 14 11.3 12.1
SVM 81.6 84.1 82.6
BiLSTM  84.8 88.4 85.7
BERT 88.4 92.3 89.6
SyLSTM  90.6 91.6 91.4
SyLSTM* 94.4 92.3 93.2

Table 4: Categorization of Offensive Language

Offensive Language Target Identification:
This sub-task is designed to discriminate between
three possible targets: a group (GRP), an indi-
vidual (IND), or others (OTH). The results for
the same are reported in Table 5. Note that the



three baselines produce almost identical results.
The low F1-scores for this task may be on account
of the small size of the dataset and large class
imbalances, factors that make it difficult to learn
the best features for classification. Our model (in
gray) shows a 5.7% relative improvement over the
BERT model, hence showcasing its robustness
when generalizing over smaller datasets.

System Precision Recall F1-score
All GRP 13.6 374 19.7

All IND 22.1 473 30.3
ALLOTH 34 16.2 54
SVM 56.1 62.4 58.3
BILSTM  56.1 65.8 60.4
BERT 58.4 66.2 60.9
SyLSTM  60.3 67.4 63.4
SyLSTM* 62.4 66.3 64.4

Table 5: Offensive Language Target Identification

5.2 Performance on Hate Speech and
Offensive Language Dataset

This section presents the performance comparisons
between our model and the baselines for this multi-
class classification problem. The task presented
by the dataset complies with our main objective
of integrating syntactic dependencies in a neural
network model to differentiate between offensive
language and hate speech more efficiently. The
tweets are classified in one of three categories: hate
speech (HATE), offensive language (OFF), and
none (NONE). The Linear-SVM and the neural
network baselines produce very similar results, all
of which are significantly better than chance (see
Table 6). The SyLSTM (in gray) significantly out-
performs all the baselines.

System Precision Recall F1-score
AllHATE 0.2 6.1 0.4

All OFF 3.1 16.9 5.3
AllNONE 58.8 77.2 66.7
SVM 84.9 90.1 88.2
BiLSTM  90.3 90.2 90.3
BERT 91.2 90.4 91.0
SyLSTM  90.5 914 914
SyLSTM* 92.3 92.8 92.7

Table 6: Hate Speech and Offensive Language Dataset

5.3 Discussion

The two-channel BiLSTM and the BERT model
discussed in this paper act as strong syntax-agnostic

baselines for this study. The aforementioned re-
sults indicate the superiority of the SyLSTM over
such approaches. The inability of existing depen-
dency parsers to generate highly accurate depen-
dency trees for a tweet may seem like a severe
problem. However, since the dependency tree has
been transformed to accommodate inverse depen-
dency edges, we find that the resulting undirected
graph acts as a single-relational graph where each
edge represents a “dependency”. The nature of the
dependency is addressed by graph convolutions op-
erating over the dynamic LSTM features. Hence,
the parser only needs to generate congruent copies
of the actual dependency tree of the tweet.

We tested the utility of enriching the features
generated by a BERT encoder using a GCN. Ex-
isting literature in this field integrates word em-
beddings learned using a GCN with the BERT
model (Lu et al., 2020). In contrast, our experi-
ments dealt with a GCN mounted over a BERT en-
coder. We note that this combination leads to over-
parametrization and severe sparsity issues. Since
BERT models have been shown to learn fairly ac-
curate dependency structures (Clark et al., 2019),
additional importance to dependency grammar over
the same encoder network may be unnecessary.

6 Conclusion

In this paper, we present a novel approach called
the SyLSTM which demonstrates how GCNs can in-
corporate syntactic information in the deep feature
space, leading to state-of-the-art results for fine-
grained offensive language detection on Twitter
Data. Our analysis uncovers the Semantic and Syn-
tactic Encoders’ complementarity while revealing
that the system’s performance is largely unaffected
for mislabeled dependencies over congruent depen-
dency trees. Leveraging the dependency grammar
of a tweet provides a practical approach to simu-
lating how humans read such texts. Furthermore,
the performance results of the SyLSTM indicate the
robustness of the architecture in generalizing over
small datasets. The added simplicity of the over-
all architecture promotes applicability over other
NLP tasks. The SyLSTM can be used as an effi-
cient and scalable solution towards accommodating
graph-structured linguistic features into a neural
network model.

Replication Package. The replication package
for this study is available at https://github.
com/dv-fenix/SyLSTM.


https://github.com/dv-fenix/SyLSTM
https://github.com/dv-fenix/SyLSTM
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