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Abstract

Named entity recognition (e.g., disease men-
tion extraction) is one of the most relevant tasks
for data mining in the medical field. Although
it is a well-known challenge, the bulk of the
efforts to tackle this task have been made using
clinical texts commonly written in English. In
this work, we present our contribution to the
SocialDisNER competition, which consists of
a transfer learning approach to extracting dis-
ease mentions in a corpus from Twitter written
in Spanish. We fine-tuned a model based on
mBERT and applied post-processing using reg-
ular expressions to propagate the entities identi-
fied by the model and enhance disease mention
extraction. Our system achieved a competitive
strict F1 of 0.851 on the testing data set.

1 Motivation

Although there are several works for disease men-
tion extraction, the bulk of them has been carried
out for clinical texts written in English (Eftimov
et al., 2017; Patra and Saha, 2013; Peng et al., 2019;
Sachan et al., 2018; Lee et al., 2020; Akhtyamova,
2020; Alsentzer et al., 2019; Yasunaga et al., 2022;
Gu et al., 2021). In this work, we present our con-
tribution to the SocialDisNER competition (Gasco
et al., 2022) at the SMM4H workshop, task 10
(Weissenbacher et al., 2022). Our system is focused
on disease mention extraction from Twitter mes-
sages in Spanish. The nature of the texts written in
this social network presents new challenges to the
disease extraction task because misspellings are fre-
quent (Magumba et al., 2018; Magge et al., 2021).
Additionally, many disease mentions can be sub-
sumed in hashtags, urls, or user names (Magumba
et al., 2018), which, together with the above, makes
it more difficult to identify entities than in com-
mon clinical texts as shown in Xiong et al. (2020);
García-Pablos et al. (2020); Wang et al. (2019).

2 System description

In this work, we present a transfer learning ap-
proach using the model proposed by Tamayo et al.
(2022), which is a version of multilingual BERT
(Devlin et al., 2019) fine-tuned for disease mention
extraction from clinical texts and we apply post-
processing rules to extract diseases mentioned in
a corpus of tweets in Spanish. Our system tackles
the problem in three steps, namely, pre-processing,
transfer learning, and post-processing. Below we
describe each of them.

2.1 Pre-processing
To implement the fine-tuning process, the BIO
scheme (Begin, Inside, Outside) (Ramshaw and
Marcus, 1995) was used. Since the dataset pro-
vided by SocialDisNER is formatted in a different
way, pre-processing was needed to take it to the
BIO scheme. We used the disease mentions in the
provided structured dataset as a reference to an-
notate disease mentions in each tweet with their
corresponding labels in the BIO scheme. Tokeniza-
tion was carried out using SpaCy (Honnibal and
Montani, 2017) instead of a NER dedicated library
such as SciSpacy (Neumann et al., 2019) because
the former works for Spanish.

2.2 Transfer learning
We tackled disease mention extraction as a se-
quence labeling problem using the whole tweet
as input, and the labels mentioned above as output.
We randomly split partitions of the training dataset
into training (75%) and validation (25%) sets. This
partition was done iteratively five times with ran-
dom seeds. Additionally, we carried out a hyper-
parameter tuning searching for the best model’s
configuration using a grid search for the epochs (3,
5, 7) and the learning rate (5e-03, 5e-05, 5e-07).
7 epochs and a learning rate of 5e-05 yielded the
best results. With regard to the rest of hyperparam-
eters, default values were kept. For this process,
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we used a transformer library and the model avail-
able at Hugging Face1. Google Colab Pro with a
GPU Tesla P100 with 27.3 gigabytes of available
RAM was used to run all the experiments. The data
we used for our training process together with the
source code to replicate this work are available at a
GitHub repository2.

2.3 Post-processing plus search by
propagation

Post-processing was carried out through a custom
Python script to clean up and format the output
as follows: 1) Because mBERT works with a sub-
word tokenization system, we decoded the output
that contained subwords. 2) We concatenated all
the named entities detected by the model one after
the other. This means that if the model detected
a named entity whose final character position (or
final character position plus one) concurred with
the first position of the next named entity detected,
our system considered that these two entities were
part of one single entity. This was necessary be-
cause the model extracts parts of some entities sep-
arately. 3) We also applied simple but effective
post-processing based on some orthographic and
grammatical rules which are detailed in Table 1. 4)
Under the assumption that SocialDisNER partici-
pants were required to extract all the mentions of
a disease mention occurring in a tweet, we used
the entities extracted by the model to identify and
extract any repetitions of said entities in the same
document. In order to retrieve misspelled mentions
or mentions subsumed by hashtags, urls, or user
names, we carried out a search by propagation ap-
plying the following steps: a) lowercase both the
entity identified by the model and the tweet, b) con-
catenate multi-word entities, c) delete accents, and
d) search entity occurrences throughout the tweet.
Lastly, since we work with the BIO scheme, the
last post-processing step consisted of decoding the
predictions to put them in the data format required
by SocialDisNER.

3 Results and error analysis

The results achieved by our model on the validation
dataset can be seen in Table 2.

Likewise, for future reference and improvement,
we present the following brief error analysis. First,

1The model is available at: https://bit.ly/3zGlxWy
2https://github.com/ajtamayoh/NLP-CIC-WFU-

Contribution-to-SocialDisNER-shared-task-2022.git

If the disease . . . then apply
mention detected . . . this rule
1. Starts with 1. Delete the match
punctuation mark and adjust the entity’s

beginning index
2. Contains a mark of 2. Replace the match
new line with a space
3. Contains a space 3. Delete the space(s)
before and/or after and adjust the entity’s
a hyphen or a ending index
parenthesis
4. Ends with 4. Delete the match
non-content words or and adjust the entity’s
punctuation marks ending index
5. Concurs with 5. Leave out of
non-content words or the entities detected
punctuation/hashtag
marks

Table 1: Post-processing rules

Model P R F1
mBERT

+ 0.861 0.876 0.868
post-processing

Table 2: Results (5-iteration mean) on the development
dataset

our system extracts false positives. They are mean-
ingful entities, but they are not in the gold standard
(e.g., EFyC, formación diabetológica). Second, the
model truncates some entities (e.g., problemas de
apre insted of problemas de aprendizaje, respira-
torias crónicas instead of Enfermedades respira-
torias crónicas). The first example of the latter
type of error is caused by the nature of the mBERT
model which works with subwords tokenization.
Finally, we consider that there are some errors re-
sulting from an incorrect tagging of the dataset
(e.g., our model extracts the entity cáncer but in
the gold standard appears niñas y niños que hay
hoy con cáncer).

4 Conclusions

In this work, we presented a system based on
mBERT following a fine-tuning approach plus sim-
ple post-processing and search by propagation to
extract disease mentions from Tweets in Spanish.
We achieved competitive results with a strict F1 of
0.851, Precision of 0.842, and Recall of 0.860 on
the test dataset of the SocialDisNER competition.
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