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Abstract
This paper describes the models developed by
the AILAB-Udine team for the SMM4H’22
Shared Task. We explored the limits of Trans-
former based models on text classification, en-
tity extraction and entity normalization, tack-
ling Tasks 1, 2, 5, 6 and 10. The main take-
aways we got from participating in different
tasks are: the overwhelming positive effects of
combining different architectures when using
ensemble learning, and the great potential of
generative models for term normalization.

1 Introduction

Transformer-based models are the backbone of
state-of-the-art solutions for a lot of NLP tasks.
The real strength of these models (like BERT De-
vlin et al., 2018, GPT Radford et al., 2019, and their
variants Joshi et al., 2019; Gu et al., 2020) stands in
the pre-training phase which permits them to have
extensive language knowledge. This is particularly
helpful in tasks where the amount of training data is
restricted, like the ones addressed in this workshop
(Weissenbacher et al., 2022).

In this work we used a variety of pretrained
Transformers models for the tasks. We refer to
Table 1 for a summary of their names in the Hug-
gingface library and the shorthand version of their
name used in this report.

Short name
Model name in the

Huggingface library Reference
GPT-2 gpt2 (Radford et al., 2019)

BERTEng bert-base-uncased (Devlin et al., 2018)

BERTMul bert-base-multilingual-uncased (Devlin et al., 2018)

BERTMed microsoft/BiomedNLP-

PubMedBERT-base-uncased-

abstract

(Gu et al., 2020)

BERTSpan SpanBERT/spanbert-base-cased (Joshi et al., 2019)

RoBERTaTwi cardiffnlp/twitter-roberta-base-

sentiment

(Barbieri et al., 2020)

RoBERTaXML xlm-roberta-base (Conneau et al., 2019)

Table 1: List of pretrained models used for the tasks and
the abbreviations used in this report.

2 Simple Classification (Task 5 / 6)

Task 5 and 6 both entail the simple classification
of tweets (binary or ternary) in a class-unbalanced
setting. Task 5 consists in the ternary classifica-
tion of Spanish tweets about COVID-19 symptoms
as: containing literature/news reports (News, 60%),
containing personal reports (Pers, 16%) or report-
ing about someone else’s symptoms (Non-Pers,
24%). Task 6 consists in the binary classification
of English tweets regarding COVID-19 vaccina-
tions as: general vaccine chatter (Chatter, 89%) or
personal reports confirming the vaccination status
of the user (Pers, 11%). For both tasks the text
preprocessing consisted in replacing all usernames
with “user” and all URLs with “(see url)” or “(ver
url)” (“(see url)” in Spanish).
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Figure 1: Summary of the model architectures used in
the different tasks.
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2.1 Models
We tackled the tasks using a simple Transformer-
based model with a classification head, that is a
linear layer applied to the output embedding of the
[CLS] token (see Figure 1a). This layer maps the
embedding to either two or three classes depending
on the task. The kind of pretrained model was cho-
sen based on the characteristics of the input text,
such as language. For each task we selected two
kinds of pretrained models with different charac-
teristics to try and combine them, and ensembled
their predictions. The selected models were: two
BERTMul and one RoBERTaXML for Task 5, two
BERTMul and one BERTEng for Task 6. They were
chosen by training and evaluating 5 models of each
kind locally on a 70-30 random split of the training
data, and selecting the ones with the higher per-
formance on their respective test fold. In Task 5,
BERTMul models were trained for 10 epochs while
RoBERTaXML models for 15 epochs. In Task 6,
BERTMul models were trained for 5 epochs while
BERTEng models for 4 epochs. The final label for
the task was chosen via majority vote.

2.2 Results
Table 2 shows the results of the base models and
their ensemble for both tasks on the validation set.

Task Model P R F1
5 BERTMul (1) 0.826 0.826 0.826
5 BERTMul (2) 0.833 0.833 0.833
5 RoBERTaXML 0.823 0.823 0.823
5 Ensemble 0.838 0.838 0.838
6 BERTMul (1) 0.875 0.734 0.799
6 BERTMul (2) 0.946 0.748 0.835
6 BERTEng 0.928 0.715 0.807
6 Ensemble 0.954 0.741 0.834

Table 2: Task 5 and Task 6 results on the validation set.

Ensembling different model typologies had a
positive effect on Task 5, as the overall performance
is higher than any model on its own. Looking at the
confusion matrices in Figure 2, we see that most of
the improvements come from a better accuracy in
classifying Pers samples and distinguishing them
from Non-Pers ones. The precision on Pers class
goes from 0.68 (single models) to 0.72 (Ensemble)
and the percentage of Pers samples classified as
Non-Pers lowers from 0.27 to 0.23.

As regards Task 6, the Ensemble has a higher pre-
cision than each individual model, but a lower re-
call. BERTMul (2) had significantly higher metrics
compared to the other two models, and the majority
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Figure 2: Task 5. Confusion matrices for the three sepa-
rate models and their ensemble, and agreement matrix.

vote might have favored the most frequent (incor-
rect) prediction of the other two models. Looking
at the confusion matrices in Figure 3, we can see
that the Ensemble model has a higher precision on
the most frequent class (Chatter) compared to the
single models, but the two weaker models severely
hampered the performance of BERTMul (2).
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Figure 3: Task 6. Confusion matrices for the three sepa-
rate models and their ensemble, and agreement matrix.

The main differences between the models ensem-
bled for Task 5 and Task 6 is that the models used
for Task 5 had different base architectures (BERT
vs RoBERTa), while the ones for Task 6 were all
based on BERT. If we calculate the agreements
between the models using Cohen’s Kappa Cohen,
1960, we see that the models used for Task 6 had
higher agreement than the ones in Task 5 (compare
the agreement matrices in Figures 2 and 3). The
lower agreement for Task 5 is likely caused by the
use of different model architectures, and it might
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lead to higher performance when combining the
predictions.

3 Multitask Classification (Task 2a+2b)

Task 2a and 2b (Davydova and Tutubalina, 2022)
consist in the classification of English tweets
containing opinions about mandates during the
COVID-19 pandemic. The tweets can deal with
three topics: Face Masks (M), Stay At Home Or-
ders (H) and School Closures (S). Task 2a is a
ternary stance classification (Against, None, Favor),
while Task 2b is a binary premise classification (1,
0) to determine whether the tweet is argumentative
or not.

3.1 Models

We use the same architecture to solve both tasks,
reformulating them as a single 6-way classification
with labels: Against-1, Against-0, None-1, None-0,
Favor-1 and Favor-0. We use a simple Transformer-
based model with a classification head on top of the
[CLS] embedding. The output of the classification
head is a probability distribution over the six labels.
At inference time, the probabilities are aggregated
in three or two classes according to the task (e.g.,
Against=Against-1 + Against-0 for Task 2a or 1 =
Against-1 + None-1 + Favor-1 for Task 2b). This
process is illustrated in Figure 1b.

The text preprocessing is the same as Task 6.
The input for the models was formatted as “About
CLAIM. [SEP] TWEET_TEXT”, where CLAIM
is one of the three topics. We finetuned a BERTEng

model for 4 epochs on all training data. To increase
the robustness of the model for Task 2a, we also
finetuned two RoBERTaTwi models for 5 epochs
on the three-way classification Against/None/Favor,
leveraging the model’s pretrained weights for sen-
timent classification on Twitter. We then ensemble
the predictions of the two RoBERTaTwi models
and the BERTEng model for Task 2a (similarly to
Task 5/6).

3.2 Results

Table 3 reports the metrics for Task 2a and 2b on the
validation set. The Ensemble for Task 2a achieves
higher metrics compared to the single models in
two out of the three topics (M and H), as well
as on the overall F1 score. The F1 score of the
single models differ up to 7-9 points between each
other, yet their interaction leads to a higher score
overall. Figure 4 shows the agreement between

the three models, which is even lower than the
one recorded for Task 5. This further strengthens
the hypothesis that using different architectures
and models with high disagreements leads to an
ensemble with higher performance.

Task Model F1M F1S F1H F1
2a RoBERTaTwi (1) 0.840 0.677 0.819 0.779
2a RoBERTaTwi (2) 0.816 0.700 0.821 0.779
2a BERTEng 0.749 0.610 0.742 0.700
2a Ensemble 0.855 0.722 0.807 0.795
2b BERTEng 0.786 0.818 0.814 0.806

Table 3: Task 2a and 2b results on the validation set.
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Figure 4: Task 2a. Agreement matrix for the three
models and their ensemble.

4 Disease Extraction (Task 10)

Task 10 (Gasco et al., 2022) consists in extracting
disease mentions from Spanish tweets.

4.1 Models
We solved this task using a simple Transformer-
based model with a token-classification head, that
is a linear layer applied to the output embedding
of each token (see Figure 1c) with three output
classes. These represent the BIO tagging scheme
(Begin-Inside-Outside), commonly used to mark
the presence of Named Entities in NER tasks. This
straightforward method has been previously used in
SMM4H Tasks for ADE extraction (Portelli et al.,
2022), and we were interested in testing if it was
possible to adapt it to Disease Extraction with min-
imal changes. The text preprocessing is the same
as Task 5. We used a BERTMul model (with multi-
lingual pretraining) and trained it for 5 epochs on
the training data of SocialDisNER without using
additional resources.

4.2 Results
Table 4 reports the strict and relaxed metrics on the
validation set. There is a gap of 40 points between
the two, which is almost double what is usually
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reported in ADE extraction tasks. This means that
the model was able to identify the broad area of text
containing the disease, but not to pinpoint it. This
goes to show that a Disease extraction system needs
more mechanisms in place to precisely extract the
relevant text.

Task Model P R F1
10 BERTMul (Strict) 0.543 0.498 0.520
10 BERTMul (Relaxed) 0.946 0.865 0.904

Table 4: Task 10 results on the validation set.

5 ADE Normalization (Task 1c)

Task 1c consists in mapping ADE mentions from
English tweets to their corresponding MedDRA
terms (formal medical terms). The dataset (Magge
et al., 2021) was developed with three sub-tasks
in mind, so to perform Task 1c it is necessary to
complete the two preliminary Tasks 1a (binary clas-
sification ADE/noADE) and 1b (ADE extraction).

5.1 Models
Task 1a and Task 1b were not the main focus of our
work, so we tackled them with simple and effective
strategies seen in other tasks. Task 1a was solved
with a BERTMed model with a binary classifica-
tion head, trained as seen in Task 6, without model
ensembling. For Task 1b we used a model previ-
ously developed for the same task the SMM4H’19
Shared Task Portelli et al. (2021, 2022). It consists
of a BERTSpan for token classification (see model
for Task 10) combined with a Conditional Random
Field (CRF) module (see Figure 1c).

For Task 1c, we used a GPT-2 model, trained
to take as input a ADE and generate the string
corresponding to the correct MedDRA term (e.g.,
“feel like crap” → “malaise”). GPT-2 was trained
on the whole training set for 15 epochs.

5.2 Results
Table 5 reports the results of the models on the
validation set. The models for Tasks 1a and 1b
achieve average performance. We report the met-
rics for Task 1c in two ways: calculating them on
the output of BERTSpan (same procedures used on
the blind test set); and using an oracle for Task 1b
(that is, giving as input to GPT-2 only the correct
ADEs). Using the oracle, we see that the model
developed for Task 1c has a very high accuracy
(0.759) if given the correct ADEs. Applying GPT-
2 to the predictions of BERTSpan leads to lower

metrics due to the low quality of the preceding
steps. The proposed model for Task 1c also per-
formed extremely well on the blind test set, where
it achieved results well over the average despite the
low performance reached on Task 1b (see Table 6).

Task Model P R F1
1a BERTMed 0.663 0.477 0.544
1b BERTSpan 0.295 0.851 0.438
1c GPT-2 (from BERTSpan) 0.219 0.632 0.325
1c GPT-2 (from oracle) 0.759 0.759 0.759

Table 5: Task 1 results on the validation set.

6 Results on the Test Set

The following table reports the metrics of all pre-
sented models on the test set, together with the
reference scores supplied by organizers. Models
were not re-trained using validation data, with the
exception of Tasks 1a and 1b.

Strict Relaxed
Task Model P R F1 P R F1

1a Our .607 .386 .472
1a Average .646 .497 .562
1b Our .360 .254 .298 .489 .344 .404
1b Average .344 .339 .341 .539 .517 .527
1c Our .243 .171 .201 .294 .207 .243
1c Average .085 .082 .083 .120 .112 .116
2a Our .529
2a Average .491
2a Median .550
2b Our .649
2b Average .574
2b Median .647
5 Our .840 .840 .840
5 Median .840 .840 .840
5 Baseline .900 .900 .900
6 Our .930 .750 .830
6 Median .900 .680 .770
6 Baseline .900 .770 .830
10 Our .504 .461 .481
10 Average .680 .677 .675
10 Median .758 .780 .761

Table 6: Results for all tasks on the blind test set.

7 Conclusions

We explored the use of simple Transformer-
based architectures for several tasks proposed by
SMM4H’22. The most noticeable phenomena we
encountered were: the collaborative effect of differ-
ent architectures (e.g., BERT and RoBERTa) when
used in ensemble learning (Task 2 and 5, as op-
posed to Task 6); the efficacy of generative models
for term normalization (Task 1c); and the low trans-
ferability of methods developed for ADE extraction
to Disease detection (Task 10).
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