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Abstract

Biomedical NER is an active research area to-
day. Despite the availability of state-of-the-
art models for standard NER tasks, their per-
formance degrades on biomedical data due to
OOV entities and the challenges encountered in
specialized domains. We use Flair-NER frame-
work to investigate the effectiveness of various
contextual and static embeddings for NER on
Spanish tweets, in particular, to capture com-
plex disease mentions.

1 Motivation

In this paper, we present our system which recog-
nizes disease mentions in Spanish tweets as part of
the SocialDisNER challenge (Gasco et al., 2022).
The motivation of our work is to:

(a) Investigate the problem of identifying dis-
ease mentions in tweets : Disease mentions occur
with a variable length. While NER systems easily
recognize simple-word entities, the task becomes
exponentially difficult as the length increases (Dai,
2018; Shen et al., 2021), and also, it may compli-
cate the gold annotation process. Moreover, enti-
ties can be composed of subgroups of entities (Dai
et al., 2020). In this work, we deal with a particular
linguistic context: tweet data. Here, we encounter
an additional challenge as diseases mentions are
specialized domain terms, but they occur in a social
media platform characterized by informal language,
comprising various noise-inducing elements such
as hashtags, emojis, typos, and code-switching.

(b) Investigate the performance of embedding
resources : Transfer learning (Pan and Yang, 2009)
has been found to be very useful for downstream
NLP tasks (Ruder et al., 2019). In this work, we ex-
plore the "capability" of different language models

* Authors have equal contribution.

GROUP CONTEXTUAL STATIC
domain xlrsc (Lange et al., 2021) es+clinical

rbbce (Carrino et al., 2021) es+en+clinical
sdf (Chizhikova et al., 2022)

multilingual xrl (Conneau et al., 2019)
bbmcn (Adelani, 2021)

wmn (Tedeschi et al., 2021)
es bscfn (Cañete et al., 2020) es
en bbucn (Rawal, 2021)

Table 1: Grouping of the different embeddings resources

to use instilled knowledge from similar and dif-
ferent domains (Gururangan et al., 2020) and lan-
guages (Pfeiffer et al., 2020) pre-training datasets
to learn NER on Spanish Twitter data, to see their
effectiveness in addressing the above challenges.

2 Experimental Setup

2.1 Approach

To investigate the challenges of identifying com-
plex disease mentions in tweets, we tested differ-
ent embeddings using the Flair-NER (Akbik et al.,
2019) framework using two types of models: Flair-
S (Simple) and Flair-T (Transformers). Both of
these models consist of a CRF-based Sequenc-
eTagger which takes input from a WordEmbed-
ding/FlairEmbedding (Akbik et al., 2018) module
for the static word embeddings (Flair-S), or from a
TransformerWordEmbedding module for the con-
textual embeddings (Flair-T). We further defined
four categories to group the different used embed-
dings as shown in Table 1.

2.2 Dataset

We used the GOLD SocialDisNER dataset (Gasco
et al., 2022) provided by the organizers. It con-
sists of a collection of health-related tweets from
general users and a disease mention file annotated
by medical experts. The disease mention file con-
tains the annotated diseases mentions along with
their begin and end offsets, and their corresponding
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Figure 1: Experiment Pipeline

tweet file id. The dataset has 5000 training tweets
(19425 mentions), 2500 validation tweets (4252
mentions), and 2500 test tweets files respectively.

2.3 Text-Processing
We perform a minimal pre-processing to keep all
information in the text as we noticed a benefit from
keeping the noise. We therefore propose the use of
post-processing to obtain the strict spans from the
identified disease mentions by removing different
types of noise.

Pre-processing Tweets were tokenized on white
space and converted into CoNLL format with no
further pre-processing. Spans were generated for
every token considering their character position in
the text. BIO labels were assigned to every token
matching the provided disease mentions in each
tweet.

Post-processing Predictions were done over the
tokenized tweets. The resulting predictions were
converted into the mentions’ file format where ev-
ery detected disease mention span was aggregated.
In a later post-processing step we fixed the aggre-
gated spans. This fix of the original spans was
performed on every detected disease mention when
this contained any type of surrounding noise in the
begin and/or end (See fig.1). This span-fix step
determines the strict-f1 metric and includes three
noise-treatment parts:
(a) Disease list: string-matching of disease men-
tions using an external custom list of disease
words from a combination of the training disease
mentions and online medical disease glossaries.
This steps facilitates the removal of agglutinated
words or attached noise (e.g. #labioRojoCon-
traLaMigraña⋆ [0-26 → 18-25]).
(b) Glued words removal: removal of outer noise

specific to Twitter hashtags when no disease men-
tion is matched. The begin and the end of the
mention is checked to remove this specific noise
(e.g. #DíaNacionalDelPárkinson [0-24 → 16-24],
#TodasContraElCáncerDeMama [0-26 → 15-26]).
(c) Special characters (Spchar) removal: removal
of emojis, punctuation signs and other related char-
acters when no disease mention is matched from
the list (e.g. #autismo♡ [0-9 → 1-8]).

2.4 Implementation

For the Flair-T and Flair-S experiments, the models
were trained for 50 epochs with a decaying learn-
ing rate (lr). Our setting were Flair-T (lr=5e-6,
batch_size=4) and Flair-S (lr=1e-1, batch_size=2).
The code is available at our Github repository.

LMs Tag-F1 lenient-f1 strict-f1
xrlsc 0.93 0.955 0.759
rbbce 0.93 0.951 0.757

domain sdf 0.93 0.949 0.757
es+clinical† 0.87 0.907 0.729

es+en+clinical† 0.88 0.910 0.731
xrl 0.93 0.950 0.756

multilingual bbmcn 0.90 0.927 0.739
wmn 0.89 0.925 0.735

es bscfn 0.90 0.922 0.741
es† 0.80 0.830 0.660

en bbucn 0.87 0.914 0.725

Table 2: Final experiments results on Validation set;
(†) correspond to Flair-S setting and rest of the entries
correspond to Flair-T setting results.

3 Results

Table 2 shows the results on validation set. The
systems were evaluated on a span-level using two
metrics: lenient-f1 and strict-f1. We also evaluated
the systems on a token-level for BIO-tag classifi-
cation (Tag-f1). Our final test set submission xrlsc

https://github.com/amansinha09/SM4HHT10
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lenient-f1 strict-f1
xrlsc 0.941 0.647
Mean 0.844 ± 0.168 0.675 ± 0.246
Median 0.898 0.761

Table 3: Comparison of our best submitted system
(xrlsc) on Test set with other participants submissions

obtained 0.941 (lenient-f1) and 0.647 (strict-f1). Al-
though tag-f1 and lenient-f1 reported similar scores,
we observed a decrease on strict-f1. Compared to
other submissions, our system performed ∼10%
better over mean w.r.t. lenient-f1 whereas, it falls
∼2.5% short w.r.t. strict-f1 (see Table 3).

4 Discussion

Model without PP with PP
xrlsc 0.318 0.759
rbbce 0.319 0.757

sdf 0.318 0.757
es+clinical 0.308 0.729

es+en+clinical 0.313 0.731
xrl 0.317 0.756

bbmcn 0.311 0.739
wmn 0.306 0.735
bscfn 0.316 0.741

es 0.294 0.660
bbucn 0.298 0.725

Table 4: Effect of post-processing (PP) with metric
strict-f1 on Validation set

Impact of post-processing on span aggregation
While the models were efficient at identifying the
disease mentions on a token-level (as indicated
by lenient-f1 scores in Table 2), the presence of
noise in the extracted disease mentions leads to low
strict-f1 scores without post-processing as shown
in Table 4. The post-processing strategy of noise
removal1 increases significantly the strict-f1 by
more than 40% (except for es-model). However,
there is still a noticeable difference with the lenient-
f1 which shows that this step encountered limita-
tions to capture properly the strict spans. String-
matching to remove surrounding noise on target
entities is an effective strategy but it is however
limited to known diseases from the provided list.
When encountering unknown detected mentions, it

1We use blue font color to distinguish between target enti-
ties and noise

becomes an arduous task due to the shifting and
variation of different agglutinated noise-words (e.g.
#ElVPHEsCosaDeTodos / #vacunavph / #DiaIn-
ternacionalContraelVPH). We also associate the
reason of a lower strict-f1 to a displacement of the
tokens’ spans on the dataset due to the interference
of special characters generated by multi-character
emojis and a few encoding conflicts from the tweets
extraction process. On further analysis, we found
170 tweet files potentially affected by this issue out
of 2500 files in the validation set which comprises
7.92% of the total disease mentions.

Complex and discontinuous named entities
Such entities are particularly problematic as they
can lead to multiple disease mention identifica-
tion. Variable context boundaries (e.g. #dolorneu-
ropatico en #COVID19? → single or multiple dis-
ease mentions?) may lead to an alteration of the
computation of the spans. We found that the er-
ror for capturing long and discontinuous entities
was 26.11% lower for Flair-T models than Flair-S
models. For noisy and agglutinated words such as
#HablemosDeVIH or #diabetestipo2, Flair-T are
more effective than Flair-S models. Besides the
small number of errors on Flair-T in this sense, we
noted a negative effect of agglutinated words with
emojis (e.g. #autismo♡).

Transformation of entities With the character
limit of tweets and the length of certain entities (e.g.
Enfermedad pulmonar intersticial difusa), we en-
counter an increased use of acronyms (e.g. #EPID),
which can be challenging for NER systems. We
observed Flair-T models were 49.2% less prone to
fail in detecting diseases’ acronyms. Other transfor-
mations include flexions or verbal derivations (e.g.
resfriado→resfriarse), where Flair-T was found to
be consistently more effective.

Multilinguality Domain- and multilingual-
specific embeddings have a comparable perfor-
mance (refer Table 2). Both performed better than
es-models as they benefited from the knowledge
from the clinical datasets (Lange et al., 2021) that
were used to pre-train them. Irrespective of the
adaptive fine-tuning, en-specific models performed
lower than es-specific models. Their marginal
difference can be attributed to common standard
disease names used by users on Twitter.

Gold Annotations Domain embeddings helped
to identify unknown diseases and possible incom-
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plete spans on the gold annotations. This raises
the question of what sequence we can consider a
disease and to what extent we determine its span.
While our error analysis showed identification of
words not strictly corresponding to diseases (e.g.
esquizofrenia cultural), new ones were identified
(e.g. Alteraciones cutáneas), in both Spanish and
English (e.g. #epilepsywarrior), and the complete
span was captured (e.g. esteatosis hepática grado
II-III) when a gold annotation was incomplete. We
found this to be an interesting strategy to explore
to improve the quality of gold annotations.

5 Conclusion

In this paper, we studied the existing problems
for Bio-Medical NER on Twitter data and further
shown the effectiveness of contextualized embed-
dings. In addition, we observed a potential in these
systems to improve the quality of gold annotations.
Regardless of the high performance of the pre-
sented systems, post-processing remains a key step
to achieve high quality extractions of target entities.
In future work, we would like to investigate more
effective post-processing strategies and a finer tag-
ging schema such as nested annotations for a more
accurate detection of complex disease mentions.
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