
Proceedings of the 7th International Workshop on Sign Language Translation and Avatar Technology (SLTAT 7), pages 95–102
Language Resources and Evaluation Conference (LREC 2022), Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC 4.0

95

Skeletal Graph Self-Attention: Embedding a Skeleton Inductive Bias into
Sign Language Production

Ben Saunders, Necati Cihan Camgoz, Richard Bowden
University of Surrey

{b.saunders, n.camgoz, r.bowden}@surrey.ac.uk

Abstract
Recent approaches to Sign Language Production (SLP) have adopted spoken language Neural Machine Translation (NMT)
architectures, applied without sign-specific modifications. In addition, these works represent sign language as a sequence of
skeleton pose vectors, projected to an abstract representation with no inherent skeletal structure.
In this paper, we represent sign language sequences as a skeletal graph structure, with joints as nodes and both spatial and
temporal connections as edges. To operate on this graphical structure, we propose Skeletal Graph Self-Attention (SGSA),
a novel graphical attention layer that embeds a skeleton inductive bias into the SLP model. Retaining the skeletal feature
representation throughout, we directly apply a spatio-temporal adjacency matrix into the self-attention formulation. This
provides structure and context to each skeletal joint that is not possible when using a non-graphical abstract representation,
enabling fluid and expressive sign language production. We evaluate our Skeletal Graph Self-Attention architecture on the
challenging RWTH-PHOENIX-Weather-2014T (PHOENIX14T) dataset, achieving state-of-the-art back translation performance
with an 8% and 7% improvement over competing methods for the dev and test sets.
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1. Introduction
Sign languages are rich visual languages, the native
languages of the Deaf communities. Comprised of
both manual (hands) and non-manual (face and body)
features, sign languages can be visualised as spatio-
temporal motion of the hands and body (Sutton-Spence
and Woll, 1999). When signing, the local context of
motions is particularly important, such as the connec-
tions between fingers in a sign, or the lip patterns when
mouthing (Pfau et al., 2010). Although commonly repre-
sented via a graphical avatar, more recent deep learning
approaches to Sign Language Production (SLP) have
represented sign as a continuous sequence of skeleton
poses (Saunders et al., 2021a; Stoll et al., 2018; Zelinka
and Kanis, 2020).
Due to the recent success of Neural Machine Transla-
tion (NMT), computational sign language research of-
ten naively applies spoken language architectures with-
out sign-specific modifications. However, the domains
of sign and spoken language are drastically different
(Stokoe, 1980), with the continuous nature and inher-
ent spatial structure of sign requiring sign-dependent
architectures. Saunders et al (Saunders et al., 2020c) in-
troduced Progressive Transformers, an SLP architecture
specific to a continuous skeletal representation. How-
ever, this still projects the skeletal input to an abstract
feature representation, losing the skeletal inductive bias
inherent to the body, where each joint upholds its own
spatial representation. Even if spatio-temporal skele-
tal relationships can be maintained in an latent repre-
sentation, a trained model may not correctly learn this
complex structure.
Graphical structures can be used to represent pairwise re-
lationships between objects in an ordered space. GNNs

are neural models used to capture graphical relation-
ships, and predominantly operate on a high-level graph-
ical structure (Bruna et al., 2014), with each node con-
taining an abstract feature representation and relation-
ships occurring at the meta level. Conversely, skele-
ton pose sequences can be defined as spatio-temporal
graphical representations, with both intra-frame spa-
tial adjacency between limbs and inter-frame temporal
adjacency between frames. In this work, we employ at-
tention mechanisms as global graphical structures, with
each node attending to all others. Even though there
have been attempts to combine graphical representations
and attention (Yun et al., 2019; Dwivedi and Bresson,
2020; Veličković et al., 2017), there has been no work
on graphical self-attention specific to a spatio-temporal
skeletal structure.

In this paper, we represent sign language sequences as
spatio-temporal skeletal graphs, the first SLP model to
operate with a graphical structure. As seen in the centre
of Figure 1, we encode skeletal joints as nodes, J (blue
dots), and natural limb connections as edges, E , with
both spatial (blue lines) and temporal (green lines) rela-
tionships. Operating on a graphical structure explicitly
upholds the skeletal representation throughout, learn-
ing deeper and more informative features than using an
abstract representation.

Additionally, we propose Skeletal Graph Self-Attention
(SGSA), a novel spatio-temporal graphical attention
layer that embeds a hierarchical body inductive bias
into the self-attention mechanism. We directly mask
the self-attention by applying a sparse adjacency ma-
trix to the weights of the value computation, ensuring
a spatial information propagation. To the best of our
knowledge, ours is the first work to embed a graphical
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Figure 1: An overview of our proposed SLP network, showing an initial translation from a spoken language sentence
using a text encoder, with gloss supervision. A subsequent skeletal graphical structure is formed, with multiple
proposed Skeletal Graph Self-Attention layers applied to embed a skeleton inductive bias and produce expressive
sign language sequences.

structure directly into the self-attention mechanism. In
addition, we expand our model to the spatio-temporal
domain by modelling the temporal adjacency only on
N neighbouring frames.
Our full SLP model can be seen in Figure 1, initially
translating from spoken language using a spoken lan-
guage encoder with gloss supervision. The intermediary
graphical structure is then processed by a graphical sign
language decoder containing our proposed SGSA lay-
ers, with a final output of sign language sequences. We
evaluate on the challenging RWTH-PHOENIX-Weather-
2014T (PHOENIX14T) dataset, performing spatial and
temporal ablation studies of the proposed SGSA archi-
tecture. Furthermore, we achieve state-of-the-art back
translation results for the text to pose task, with an 8%
and 7% performance increase over competing methods
for the development and test sets respectively.
The contributions of this paper can be summarised as:

• The first SLP system to model sign language as a
spatio-temporal graphical structure, applying both
spatial and temporal adjacency.

• A novel Skeletal Graph Self-Attention (SGSA)
layer, that embeds a skeleton inductive bias into
the model.

• State-of-the-art Text-to-Pose SLP results on the
PHOENIX14T dataset.

2. Related Work
Sign Language Production The past 30 years has
seen extensive research into computational sign lan-
guage (Wilson and Anspach, 1993). Early work focused
on isolated Sign Language Recognition (SLR) (Grobel
and Assan, 1997), with a subsequent move to contin-
uous SLR (Camgoz et al., 2017). The task of Sign
Language Translation (SLT) was introduced by Cam-
goz et al (Camgoz et al., 2018) and has since become
a prominent research area (Yin, 2020; Camgoz et al.,
2020a). Sign Language Production (SLP), the auto-
matic translation from spoken language sentences to
sign language sequences, was initially tackled using
avatar-based technologies (Elliott et al., 2008). The rule-
based Statistical Machine Translation (SMT) achieved

partial success (Kouremenos et al., 2018), albeit with
costly, labour-intensive pre-processing.
Recently, there have been many deep learning ap-
proaches to SLP proposed (Zelinka and Kanis, 2020;
Stoll et al., 2018; Saunders et al., 2020b), with Saun-
ders et al achieving state-of-the-art results with gloss
supervision (Saunders et al., 2021b). These works pre-
dominantly represent sign languages as sequences of
skeletal frames, with each frame encoded as a vector
of joint coordinates (Saunders et al., 2021a) that disre-
gards any spatio-temporal structure available within a
skeletal representation. In addition, these models apply
standard spoken language architectures (Vaswani et al.,
2017), disregarding the structural format of the skele-
tal data. Conversely, in this work we propose a novel
spatio-temporal graphical attention layer that injects an
inductive skeletal bias into SLP.

Graph Neural Networks A graph is a data structure
consisting of nodes, J , and edges, E , where E defines
the relationships between J . Graph Neural Networks
(GNNs) (Bruna et al., 2014) apply neural layers on these
graphical structures to learn representations (Zhou et
al., 2020), classify nodes (Yan et al., 2018; Yao et al.,
2019) or generate new data (Li et al., 2018). A skeleton
pose representation can be structured as a graph, with
joints as J and natural limb connections as E (Straka et
al., 2011; Shi et al., 2019). GNNs have been proposed
for operating on such dynamic skeletal graphs, in the
context of action recognition (Yan et al., 2018; Shi et al.,
2019) and human pose estimation (Straka et al., 2011).
Attention networks can be formalised as a fully con-
nected GNN, where the adjacency between each word,
E , is a weighting learnt using self-attention. Expanding
this, Graph Attention Networks (GATs) (Veličković et
al., 2017) define explicit weighted adjacency between
nodes, achieving state-of-the-art results across multiple
domains (Kosaraju et al., 2019). Recently, there have
been multiple graphical transformer architectures pro-
posed (Yun et al., 2019; Dwivedi and Bresson, 2020),
which have been extended to the spatio-temporal do-
main for applications such as multiple object tracking
(Chu et al., 2021) and pedestrian tracking (Yu et al.,
2020).
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Figure 2: Weighted calculation of Queries, Q, Keys, K and Values, V , for global self-attention.

However, there has been no work on graphical attention
mechanisms where the features of each time step holds a
relevant graphical structure. We build a spatio-temporal
graphical architecture that operates on a skeletal repre-
sentation per frame, explicitly injecting a skeletal induc-
tive bias into the model. There have been some appli-
cations of GNNs in computational sign language in the
context of SLR (de Amorim et al., 2019; Flasiński and
Myśliński, 2010). We extend these works to the SLP do-
main with our proposed Skeletal Graph Self-Attention
architecture.

Local Attention Attention mechanisms have demon-
strated strong Natural Language Processing (NLP) per-
formance (Bahdanau et al., 2015), particularly with the
introduction of transformers (Vaswani et al., 2017). Al-
though proposed with global context (Bahdanau et al.,
2015), more recent works have selectively restricted at-
tention to a local context (Yang et al., 2018) or the top-k
tokens(Zhao et al., 2019), often due to computational is-
sues or to enable long-range dependencies. In this paper,
we propose using local attention to represent temporal
adjacency within our graphical skeletal structure.

3. Background
In this section, we provide a brief background on self-
attention. Attention mechanisms were initially pro-
posed to overcome the information bottleneck found in
encoder-decoder architectures (Bahdanau et al., 2015).
Transformers (Vaswani et al., 2017) apply multiple
scaled self-attention layers in both encoder and decoder
modules, where the input is a set of queries, Q ∈ Rdk ,
and keys, K ∈ Rdk , and values, V ∈ Rdv . Self-
attention aims to learn a context value for each time-step
as a weighted sum of all values, where the weight is de-
termined by the relationship of the query with each cor-
responding key. An associated weight vector, WQ/K/V ,
is first applied to each input, as shown in Figure 2, as:

QW = Q ·WQ, KW = K ·WK , V W = V ·WV

(1)
where WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk and
WV ∈ Rdmodel×dv are weights related to each input
variable and dmodel is the dimensionality of the self-
attention layer. Formally, scaled self-attention (SA)
outputs a weighted vector combination of values, V W ,
by the relevant queries, QW , keys, KW , and dimension-
ality, dk, as:

SA(Q,K, V ) = softmax(
QW (KW )T√

dk
)V W (2)

Multi-Headed Attention (MHA) applies h parallel at-
tention mechanisms to the same input queries, keys and
values, each with different learnt parameters. In the
initial architecture (Vaswani et al., 2017), the dimen-
sionality of each head is proportionally smaller than the
full model, dh = dmodel/h. The output of each head is
then concatenated and projected forward, as:

MHA(Q,K,V ) = [head1, ..., headh] ·WO,

where headi = SA(QW ,KW , V W ) (3)

where WO ∈ Rdmodel×dmodel . In this paper, we intro-
duce Skeletal Graph Self-Attention layers that inject
a skeletal inductive bias into the self-attention mecha-
nism.

4. Methodology
The ultimate goal of SLP is to automatically
translate from a source spoken language sentence,
X = (x1, ..., xT ) with T words, to a target sign lan-
guage sequence, G = (g1, ..., gU ) of U time steps. Addi-
tionally, an intermediary gloss1 sequence representation
can be used, Z = (z1, ..., zP ) with P glosses. Current
approaches (Saunders et al., 2021a; Stoll et al., 2018;
Zelinka and Kanis, 2020) predominantly represent sign
language as a sequence of skeletal frames, with each
frame containing a vector of body joint coordinates.
In addition, they project this skeletal structure to an
abstract representation before being processed by the
model (Saunders et al., 2020c). However, this approach
removes all spatial information contained within the
skeletal data, restricting the model to only learning the
internal relationships within a latent representation.
Contrary to previous work, in this paper we represent
sign language sequences as spatio-temporal skeletal
graphs, G, as in the centre of Figure 1. As per graph the-
ory (Bollobás, 2013), G can be formulated as a function
of nodes, J and edges, E . We define J as the skeleton
pose sequence of temporal length U and spatial width
S, with each node representing a single skeletal joint
coordinate from a single frame (blue dots in Fig. 1). S
is therefore the dimensionality of the skeleton represen-
tation of each frame. E can be represented as a spatial
adjacency matrix, A, defined as the natural limb con-
nections between skeleton joints both of its own frame
(blue lines) and of neighbouring frames (green lines).

1Glosses are a written representation of sign, defined as
minimal lexical items.
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Figure 3: Overview of the proposed model architecture, detailing the Spoken Language Encoder (Sec. 4.1) and the
Graphical Sign Language Decoder (Sec. 4.2). We propose novel Skeletal Graph Self-Attention layers to operate on
the sign language skeletal graphs, G.

As outlined in Sec. 3, classical self-attention operates
with global context over all time-steps. However, a
skeletal inductive bias can be embedded into a model
by restricting attention to only the natural limb connec-
tions within the skeleton. To embed a skeleton inductive
bias into self-attention, we propose a novel Skeletal
Graph Self-Attention (SGSA) layer that operates with
sparse attention. Modeled within a transformer decoder,
SGSA retains the original skeletal structure through-
out multiple deep layers, ensuring the processing of
spatio-temporal information contained in skeletal pose
sequences. In-built adjacency matrices of both intra-
and inter-frame relationships provide structure and con-
text directly to each skeletal joint that is not possible
when using a non-graphical abstract representation.
In this section, we outline the full SLP model, contain-
ing a spoken language encoder and a graphical sign
language decoder, with an overview shown in Figure 3.

4.1. Spoken Language Encoder
As shown on the left of Figure 3, we first translate from
a spoken language sentence, X , of dimension E × T ,
where E is the encoder embedding size, to a sign lan-
guage representation, R = (r1, ..., rU ) (Fig. 1 Left).
We build a classical transformer encoder (Vaswani et al.,
2017) that applies self-attention using the global context
of a spoken language sequence. R is represented with
a spatio-temporal structure, containing identical tempo-
ral length, U , and spatial shape, S, as the final skeletal
graph, G. This structure enables a graphical processing
by the proposed sign language decoder. Additionally, as
proposed in (Saunders et al., 2021b), we employ a gloss
supervision to the intermediate sign language represen-
tation. This prompts the model to learn a meaningful
latent sign representation for the ultimate goal of sign
language production.

4.2. Graphical Sign Language Decoder
Given the intermediary sign language representation,
R ∈, we build an auto-regressive transformer decoder
containing our novel Skeletal Graph Self-Attention
(SGSA) layers (Figure 3 middle). This produces a graph-
ical sign language sequence, Ĝ, of spatial shape, S , and
temporal length, U .

Spatial Adjacency We define a spatial adjacency ma-
trix, A ∈ RS×S , expressed as a sparse attention map,
as seen in Figure 4. A contains a spatial skeleton adja-
cency structure, modelled as the natural skeletal limb
connections within a frame (blue lines in Fig. 1). A can
be formalised as:

Ai,j =

{
1, if Con(i, j)
0, otherwise

(4)

where Con(i, j) = True if joints i and j are connected.
For example, the skeletal elbow joint is connected to
the skeletal wrist joint. We use an undirected graph
representation, defining E as bidirectional edges.

Temporal Adjacency We expand the spatial adja-
cency matrix to the spatio-temporal domain by mod-
elling the inter-frame edges of the skeletal graph struc-
ture (green lines in Fig. 1). The updated spatial-
temporal adjacency matrix can be formalised as A ∈
RS×S×U . We set N as the temporal distance that de-
fines ‘adjacent’, where edges are established as both
same joint connections and natural limb connections
between the N adjacent frames. In the standard atten-
tion shown in Sec. 3, each time-step can globally attend
to all others, which can be modelled as N = ∞. We
formalise our spatio-temporal adjacency matrix, as:

Ai,j,t =

{
1, if Con(i, j) and t ≤ N
0, otherwise

(5)

where t is the temporal distance from the reference
frame, t = u − uref.

Self-loops and Normalisation To account for infor-
mation loops back to the same joint (Bollobás, 2013),
we add self-loops to A using the identity matrix, I ∈
RS×S . In practice, due to our multi-dimensional skele-
tal representation, we add self-loops from each coordi-
nate of the joint both to itself and all other coordinates
of the same joint, which we define as I∗ ∈ RS×S .
Furthermore, to prevent numerical instabilities and ex-
ploding gradients (Bollobás, 2013), we normalise the
adjacency matrix by inversely applying the degree ma-
trix, D ∈ RS . D is defined as the numbers of edges a
node is connected to. Normalisation is formulated as:

A∗ = D−1(A+ I∗) (6)
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Figure 4: Skeletal Graph Self-Attention: Weighted calculation of Values, V , masked with a spatio-temporal
adjacency matrix A∗ to embed a skeleton inductive bias.

where A∗ is the normalised adjacency matrix.

Skeletal Graph Self-Attention We apply A∗ as a
sparsely weighted mask over the weighted value calcu-
lation, V W = V · WV , (Eq. 1), ensuring that values
used in the weighted context for each node are only
impacted by the adjacent nodes of the previous layer:

V A = V · A∗ ·WV (7)

where Figure 4 shows a visual representation of the
sparse adjacent matrix A∗ containing spatio-temporal
connections, applied as a mask to the weighted calcula-
tion. With a value matrix containing a skeletal structure,
V ∈ RS , A∗ restricts the information propagation of
self-attention layers only through the spatial and tem-
poral skeletal edges, E , and thus embeds a skeleton
inductive bias into the attention mechanism.
We formally define a Skeletal Graph Self-Attention
(SGSA) layer by plugging both the weighted variable
computation of Eq. 1 and the adjacent weighted compu-
tation of Eq. 7 into the self-attention Eq. 2, as:

SGSA(Q,K, V,A) =

softmax(
Q ·WQ(K ·WK)T√

dk
)V · A∗ ·WV (8)

where dmodel = S. This explicitly retains the spatial
skeletal shape, S , throughout the sign language decoder,
enabling a spatial structure to be extracted.
To extend this to a multi-headed transformer decoder,
we replace self-attention in Eq. 3 with our proposed
SGSA layers. To retain the spatial skeletal representa-
tion within each head, the dimensionality of each head
is kept as the full model dimension, dh = dmodel = S,
with the final projection layer enlarged to h× S .
We build our auto-regressive decoder with L multi-
headed SGSA sub-layers, interleaved with fully-
connected layers and a final feed-forward layer, each
with a consistent spatial dimension of S . A residual con-
nection and subsequent layer norm is employed around
each of the sub-layers, to aid training. As shown on the
right of Figure 3, the final output of our sign language
decoder module is a graphical skeletal sequence, Ĝ, that
contains U frames of skeleton pose, each with a spatial
shape of S.
We train our sign language decoder using the Mean
Squared Error (MSE) loss between the predicted se-
quence, Ĝ, and the ground truth sequence, G∗. This

is formalised as LMSE = 1
U

∑u
i=1 ĝ1:U − g∗1:U )

2,
where ĝ and g∗ represent the frames of the produced
and ground truth sign language sequences, respectively.
We train our full SLP model end-to-end with a weighted
combination of the encoder gloss supervision (Saunders
et al., 2021b) and decoder skeleton pose losses.

4.3. Sign Language Output
Generating a sign language video from the produced
graphical skeletal sequence, Ĝ, is then a trivial task, ani-
mating each frame in temporal order. Frame animation
is done by connecting the nodes, J , using the natural
limb connections defined by E , as seen in Fig. 1.

5. Experiments
Dataset We evaluate our approach on the
PHOENIX14T dataset introduced by Camgoz et
al. (Camgoz et al., 2018), containing parallel sequences
of 8257 German sentences, sign gloss translations and
sign language videos. Other available sign datasets are
either simple sentence repetition tasks of non-natural
signing not appropriate for translation (Zhang et al.,
2016; Efthimiou and Fotinea, 2007), or contain larger
domains of discourse that currently prove difficult for
the SLP field (Camgoz et al., 2021). We extract 3D
skeletal joint positions from the sign language videos
to represent our spatio-temporal graphical skeletal
structure. Manual and non-manual features of each
video are first extracted in 2D using OpenPose (Cao
et al., 2017), with the manuals lifted to 3D using the
skeletal model estimation model proposed in (Zelinka
and Kanis, 2020). We normalise the skeleton pose
and set the spatial skeleton shape, S, as 291, with 290
joint coordinates and 1 counter decoding value (as in
(Saunders et al., 2020c)). Adjacency information, A,
is defined as the natural limb connections of 3D body,
hand and face joints, as in (Zelinka and Kanis, 2020),
where each coordinate of a joint is adjacent to both the
coordinates of its own joint and all connected joints.
We define the counter value as global adjacency, with
connections to all joints.

Implementation Details We setup our SLP model
with a spoken language encoder of 2 layers, 4 heads
and an embedding size, E , of 256, and a graphical sign
language decoder of 5 layers, 4 heads and an embed-
ding size of S. Our best performing model contains
9M trainable parameters. As proposed by Saunders et
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Skeletal Graph DEV SET TEST SET
Layers, L: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

0 (4 SA) 14.25 17.73 23.47 34.79 37.65 13.64 17.03 23.09 35.03 36.59
1 14.37 17.67 23.13 33.95 36.98 13.63 17.08 23.17 35.39 37.05
2 14.50 18.14 24.10 35.96 38.09 13.85 17.23 23.14 34.93 37.33
3 14.53 18.02 24.00 35.71 37.62 13.72 17.23 23.10 34.45 36.99
4 14.68 18.30 24.31 36.16 38.51 14.05 17.59 23.73 35.63 37.47
5 14.72 18.39 24.29 35.79 38.72 14.27 17.79 23.79 35.72 37.79

Table 1: Impact of Skeletal Graph Self-Attention layers, L, on model performance.

al (Saunders et al., 2020c), we apply Gaussian noise
augmentation with a noise rate of 5. We train all parts
of our network with Xavier initialisation, Adam opti-
mization with default parameters and a learning rate
of 10−3. Our code is based on Kreutzer et al.’s NMT
toolkit, JoeyNMT, and implemented using PyTorch.

Evaluation We use the back translation metric (Saun-
ders et al., 2020c) for evaluation, which employs a
pre-trained SLT model (Camgoz et al., 2020b) to trans-
late the produced sign pose sequences back to spoken
language. We compute BLEU and ROUGE scores
against the original input, with BLEU n-grams from
1 to 4 provided. The SLP evaluation protocols on the
PHOENIX14T dataset have been set by (Saunders et
al., 2020c). We share results on the Text to Pose (T2P)
task which constitutes the production of sign language
sequences directly from spoken language sentences, the
ultimate goal of an SLP system. We omit Gloss to Pose
evaluation to focus on the more important spoken lan-
guage translation task.

Skeletal Graph Self-Attention Layers We start our
experiments on the proposed Skeletal Graph Self-
Attention layers, evaluating the effect of stacking multi-
ple SGSA layers, L, each with a multi-head size, h, of
4. We first ablate the effect of using no SGSA layers,
and replacing them with 4 standard self-attention layers,
as described in Section 3. We then build our graphi-
cal sign language decoder with 1 to 5 SGSA layers,
with each model retaining a constant spoken language
encoder size and a global temporal adjacency.
Table 1 shows that using standard self-attention lay-
ers achieves the worst performance of 14.25 BLEU-4,
showing the benefit of our proposed SGSA layers. In-
creasing the number of SGSA layers, as expected, in-
creases model performance to a peak of 14.72 BLEU-4.
A larger number of layers enables a deeper representa-
tion of the skeletal graph and thus provides a stronger
skeleton inductive bias to the model. In lieu of this, for
the rest of our experiments we build our sign language
decoder with five SGSA layers.

Temporal Adjacency In our next experiments, we
examine the impact of the temporal adjacency distance,
N , (Sec. 4.2). We set N by analysing the trained tem-
poral attention matrix of the best performing decoder
evaluated above. We notice that the attention predomi-
nantly falls on the last 3 frames, as the model learns to
attend to the local temporal context of skeletal motion.
Manually restricting the temporal attention provides this
information as an inductive bias into the model, rather
than relying on this being learnt.
Table 2 shows results of our temporal adjacency evalua-
tion, ranging from an infinite adjacency (no constraint)
to N ∈ [1, 5]. A temporal adjacency distance of one
achieves the best BLEU-4 performance. Note: Although
we report BLEU of n-grams 1-4 for completeness, we
use BLEU-4 as our final evaluation metric to enable a
clear result. Although counter-intuitive to the global
self-attention utilised by a transformer decoder, we be-
lieve this is modelling the Markov property, where fu-
ture frames only depend on the current state. Due to the
intermediary gloss supervision (Saunders et al., 2021b),
the defined sign language representation, R, should
contain all frame-level information relevant to a sign
language translation. The sign language decoder then
has the sole task of accurately animating each skeletal
frame. Therefore, a single temporal adjacency in the
graphical decoder makes sense, as no new information
is required to be learnt from temporally distant frames.

Baseline Comparisons We compare the performance
of the proposed Skeletal Graph Self-Attention archi-
tecture against 4 baseline SLP models: 1) Progressive
transformers (Saunders et al., 2020c), which applied
the classical transformer architecture to sign language
production. 2) Adversarial training (Saunders et al.,
2020a), which utilised an adversarial discriminator to
prompt more expressive productions, 3) Mixture Den-
sity Networks (MDNs) (Saunders et al., 2021a), which
modelled the variation found in sign language using
multiple distributions to parameterise the entire predic-
tion subspace, and 4) Mixture of Motion Primitives

Temporal DEV SET TEST SET
Adjacency, N : BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

∞ 14.72 18.39 24.29 35.79 38.72 14.27 17.79 23.79 35.72 37.79
1 15.15 18.67 24.47 35.88 38.44 14.33 17.77 23.72 35.26 37.96
2 15.09 18.51 24.43 36.17 38.04 14.07 17.62 23.91 36.28 37.82
3 15.08 18.84 24.89 36.66 38.95 14.32 17.95 24.04 36.10 38.38
5 14.90 18.81 25.30 37.31 39.55 14.21 17.79 23.98 35.88 38.44

Table 2: Impact of Temporal Adjacency, N , on SGSA model performance
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DEV SET TEST SET
Approach: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Progressive Transformers 11.82 14.80 19.97 31.41 33.18 10.51 13.54 19.04 31.36 32.46
Adversarial Training 12.65 15.61 20.58 31.84 33.68 10.81 13.72 18.99 30.93 32.74

Mixture Density Networks 11.54 14.48 19.63 30.94 33.40 11.68 14.55 19.70 31.56 33.19
Mixture of Motion Primitives 14.03 17.50 23.49 35.23 37.76 13.30 16.86 23.27 35.89 36.77

Skeletal Graph Self-Attention 15.15 18.67 24.47 35.88 38.44 14.33 17.77 23.72 35.26 37.96

Table 3: Baseline comparisons on the PHOENIX14T dataset for the Text to Pose task.

(MOMP) (Saunders et al., 2021b), which split the SLP
task into two distinct jointly-trained sub-tasks and learnt
a set of motion primitives for animation.
Table 3 presents Text to Pose results, showing that
SGSA achieves 15.15/14.33 BLEU-4 for the develop-
ment and test sets respectively, an 8/7% improvement
over the state-of-the-art. These results highlight the
significant success of our proposed SGSA layers. We
have shown that representing sign pose skeletons in a
graphical skeletal structure and embedding a skeletal
inductive bias into the self-attention mechanism enables
a fluid and expressive sign language production.

6. Conclusion
In this paper, we proposed a skeletal graph structure for
SLP, with joints as nodes and both spatial and temporal
connections as edges. We proposed a novel graphical
attention layer, Skeletal Graph Self-Attention, to oper-
ate on the graphical skeletal structure. Retaining the
skeletal feature representation throughout, we directly
applied a spatio-temporal adjacency matrix into the self-
attention formulation, embedding a skeleton inductive
bias for expressive sign language production. We evalu-
ated SGSA on the challenging PHOENIX14T dataset,
achieving state-of-the-art back translation performance
with an 8% and 7% improvement over competing meth-
ods for the dev and test set. For future work, we aim
to apply SGSA layers to the wider computational sign
language tasks of SLR and SLT.
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