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Abstract
We propose a new approach for phoneme mapping in cross-lingual transfer learning for text-to-speech (TTS) in under-
resourced languages (URLs), using phonological features from the PHOIBLE database and a language-independent mapping
rule. This approach was validated through our experiment, in which we pre-trained acoustic models in Dutch, Finnish, French,
Japanese, and Spanish, and fine-tuned them with 30 minutes of Frisian training data. The experiment showed an improvement
in both naturalness and pronunciation accuracy in the synthesized Frisian speech when our mapping approach was used. Since
this improvement also depended on the source language, we then experimented on finding a good criterion for selecting source
languages. As an alternative to the traditionally used language family criterion, we tested a novel idea of using Angular
Similarity of Phoneme Frequencies (ASPF), which measures the similarity between the phoneme systems of two languages.
ASPF was empirically confirmed to be more effective than language family as a criterion for source language selection, and
also to affect the phoneme mapping’s effectiveness. Thus, a combination of our phoneme mapping approach and the ASPF
measure can be beneficially adopted by other studies involving multilingual or cross-lingual TTS for URLs.

Keywords: neural text-to-speech synthesis, under-resourced languages, cross-lingual transfer learning, phoneme map-
ping, language family

1. Introduction
Research in text-to-speech synthesis (TTS) has seen
rapid advancement recently. Since the 2010s, there has
been a paradigm shift to neural network-based speech
synthesis (neural TTS), which produces much higher
output quality in both naturalness and intelligibility
compared to previous paradigms such as concatena-
tive synthesis and statistical parametric speech synthe-
sis (Tan et al., 2021).
However, neural TTS requires a large amount of train-
ing data. In TTS, training data refers to recordings of
human speakers, preferably recorded with high qual-
ity (e.g., no or little background noise, good record-
ing equipment, consistent speaking style and pronunci-
ation), have reliable annotations (e.g., split into text-
audio pairs with minimal or no discrepancies), and,
in regards to quantity: the more the better. For an
example, LJSpeech (Ito and Johnson, 2017), a pub-
lic domain data set recorded by an American En-
glish female speaker that is widely used in neural TTS
studies, has a duration of nearly 24 hours. Such an
amount, though generally not hard to obtain for rel-
atively highly-resourced languages, would likely be
problematic for under-resourced languages (URLs).
One solution to address this challenge for URLs is
to use cross-lingual transfer learning. This involves
pre-training the acoustic model in a different language
(called the “source language”) that has sufficient train-
ing data, before fine-tuning that acoustic model with
the limited training data of the URL (“target lan-
guage”). This helps with the mapping between the in-

put (text or phoneme sequence) and the output (speech
features) in the URL, owing to the underlying simi-
larities (e.g., patterns in pronunciation, semantic struc-
tures) among the language pair (Tan et al., 2021).
Cross-lingual transfer learning, however, comes with
its own challenges. Firstly, there is often a mismatch
between the input embeddings of the source and target
languages, due to differences in their sets of phonemes
or orthographic characters. To overcome this, Chen et
al. (2019) proposed a Phonetic Transformation Net-
work, fitted with a preceding automatic speech recog-
nition component, to automatically map input symbols
across languages based on their sounds. More recently,
Wells and Richmond (2021) experimented between us-
ing phonemes and phonological features as input and
made use of linguistic expertise (in the source and tar-
get languages) to map the embeddings. Notwithstand-
ing these valuable findings, there is yet to be a solution
that: a) is simpler but still sufficiently effective, b) can
be easily replicated for other languages, and c) does not
require specific linguistic expertise in the languages in-
volved. We posit that such qualities are greatly helpful
in cross-lingual transfer learning for URLs.
Secondly, numerous previous studies have shown that,
for the same target language, transfer learning from dif-
ferent source languages leads to different effects in out-
put quality. This leads to another consideration: by
what criterion should the source language be chosen?
Traditionally, language family classification has been
widely used, with the implication that languages in the
same family have more similarities that help in trans-
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fer learning (or more generally, in sharing knowledge
in a multilingual setting). However, an extensive study
by Gutkin and Sproat (2017) found no conclusive evi-
dence for this. In addition, in a meta-analysis of stud-
ies involving multilingual and cross-lingual TTS for
URLs, Do et al. (2021) also concluded that language
family classification was not an effective criterion for
selecting source languages.
Accordingly, we aim to make the following contribu-
tions in this study:

1) We experiment on using a set of universal phono-
logical features as a guide to map phoneme em-
beddings across source and target languages. (2.1)

2) We investigate a new criterion for selecting source
languages: a measure of cross-lingual phoneme
distribution similarity, and compare it with the
conventional language family criterion. (2.3)

2. Databases and Proposed Metric
2.1. Phonological Inventory Data
PHOIBLE (Moran and McCloy, 2019) is a database of
phonological inventories of 2,186 distinct languages.
PHOIBLE uses a fixed set of 37 phonological features
to describe all the phonemes in its database and ensures
that each phoneme, represented by a unique IPA sym-
bol, has a distinct set of binary attributes from these
features. In other words, each IPA symbol represent-
ing a phoneme has a unique set of 37 binary attributes
(corresponding to the phonological features) associated
with that phoneme’s pronunciation. This facilitates our
proposed method for cross-lingual phoneme mapping,
which is described in more detail in 4.2.2.

2.2. Language Classification Data
For language family classification, Ethnologue (Eber-
hard et al., 2021) is likely the most comprehensive
and commonly used reference. It has been used by,
e.g., Tan et al. (2019) as the reference for language
clustering in their multilingual experiments, and by Do
et al. (2021) as a potential factor in the effectiveness
of multilingual or cross-lingual TTS models. To enable
comparisons, we also use Ethnologue in this study.

2.3. Angular Similarity of Phoneme
Frequencies (ASPF)

Cosine similarity (SC or cos(θ)) is traditionally used
in the field of natural language processing (NLP)
to measure similarities between text documents, e.g.,
by Huang et al. (2011). Recently, a study by Cer et
al. (2018) stated that the angular distance (Dθ, cal-
culated from cos(θ)) performed better. Motivated by
this, we experimented with using angular similarity
(Sθ := 1 − Dθ) between the vectors of phoneme fre-
quencies of two languages to measure the similarity be-
tween their phoneme systems. For language A with
phoneme set PA, we defined a vector of phoneme fre-
quencies PFA containing frequencies of all phonemes

in PA, calculated from A’s data set. To compare lan-
guages A and B, we calculated cosθ and then Sθ be-
tween PFA and PFB (with padding where necessary
to avoid size mismatch):1

SC(PFA, PFB) := cosθ =
PFA · PFB
‖PFA‖‖PFB‖

Sθ := 1− 2 · arccos(cosθ)
π

Hereafter we use the name Angular Similarity of
Phoneme Frequencies (ASPF) for these Sθ values,
which represent the degrees of similarities between the
phoneme systems of the two languages from which
they are calculated (0 ≤ ASPF ≤ 1).

3. Data Sets and Preparation
3.1. Target Language Data Set
3.1.1. Frisian
Frisian (“Frysk”) is the local language of the province
of Friesland (“Fryslân”), which is located in the north
of the Netherlands. The language has roughly 350,000
native speakers (Gorter, 2003), and has been recog-
nized as the second official language of the Nether-
lands since 2013. Frisian is formally referred to as
West Frisian (to distinguish from North Frisian and
East Frisian), but in this study we simply call it Frisian.

3.1.2. Frisian Data Set
Although there are Frisian audio corpora, they were de-
signed for other purposes than TTS. The FAME project
(Yilmaz et al., 2016) corpus was designed to study
code-switching and the Boarnsterhim Corpus (Sloos et
al., 2018) was part of a longitudinal study. As such,
they are not ideal for TTS research. Therefore, we
created a small single-speaker corpus by using record-
ings and corresponding texts from a Frisian audiobook.
We split the recordings by silence periods and also
trimmed the preceding and trailing silences. Following
LJSpeech, we further split long excerpts (while still re-
specting clause boundaries) so that the longest duration
was 10 seconds. The corresponding texts had their sen-
tences tokenized, abbreviations and numbers checked
and expanded, and were thoroughly inspected to ensure
good correspondence between text-audio pairs. From
this corpus, we used 30 minutes of recordings (316
utterances) for this study and show their duration his-
togram in Figure 1.

3.2. Source Language Data Sets
CSS10 (Park and Mulc, 2019) is a publicly available
single-speaker data set of 10 languages, consisting of
short audio clips cut from audiobooks in the LibriVox
project2. We chose it for this study since its wide range
of languages enables the testing of the language family

1This is the formula for when the vectors do not contain
negative values, which matches our case.

2https://librivox.org

https://librivox.org
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factor, and its audio format and structure are similar to
what we had for Frisian. From its 10 languages, consid-
ering a balance between language family variation and
available audio duration, we chose to experiment with
the following languages (in alphabetical order): Dutch,
Finnish, French, Japanese, and Spanish.
We manually inspected these languages’ subsets by lis-
tening to the audio files, skimming the paired texts, and
remedying (or removing) the mismatches. The most
common discrepancies included numbers that were not
spelled out in the texts, book and chapter names that
were read but not included in the texts, and differences
in the audio/text splitting boundaries. To conform to
the Frisian data set, we also excluded utterances longer
than 10 seconds. Ultimately, each target language had
approximately 9 hours of total duration, with similar
duration distributions. Figure 1 shows the duration his-
togram of the Spanish data set as an example.

Figure 1: Duration (s) histograms of data sets

3.3. Data Sets Phonemization
We converted all data sets in this study using lexi-
cons (pronunciation dictionaries). The Carnegie Mel-
lon University Pronouncing Dictionary (CMU, 2014)
(CMUdict) is a public domain dictionary for American
English that is widely used in TTS research. We fol-
lowed its conventions for phoneme annotations, with
the following exceptions: a) we used IPA symbols from
the PHOIBLE database instead of the modified ARPA-
BET system in CMUdict, and b) we only included pri-
mary stress marks (i.e., secondary stress was treated as
unstressed). The latter was in order to accommodate
all the source languages involved, since not all of them
can be said to have secondary stresses.
We used PHOIBLE to define the phoneme sets of
all the languages. For languages that have more
than one listed phoneme inventories (i.e., from several
“doculects”), we used a union set from all of these, and
then removed all the phonemes that were not used (i.e.,
not present) in the corresponding lexicon.
Frisian: We used the lexicon included as part of the
FAME project, modifying it slightly to match the an-
notation method described above and supplementing it
with the corresponding stress information provided by
the Fryske Akademy.

Dutch: We used the e-Lex lexicon from the Insti-
tuut voor de Nederlandse Taal (INT, 2014), which uses
phoneme representations from the Corpus Gesproken
Nederlands (CGN) (Oostdijk, 2000) and was thus con-
verted into IPA symbols following its manual. e-Lex
includes stress information, and the majority of the en-
tries are already manually checked by the authors.
All the other source languages used lexicons from the
ipa-dict project (Doherty, 2019), which already uses
IPA symbols and thus no conversion was needed.
Finnish: The lexicon readily contains stress infor-
mation, so we only needed to exclude the secondary
stresses.
French: As French does not have lexical stress, the
lexicon does not contain stress information. Therefore,
we determined the stressed phonemes using the rules
from Kelton et al. (2019)3, with the phrase boundaries
predicted from punctuation marks and/or short breaks
in the audio. We acknowledge that this is a rudimentary
and oversimplifying approach, e.g., compared to that
in de Dominicis et al. (2000). Nevertheless, we posited
that this would suffice for the current study’s purposes.
Japanese: One major challenge was that Japanese
texts contain many homographs, which complicates the
selection of the right pronunciation from the lexicon.
CSS10 dealt with this by including romaji annotations
(romanized transcriptions) that were post-edited by a
native speaker. Although these still contain occasional
mistakes, we used them as reference to determine the
stressed phonemes. It should be noted that Japanese
is not a stress-oriented language (de Dominicis et al.,
2000) and instead has pitch (high-low) patterns. How-
ever, for the purposes in this study, we treated the vow-
els in high-pitched morae as stressed. Specifically, we
used MeCab (Kudo, 2006) to parse the Japanese ortho-
graphic texts, compared them with CSS10’s romaji an-
notations for the homographs, and obtained the stress
information from a dictionary by javdejong (2022).
Spanish: The lexicon already contains stress marks for
accented words. For the others, we followed the guide
by Collins (2022) to determine the stress position.
For out-of-vocabulary (OOV) words in all languages,
we used OpenNMT (Klein et al., 2017) to train a
grapheme-to-phoneme (G2P) model for each language
to predict the pronunciations and, to the extent possible,
manually inspected and corrected the obvious errors.

4. Training and Evaluation
4.1. Source Language Pre-Training
We chose the FastSpeech 2 architecture (Ren et al.,
2020), implemented by Chien et al. (2021) for the
acoustic model. Pitch and energy prediction was done
at the phoneme-level, following the authors’ recom-
mendation. For the vocoder, we used the universal
generator of HiFi-GAN V1 (Kong et al., 2020) for all

3Available at https://www.laits.utexas.edu/
fi/html/pho/03.html

https://www.laits.utexas.edu/fi/html/pho/03.html
https://www.laits.utexas.edu/fi/html/pho/03.html
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source and target language models without fine-tuning,
since the duration of the data sets (especially Frisian)
was not sufficient for effective fine-tuning.
We trained a separate acoustic model for each source
language. As done in the original FastSpeech 2 paper,
we used the Montreal Forced Aligner (McAuliffe et al.,
2017) to obtain phoneme-level alignments between the
annotations and the audio recordings. We then trained
each acoustic model for 100K parameter updates, with
a batch size of 16 and the Adam optimizer (Kingma
and Ba, 2017) with β1 = 0.9, β2 = 0.98, and ε =
10−9. To make sure they were trained successfully, for
each model, we synthesized the corresponding set of
20 test sentences used in the CSS10 paper (Park and
Mulc, 2019). The results had subjectively good quality
and can be found online4.

4.2. Target Language Fine-Tuning
To verify this study’s proposed approach to phoneme
mapping, we tested two scenarios for each source lan-
guage: without and with phoneme mapping. We call
the corresponding models separate and mapped, re-
spectively, and describe them below.

4.2.1. Without Phoneme Mapping (separate)
In this scenario, we directly fine-tuned the source
language model (described in 4.1) on the 30-minute
Frisian data set. In other words, for the phonemes that
are present in Frisian but not in the source language,
the model would have their parameters initialized from
scratch and “learn” from the Frisian data.

4.2.2. Phoneme Mapping (mapped)
In this scenario, for each phoneme not present in the
source language, instead of initializing from scratch,
we mapped it to the model parameters of its closest
phoneme, which was predicted with a simple rule. The
rule is expected to be universal (i.e., independent of
the language pairs) and is as follows: for each target
language phoneme that needed mapping, we looked
for source language phoneme candidates with the most
similar sets of PHOIBLE phonological features (repre-
sented as a vector of length 37). In case of ties, we com-
pared the cosine similarities (2.3) of the phoneme dis-
tributions in the immediately preceding and succeeding
positions of the phoneme in question, i.e., the candidate
with the most similar adjacent phoneme distributions
would be selected. For certain diphthongs and long
vowels, no single target phoneme could be found. In
that case, the source phonemes were decomposed into
unitary vowels, which were subsequently mapped as if
they were individual phonemes. All the resulting map-
ping decisions are reported in Appendix 8.

4.2.3. Model Fine-Tuning
Following the above descriptions, each of the 5 source
languages had two separate fine-tuning scenarios: sep-
arate and mapped, both starting from the same pre-

4https://phat-do.github.io/sigul22

trained model. This resulted in a total of 10 fine-tuned
models. Each model was trained on the 30-minute
Frisian data set for another 100K parameter updates
with a batch size of 4 (to better accommodate the small
data size), with the other hyperparameters unchanged.

4.3. Evaluation
4.3.1. Test Sentences
We selected a total of 20 unseen test sentences, divided
into 5 small sets of 4 sentences each, so that each set: a)
contains all phonemes (regardless of frequency) from
the Frisian data set5, b) has a set-wide phoneme distri-
bution as close as possible to that of the Frisian data
set, and c) has an average duration of 5 seconds.

4.3.2. Listening Experiment
We used PsyToolkit (Stoet, 2010; Stoet, 2017) for an
online listening experiment to obtain subjective eval-
uation, following the MUSHRA framework (Series,
2014). Each participant was randomly assigned a set
of 4 sentences, each with a reference audio sample
resynthesized from that sentence’s ground-truth mel-
spectrogram. The participant was then asked to listen to
10 synthesized samples (from the 10 models described
in 4.2.3), together with a hidden resynthesized anchor,
before being asked to rate each sample on its natu-
ralness and pronunciation accuracy on a 0-100 scale.
We collected answers from 50 participants that fully
completed their panels, but had to exclude participants
with lower self-rated Frisian proficiency. In the end,
we used answers from 46 participants for data analysis
(n = 2024). The audio samples are available online4.

5. Results and Discussion
5.1. Phoneme Mapping
The MUSHRA scores are reported in Figure 2. To
verify the effect of phoneme mapping, we conducted
paired Wilcoxon tests between the scores of the mod-
els with and without phoneme mapping (map and sep).
Table 1 reports the effects of phoneme mapping (differ-
ences in median scores between map and sep) and the
p-values of the corresponding paired Wilcoxon tests,
with statistically significant effects in bold.
Despite significantly increasing both naturalness and
pronunciation accuracy ratings in the Dutch and
Finnish models, phoneme mapping only increased ac-
curacy ratings in the French model, and did not have
a significant effect in the Spanish and Japanese mod-
els. To investigate this in more detail, we used a linear
mixed effect model (Bates et al., 2014), with mapping
as the fixed effect, and participants and sentences as
random effects (to account for the by-participant and
by-sentence variation). For both naturalness and pro-
nunciation accuracy, phoneme mapping did affect the

5This is usually not enforced by other studies, but we be-
lieve this would test the phoneme mapping more effectively,
despite likely affecting the models’ subjective evaluation neg-
atively.

https://phat-do.github.io/sigul22
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Figure 2: MUSHRA scores in Naturalness and Pronunciation Accuracy (central bars: median scores)

Source
language

Naturalness
(Mmap −Msep)

Accuracy
(Mmap −Msep)

nl (Dutch) 11 (p <.001) 13 (p <.001)
fi (Finnish) 6.5 (p = .003) 10 (p <.001)
fr (French) -6 (p = .82) 2 (p = .02)

es (Spanish) 1.5 (p = .17) 5 (p = .21)
ja (Japanese) -2 (p = .56) -4 (p = .11)

Table 1: Effect of phoneme mapping

MUSHRA score (p = .004 and p < .001, respec-
tively), increasing it by 2.42 (± 0.85) and 3.79 (±
0.88), respectively. This means phoneme mapping did
have an overall positive effect, but this effect also de-
pended on the source language. This observation fur-
ther motivated the analysis in the next stage.

5.2. Source Language Selection Criterion
5.2.1. Language Family
Acknowledging the complexity of measuring in detail
the concept of language family distance, similar to Tan
et al. (2019), we counted only the first level in the
phylogenetic language classification tree (following the
terms in Gutkin and Sproat (2017)). Accordingly,
Frisian, Dutch, French, and Spanish were considered to
be in the same language family (Indo-European), while
Finnish (Uralic) and Japanese (Japonic) were not.

5.2.2. ASPF
Following 2.3, we calculated two versions of ASPF:
a data set-level ASPF that compares two languages’
whole data sets, and a sentence-level ASPF that in-
volves the frequencies of only the phonemes present
in each sentence. We posited that the latter was more
accurate as a variable, and it also helped alleviate the
issue of modeling a continuous variable with very few

observed values, as the data set-level ASPF had only 5
values. It was still useful, however, in reaching a rec-
ommendation for source language selection criterion.

5.2.3. Results
Linear mixed effect models were used to test the effects
of language family and sentence-level ASPF. When
tested as the only fixed effect, they both had statisti-
cally significant effects on the MUSHRA score. How-
ever, since they are collinear by nature (languages in
the same family are likely to have similar phoneme
characteristics), we wanted to find the true effect that
could explain the variation. Therefore, we used like-
lihood tests between these models and another model
with both of them as fixed effects. This showed that
language family indeed did not have a significant effect
on either naturalness (p = .56) or accuracy (p = .50),
while sentence-level ASPF significantly affected both
(p < .001), increasing them by 2.93 (± 0.36) and 3.66
(± 0.37), respectively, for every increase of 10 percent-
age point in ASPF.
Sentence-level ASPF, however, is not very useful for
generalization to other scenarios with other languages.
Thus, we also tested for the correlation between data
set-level ASPF (reported in Table 2) and the median
MUSHRA scores, using the “Spearman” method. This
showed that they were significantly correlated, with a
coefficient of 1 and p = .01, confirming the usefulness
of using data set-level ASPF as a criterion for choosing
source languages (the higher, the better).

Source language nl fi fr es ja

ASPF 0.73 0.47 0.38 0.35 0.33

Table 2: Data set-level ASPF (compared to Frisian)
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6. Conclusion
We propose a novel approach for phoneme mapping
in cross-lingual transfer learning, using phonological
features of the PHOIBLE database and a language-
independent mapping rule. We experimented with
Dutch, Finnish, French, Japanese, and Spanish as
source languages and Frisian as the target language.
Listening scores showed that our approach improved
both naturalness and pronunciation accuracy compared
to without mapping. This effect also depended on the
source language, motivating the investigation into a cri-
terion to select source languages.
We then tested the idea of using Angular Similarity of
Phoneme Frequencies (ASPF) as a criterion for select-
ing source languages, and proved through our experi-
ment that it was more effective than the traditional cri-
terion of language family classification.
Future research is intended to expand into experiment-
ing in the setting of a directly multilingual model, with
a wider range of languages, and in the scenario of hav-
ing no available lexicons for the target language.
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Appendix
Table 3 reports all the mappings resulted from the rule
in 4.2.2, with vowels at the top and consonants at the
bottom. Frisian phonemes are on the left column (fy).
An empty cell means no mapping was needed, and a
cell with two vowels mean they were converted from
either a long vowel or a diphthong.

fy nl fi fr es ja

a A
a: A: A: a a a a
ai aI A i a i a i
e: e e e e
@ e e e
E e e e
E: e: e: E E e e e:
Ei E i E i E i ei e i
i
i: e: i i i i
i@ i @ i e i @ i e i e
I i i i
I@ I @ i e I @ i e i e
o O
ø o o
o: o o o o
ø: y: ø ø o o o o
œ Y ø o o
o@ O @ o e o @ o e o e
ou O u o u o u o u o o
O o o o
O: o: O O o o o:
Ou 2u o u O u o u o o
u o
u: o: u u u u o:
u@ u @ u e u@ u e o e
ui u i u i u i oi o i
y u o
y: y y u u o o
y@ y @ y e y @ u e o e
b
d
f F
g
h f f
j
k
l R
m
n
ñ N ç
N ð
p
r l R
s
t
v B
x k
z

Table 3: Phoneme mapping results
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