
Proceedings of SIGUL2022 @LREC2022, pages 189–198
Marseille, 24-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

189

A Language Model for Spell Checking of Educational Texts in Kurdish
(Sorani)

Roshna Omer Abdulrahman and Hossein Hassani
University of Kurdistan Hewlêr

Kurdistan Region - Iraq
roshna.abdulrahman@ukh.edu.krd, hosseinh@ukh.edu.krd

Abstract
Spell checkers have become regular features of most word processing applications. They assist us in writing
more correctly in various digital environments. However, this assistance does not exist for all languages equally.
The Kurdish language, which still is considered a less-resourced language, currently, lacks well-known and
well-tested spell checkers. We present a language model for the Kurdish (Sorani) based on educational texts
written in the Persian/Arabic script. We also showcase a spell checker as a testing environment for the language
model. Primarily, we use a probabilistic method and our language model with Stupid Backoff smoothing for the
spell-checking algorithm. We test for spelling errors on a word and context basis. The spell checker suggests a list
of corrections for misspelled words. The results show 88.54% accuracy on the texts in the related context, an F1
score of 43.33%, and correct suggestions of an 85% chance of being in the top three positions of the corrections.

Keywords: Spell checker, Kurdish Language, Ngram Language Model, Low-Resourced, Error Detec-
tion.

1. Introduction

A spell checker is an application that detects gram-
matical and contextual spelling errors from a given
text and tries to correct them according to an algo-
rithm or a set of rules. Some spell checkers suggest
a list of correct candidate words for a misspelled
word or suggestions for a sequence of words. Au-
tomatic spell checking is a popular feature in word
processors for most languages. Also, almost all
web browsers provide built-in spell checkers.
Research on spell checkers dates back to the late
1950s, and they are now well established for many
languages such as English, German, and Chinese.
However, the Kurdish language is low-resourced,
and the related research, data, and tools are still in
their infancy.
About 19 to 28 million people speak the Kurdish
language (Hassani and Medjedovic, 2016). Kur-
dish is written in different scripts, mostly in Per-
sian/Arabic and Latin, and it includes several di-
alects (Hassani, 2018). The Kurdish language is
less-resourced, and the Kurmanji dialect has had
more research regarding spell checkers, for exam-
ple, the Rastnivîs – Add-ons for Firefox while the
Sorani dialect has recently had research regarding
tools and corpora to be used for spell checkers. We
discuss them in the following paragraphs.
We develop a spell checking application for the

Sorani dialect focusing on scientific texts. Our
application is based on a language model that is
created over the segmented KTC corpus (Abdul-
rahman and Hassani, 2020) and uses the Stupid
Backoff smoothing score (Brants et al., 2007)
to find non-words and errors within the con-
text of a sentence. We also use Edit Dis-
tance (Damerau, 1964) paired with the score for
correction and then ranking the list of sugges-
tions. The language model is publicly available
at GNU V3.0 license at https://github.com/
KurdishBLARK/KTC-Language-Model.
The rest of this paper is organized as follows. Sec-
tion 2 reviews related work on Kurdish language
models and spell checkers. Section 3 provides the
methodology of the research. Section 4 presents
the experiment environment and RastNus applica-
tion that we created to use the language model.
Section 5 presents the findings and results of the
paper. Finally, in Section 6, we provide the con-
clusion.

2. Related Work
Even though the amount of research on the Kur-
dish language - for all of the dialects - was few and
far between, we can say that recent research on the
Kurdish language processing has gained popular-
ity in the past decade.

https://github.com/KurdishBLARK/KTC-Language-Model
https://github.com/KurdishBLARK/KTC-Language-Model

190

A Spell checking system that already exists for
Sorani is Renus, an error correction system that
works on a word-level basis and uses lemmati-
zation (Salavati and Ahmadi, 2018). Renus de-
tects an error using lookup methods in a language
model. Also, it corrects the erroneous word us-
ing Edit Distance. The system suggests a list of
candidates’ grams of the same position with an
Edit Distance of less than three and ranks the sug-
gested corrections based on the candidate’s fre-
quency and Edit Distance. Renus spell checker is
evaluated by comparing the golden-standard word
with first-ranked suggestions of the algorithm. The
authors report that the lemmatizer has an accuracy
of 86.7% while the spell checker’s accuracy with
a lexicon is 96.4% and without one is 87%. While
most of their work revolves around the Peyv, the
spell checker application in this paper is a step in
the right direction.
Hawezi et al. (2019) create a spell checking algo-
rithm for the Sorani dialect (Central Kurdish) with
a focus on its morphological complexness - agglu-
tinative. They store a list of base words in mem-
ory and use variants of a word in which the base
stays the same but prefixes, suffixes, and infixes
are changed according to a pattern. This method is
similar to what spell checking libraries like Hun-
spell use. They report that 79.93% of the time, the
first word is the correct word, 93.30% the correct
word is in the top 3, and 97.01% the correct word
is in the top 5 suggested words. They have also
created a sample application to test the library, but
the application is not open-source.
Ahmadi (2020) presents an open-source language
processing toolkit for Kurdish (KLPT) that in-
cludes a spell checker based on Hunspell. The per-
formance is not discussed since it was under re-
view as of the writing of this article.
Hamarashid et al. (2021) present a word predic-
tion system for Sorani and Kurmanji dialects of
the Kurdish language. They use the ngram model
where n=5. In other words, the system predicts the
next five words after the input text. The authors
suggest that the system is effective in correcting
spelling errors. The authors develop an applica-
tion that is not public nor is it open source.
AsoSoft text corpus is a Kurdish Sorani corpus that
contains 188 million tokens. The corpus is mostly
collected from websites, books, and magazines.
The authors share a detailed look at the creation
and cleaning process of the AsoSoft corpus. Veisi

et al. (2020) create an ngram language model of
the corpus to calculate perplexity. The corpus is
available for usage on GitHub, while the language
model was not shared publicly.
A spell checking web application that was pub-
lished recently is by the AsoSoft Research Group
is the Aso spell checker ئاسۆ ھەڵەچنی that can be
accessed through this website spell.kurdinus.com
(Aso Mahmudi, 2022)
Our focus is on the Sorani dialect written using the
Persian/Arabic script presented in table 1. In or-
der to present a use case of the language model,
we use the Python programming language for data
processing and the spell checking algorithms, and
finally developing a word processing environment
that performs contextual spell checking on a word
level.

ئ ا ب پ ت ج چ ح
خ د ر ڕ ز ژ س ش
ع غ ف ڤ ق ک گ ل
ڵ م ن ھـ و ۆ ی ێ

Table 1: Kurdish Alphabet (from left to right)

As mentioned before, many languages have
achieved acceptable accuracy in the spell check-
ing task. We cannot use most of the spell check-
ing algorithms for languages like Kurdish. Not
only for script differences but also for inflection
(Walther and Sagot, 2010) and grammatical rules.
Thatmakes the existingmethods limiting and leads
to needing different ones or modifying the existing
methods to better suit the Kurdish language.
Compared with the Kurdish spell checkers men-
tioned previously, our work suggests a more robust
language model for educational/scientific writing
because it is built based on the textbooks edited by
academic and professional editors for educational
purposes. That allows the model to find errors and
suggest corrections that are close to de facto writ-
ing standard that is currently formally followed in
the Kurdistan Region of Iraq.

3. Methodology
In this section, we explain the steps we took for
creating an ngram language model. The language
model consists of lists of trigrams, bigrams, and
unigrams with each ngram’s frequency distribu-
tion. We look into the smoothing method that
we used to make the language model more accu-
rate when used in different scenarios. We also

https://spell.kurdinus.com/

191

Unigrams

1 <s>
2 ئێوە
3 ھیوای
4 دواڕۆژن
5 .
6 </s>

Bigrams

1 <s>, ئێوە
2 ,ھیوای ئێوە
3 ,دواڕۆژن ھیوای
4 ,دواڕۆژن .
5 ., </s>

Trigram

1 <s>, ,ھیوای ئێوە
2 ,ئێوە ,ھیوای دواڕۆژن
3 ,ھیوای ,دواڕۆژن .
4 ,دواڕۆژن .,</s>

Table 2: Unigrams, Bigrams, and Trigrams created
from “<s>دواڕۆژن ھیوای .”<s/>.ئێوە

present the methodology of creating and testing
our spell checking algorithm with a simple envi-
ronment that we develop to test the usage of our
language model.

3.1. Developing the Language Model

Chen and Goodman (1999) explain a language
model as “a probability distribution over strings
P(s) that attempts to reflect the frequency with
which each string s occurs as a sentence in natu-
ral text.”

3.1.1. Ngram
When creating the ngram language model, we
started by choosing the ready-made segmented
Kurdish Textbook Corpus - KTC (Abdulrahman
and Hassani, 2020). A Kurdish Sorani school text-
book corpus with 31 books on twelve different
subjects at the K-12 level including (Economics,
Genocide, Geography, History, Human Rights,
Kurdish, Kurdology, Philosophy, Physics, Theol-
ogy, Sociology, Social Study). The (n) in ngram
indicates a number that means it has n consecutive
words. In our case, n=3, which is called a trigram.
As an example, we take a word from the KTC cor-
pus with two other words in a row in the context
of a sentence “<s>دواڕۆژن ھیوای .”<s/>.ئێوە We can
create 4 trigrams, 5 bigrams, and 6 unigrams from
the above sentence, as shown in table 3.1.1.
We use an ngram language model so that our spell
checker can correct not only wrong words but also

specify the errors made in the context of a sen-
tence.

3.1.2. Smoothing
Smoothing techniques are used to improve per-
formance in many cases, but when data is sparse,
which is the case for Kurdish Sorani, smoothing is
more necessary. “The term smoothing describes
techniques for adjusting the maximum likelihood
estimate to hopefully produce more accurate prob-
abilities.” (Chen and Goodman, 1999). There are
many smoothing techniques, some are expensive
and require a lot of training, such as Kneser-Ney
Smoothing (Brants et al., 2007). We chose the fun-
nily named Stupid Backoff Smoothing method by
Brants et al. (2007) that most simply put multi-
plies the probability of a constant 0.4. We explain
the smoothing method in more detail in the later
sections. The point of using a smoothing method
for our language model is to not get zeros too of-
ten when checking for a word or an ngram in our
language model.

3.2. Testing Environment - A Spell Checking
Application

In order to test the language model and have use
cases for it, we develop a spell checking environ-
ment that uses the language model as its back-end.
The spell checker consists of three main tasks that
occur one after the other: error detection, error
correction - which can be a list of candidate cor-
rections, and ranking the correction list (Verberne,
2002). We look at the performance of of the men-
tioned tasks separately.
A significant component of our application is spell
checking in context and not only a single word.

3.2.1. Algorithm
We build an algorithm that detects erroneous
words and corrects them. The algorithm behind
the application consists of many parts. We discuss
them in the following subsections:

• Error detection: Given a body of text our
algorithm uses a Trigram Language Model
with Stupid Backoff smoothing (Brants et
al., 2007) by checking the user’s input text -
which we refer to as (s) - for havingmore than
three tokens, if (s) in less than three tokens
we check the dictionary (lexicon or unigram
list) lookup method, the method is more ac-
curate when the RAM - random access mem-
ory - is not a problem (Kukich, 1992). In

192

the case when (s) has more than three tokens,
we check the Stupid Backoff score as shown
in equation 1, where S is for Stupid Backoff
score, w for word, and α = 0.4. In equation
2, N is the total number of words in the uni-
gram list (lexicon), and f(wi) is the frequency
distribution of wi, the current unigram. The
researchers (Brants et al., 2007) chose 0.4 for
the value of α based on good results in their
experiments.

S(wi|wi−1
i−k+1) =


f(wi

i−k+i)

f(wi−1
i−k+i)

if f(wi
i−k+i) > 0

αS(wi|wi−1
i−k+1) otherwise

(1)

S(wi) =
f(wi)

N
(2)

In our case of using trigrams, the score result
is a relative frequency. As shown in equation
1 above, when the trigram has a frequency
that is more than 0, the score is the trigram’s
frequency divided by the bigram frequency.
This pattern continues until we reach the un-
igram level. When the unigram has a fre-
quencymore than 0, the score is the unigram’s
frequency divided by the total unigram fre-
quency. Otherwise, the score is zero.

• List of candidate corrections: The erroneous
word is modified by two Edit Distance (in-
sertions, deletions, substitutions, and transpo-
sitions) by Damerau (1964) and Levenshtein
and others (1966).

• Correction list ranking: We rank the sugges-
tions based on the Stupid Backoff score using
equation 1.

• Context correction: We use the Trigram Lan-
guage Model within a sentence boundary.

To correct the errors the system found, it needs
to find the types of errors starting from the small-
est unit, letters, and more feasibly letters within a
word boundary. We train our algorithm on what
we consider the wrong word. We do not find “if”
as a mistake unless it is used in the wrong con-
text, such as “if course”. Likewise, in Kurdish
saying (بە) is all well and good unless used in the
wrong context, such as دەخوێنم) زانکۆ An.(بە incor-
rect letter substitute could have caused this type of

spelling error. How many other types of errors can
we find? Let us continue on the word level. Here
is a list of error types our algorithm seeks to correct
within a word boundary. We use the term charac-
ter instead of using letters in the upcoming para-
graphs:

1. Character substitution: ,زانکێ the character �
is substituted with .ێ

2. Adding an extra character (insertion): زاینکۆ
the character ی in the third position starting
from the right.

3. A character missing or deleted: زاکۆ the char-
acter ن is missing

4. Neighboring character order transposition:
زاکنۆ the characters ن and ك have changed po-
sitions.

Damerau–Levenshtein’s (Bard, 2006) Edit Dis-
tance covers all of the word boundary errors we
mentioned. Where Levenshtein’s Distance (Lev-
enshtein and others, 1966) measures the difference
between two words by how many operations it
is needed to turn one into the other, or in other
words, correct the erroneous word. These opera-
tions include insertion, deletion, and substitution
of a character.
Damerau (1964) adds a new operation, which is
the transposition of neighboring characters within
a word. The probability of the next word given the
previous word is known as the chain rule (Samanta
and Chaudhuri, 2013), and we are using Markov’s
assumption, the last n in the chain. We check for
context within the sentence boundary. We take the
start of the sentence token <s> and end of sentence
token </s> into account to achieve a correctly nor-
malized probability of the complete sentence.
Following equation 1, we take the user input of a
set of serialized strings - a word, a sentence, or a
paragraph. The algorithm segments the user input
into sentences with the beginning of sentence tags
<s> twice so that a trigram of (u, v, w) where w is
the first word in a sentence u and v are the start of
sentence indicators as well as the end of sentence
tags </s>. Then the algorithm loops through each
sentence and creates trigrams within its bounds,
and then the index cursor starts at the beginning
tag and gets the first trigram of (u, v, w) the tag
included and continues until it reaches the end of
the sentence tag. Within a sentence boundary, we

193

check each ngram’s - trigram, bigram, and unigram
- Stupid Backoff score. If the score is bigger than
zero S(wi) > 0, we create a confusion set by using
an Edit Distance of two and putting each correct
candidate word back into the trigram, then recheck
the trigram’s score, and then put the trigram in the
suggestion list with its score.
The Stupid Backoff technique, as shown in equa-
tion 1 checks the given trigram of (u, v, w) in the
list of trigram frequencies. If the trigram has a fre-
quency of zero, it checks the bigram of the given
words of (v, w) multiplied by α - as previously
mentioned, we chose 0.4 because it was suggested
by the (Brants et al., 2007) to be the optimal value.
If the bigram score is zero, it checks the unigram
of (w) by calculating equation 2 - where N is the
total number of unigrams (length of the lexicon)
againmultiplied byα and returns the score, or it re-
turns zero where all the iteration resulted in zero.
The suggestion list contains the top five sugges-
tions of each trigram that are sorted by the score.
We highlight the erroneous tokens from the sug-
gestion list, and when the user selects a suggested
item, we check the text one more time.

3.3. Testing Methods
We test and evaluate our algorithm’s error detec-
tion and error correction with suggestion ranking
with written tests by students that study the text-
books. The test data is educational and in the same
style of writing as our corpus. The test data has not
been used in developing the language model.
We collect testing data by having students who
have studied the textbooks from the KTC corpus.
The students take dictation from the remaining
10% of the selected corpus’s test data. We chose
the student randomly. A teacher with a supervisor
reads the dictation material to them, and they type
it in a basic text processor with all hints and help
turned off.
We prepare the dictation material by looking at re-
search on the typing speed of students in the same
age range as our participants. (Horne et al., 2011)
report that 11-year-olds have a typing speed of over
13 words per minute (wpm). 12-year-olds over
16 and 13-year-olds over 20 wpm. 14-year-olds
over 24 wpm, and another research on elementary
schools in Georgia, (Gillespie and Leader, 2005)
report that an average kindergarten through fifth-
grade students have a speed of 5.1 wpm with no
prior practice and 5.91 wpm after 7 lessons tak-
ing the speed of typing by age into account and the

time limit we categorized the dictation material for
each grade.
We manually evaluate the performance of error
detection the chosen method by computing preci-
sion, recall, and accuracy from calculating each
test’s true positive, false positive, true negative,
and false negative. The equations are listed in
equations (3, 4, 5, 6) respectively. Then we manu-
ally evaluate our test set and the collected dictation
of the test set via the human evaluation of the tests.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(6)

Moreover, similar to Samanta and Chaudhuri
(2013), we rate the probability of the list of sug-
gestions and flag where is suggestion is the correct
candidate or a better wording in the context. We
look into the top five positions in the suggestions
that are retrieved from the algorithm.

4. The Test Environment - RastNus
Application

In this section, we present the spell checking appli-
cation created from the methodology of this paper.
We show the application’s user interface as well as
the back-end of how the concept was implemented.
We report the testing process, and we present the
application’s performance as well as other results
in the results and discussion section.

4.1. User Interface
We named the spell checking application RastNus
(RastNusڕاستنوس - is a Kurdish noun that is com-
posed of two other nouns; Rast means truthful
and Nus means writing). When viewing the ap-
plication as a user, RastNus has a simple interface
of two components, the text editing area, and the
“Spell Check” button. When the user inputs text in
the text editing box and presses the spell check but-
ton, a table of erroneous words alongside its cor-
rections is shown to the user with a select link next
to each correct candidate word. The table of erro-
neous words and candidate selection is shown in
figures 2 and 3, respectively.

194

After the user inputs text in the text area and selects
the “Spell Check” button, the application follows
a series of steps. A flow chart of the steps is shown
in figure 1 - RastNus application process.

4.1.1. Algorithm
The algorithm behind the RastNus application first
checks for non-words. If the given word is incor-
rect - using Edit Distance - the application shows
the user a list of candidate words. RastNus’s algo-
rithm contains the following components:

• A Language Model consists of lists of tri-
grams, bigrams, and unigrams with each
ngram’s frequency distribution.

• A custom tokenizer trained on KTC’s test set
using Punkt (Kiss and Strunk, 2006).

The first step in the main method of the RastNus
application is loading the prepared data by start-
ing with calling the LoadTokenizer method. When
the method is called, the program loads KTC’s
custom tokenizer. We manually added a list of
abbreviations to the pickle file, and the abbrevi-
ations are: ,’د‘] ,’م‘ ,’د.خ‘ ,’پ‘ .[’پ.ز‘ Then the
LoadNgramsInToDic method is called to load the
ngram language model of trigrams, bigrams, and
unigrams paired with frequency distribution cre-
ated from our corpus. The SpellCheck method is
triggered when the user clicks the “Spell Check”
button. It starts by cleaning the user’s input text
(T). It removes extra space and replaces the char-
acter ک with ك because the first form of the sound
/k/ does not appear in the KTC we take this step to
avoid unnecessary flagging.
The cleaned text (T) is sent to KTC’s custom to-
kenizer (trained using Punkt) so that (T) is made
into trigrams. The resulting trigram is sent to get
a Stupid Backoff smoothing score. If the score is
zero, that ngram is appended to a list. Each word
in that list is sent to the notKnownmethod to check
whether that word exists in our dictionary list. If
the word is unknown, it is sent to the candidates-
Set2Prob method to get a list of words with an Edit
Distance of two from the original unknown word.
Each candidate word is put back into the ngram.
We check for the Stupid Backoff score of each
reconstructed ngram to check for the correction
within the ngram context. If the score is more than
zero, the ngram is considered as a candidate cor-
rection, and it is shown to the user in the form of a
table shown in figure 2.

Once the user selects a suggested candidate, the
updated text is once again checked, as presented
in figure 3.

4.1.2. RastNus Testing Procedure
We manually tested the RastNus application by
taking random paragraphs from the test set and
running it through the application. We also
checked the student dictation data and collected er-
ror types (tp, tn, fp, fn) while comparing RastNus’s
spell checking manually with a human checker.
We tested and evaluated the algorithm that our
spell checker - RastNus, uses. The results are dis-
played and discussed in the following paragraphs.
We collected the test corpus of dictation to eval-
uate RastNus alongside the test set. Twenty-three
students from 1st grade to 9th grade in total partic-
ipated in the computer-based dictation. The first
session with eight available computers, and in the
second session of six participants, three laptops
were available.
According to research, 4, 5, and 6-year-olds have
a 5 to 13 word per minute speed, nine on average.
In that case, a 250-word paragraph is sufficient for
that age group and the time we have. However,
7th to 9th graders have a speed of 16 to 24 words
per minute 20 on average, 1000 Word page dicta-
tion could be achieved in 30 minutes. In the first
session, we selected the first n words (number of
words needed per age group) for dictation from our
test set, but for the second session, we selected a
random set of sentences that made up n words or
more.
We tested RastNus using the test set and the dic-
tation data, by manually checking each word and
flagging it as the corresponding error type (true
positive, true negative, false positive, false nega-
tive). See an example in figure 4. Thenwe counted
the error types and then calculated precision, re-
call, F1, and accuracy. We manually checked each
suggestion of the test set and the dictation data by
tagging the correct candidate in the top five sug-
gestions the percentage of correct candidates sug-
gested in the test set.

5. Results
In the following sections, we showcase the lan-
guage model we created as well as present the re-
sults of our spell checking algorithm alongside it.
The trigram ngram language model of the KTC
corpus consists of 94,188 unigrams, 372,903 bi-
grams, and 521,797 trigrams.

195

Figure 1: RastNus application process.

Unigram Bigram Trigram
1 و . </s>) . </s>
2 <s>)
3 </s> : ((
4 . : () و (
5 لە) و (د.خ)
6)) ی 2 . </s>
7 (لە كە 1 . </s>
8 :) ، 3 . </s>
9 بە <s>لە <s>2 .
10 كە <s>2- د.خ) پێغەمبەر

Table 3: Top 10 ngrams.

We present top the 10 ngrams of our language
model that contains trigrams, bigrams, and uni-
grams in table 5.
The result of our spell checking algorithm is shown
in table 5 it contains the error types (true positive,
false positive, true negative, and false negative),

and precision, recall, F1, and accuracy are calcu-
lated. From the first test using the dictation data,
we can see that the F1 score is 65.94%, and the
F1 score of testing the algorithm with our test set
is 21.90%. The total F1 score of our method is
43.33%, while the accuracy is significantly higher.
The dictation data has an accuracy of 82.27%, and
the accuracy of testing the algorithm using our test
set is 90%. Overall the accuracy of our method is
88.54%. The F1 score is a harmonic mean between
precision and recall, while the accuracy measures
all correctly flagged cases with equal importance.

The reason behind the notable difference in accu-
racy and F1 score is that unlike the F1 score, the
accuracy takes true negatives into account.

196

Type T.P F.P T.N F.N Precision Recall F1 Accuracy
Dictation 154 16 584 143 90.58% 51.85% 65.94% 82.27%
Test set 54 177 3,411 208 23.37% 20.61% 21.90% 90%
Total 208 193 3995 351 51.87% 37.20% 43.33% 88.54%

Table 4: RastNus spell checker performance.

Figure 2: RastNus Spell Checker testing.

1st

55%

2nd

20%

3rd

10% 4th

9%
5th

6%

Figure 5: Total percentage of correct suggestion
candidates in the top five positions.

Figure 3: RastNus Spell Checker: candidate word
selected.

We manually checked each suggestion of the test
set and the dictation data by tagging the correct
candidate in the top five suggestions. The percent-
age of correct candidates suggested in the test set
is presented in figure 5. The suggestion in the top
three positions of the correct suggestion makes up
over 85% of the correct suggestions.

6. Conclusion
We created an ngram language model made of
lists of trigrams, bigrams, and unigrams with each
ngram’s frequency distribution, and we used the
Stupid Backoff smoothing method.
We built a spell checking Web application Rast-
Nus to use the language that we aim at making it
publicly available.
We used a desktop-based version of this appli-
cation to test the error detection and correction
of the language model using the developed spell
checking algorithm. The spell checking algorithm
uses a probabilistic method. Error detection uses a

197

Figure 4: RastNus output manual tagging.

dictionary lookup to find non-word mistakes, and
for real-word errors, we use the Stupid Backoff
method for each trigram within a sentence bound-
ary. For error correction, the algorithm uses the
Edit Distance of two to create a confusion set.
Where the word of the set has a Stupid Backoff
score of over zero, it adds the word to the candi-
date list. The algorithm ranks the list of candidates
using the score of relative frequency, which is the
output of the Stupid Backoff smoothing method.
The error detection has an F1 score of 43.33% and
an 88.54% accuracy, and the correct suggestion is
in the top three positions in 85% of cases.

The aim of the language model creation is that it
can be used in official settings.

For future work, we are interested in expanding the
language model and with it, the spell-checking en-
vironment to cover other Kurdish dialects and in-

clude different scripts.
The spell checker could be improved further as
usually these kinds of applications could, and we
would like to work on expanding the language
model further by adding more (official and edu-
cational) documents.
We hope the researchers in the field to use the lan-
guage model to enrich the data and tools for the
Kurdish language.

7. Acknowledgements
Wewould like to apprecia the assistance of Hakary
Basic School’s staff in allowing us to use their ma-
terials and test their students.

8. Bibliographical References
Abdulrahman, R. O. and Hassani, H. (2020). Us-
ing Punkt for Sentence Segmentation in non-

198

Latin Scripts: Experiments on Kurdish (Sorani)
Texts . arXiv preprint arXiv:2004.14134.

Ahmadi, S. (2020). KLPT – Kurdish Language
Processing Toolkit. In Proceedings of Second
Workshop for NLP Open Source Software (NLP-
OSS), pages 72–84.

Aso Mahmudi, A. R. G. (2022). Aso Spell
Checker.

Bard, G. V. (2006). Spelling-Error Toler-
ant, Order-Independent Pass-Phrases via the
Damerau-Levenshtein String-Edit Distance
Metric. Cryptology ePrint Archive.

Brants, T., Popat, A. C., Xu, P., Och, F. J., and
Dean, J. (2007). Large Language Models in
Machine Translation.

Chen, S. F. and Goodman, J. (1999). An Empir-
ical Study of Smoothing Techniques for Lan-
guage Modeling. Computer Speech & Lan-
guage, 13(4):359–394.

Damerau, F. J. (1964). A Technique for Com-
puter Detection and Correction of Spelling Er-
rors. Communications of the ACM, 7(3):171–
176.

Gillespie, C. and Leader, L. (2005). We can...can
they? Touch Typing for First Graders. Ph.D.
thesis, Citeseer.

Hamarashid, H. K., Saeed, S. A., and Rashid,
T. A. (2021). Next word prediction based on
the N-gram model for Kurdish Sorani and Kur-
manji. Neural Computing and Applications,
33(9):4547–4566.

Hassani, H. and Medjedovic, D. (2016). Au-
tomatic Kurdish Dialects Identification.
Computer Science & Information Technology,
6(2):61–78.

Hassani, H. (2018). BLARK for multi-dialect lan-
guages: towards the Kurdish BLARK. Lan-
guage Resources and Evaluation, 52(2):625–
644.

Hawezi, R. S., Azeez, M. Y., and Qadir, A. A.
(2019). Spell checking algorithm for agglutina-
tive languages “Central Kurdish as an example”.
In 2019 International Engineering Conference
(IEC), pages 142–146. IEEE.

Horne, J., Ferrier, J., Singleton, C., and Read, C.
(2011). Computerised assessment of handwrit-
ing and typing speed. Educational and Child
Psychology, 28(2):52.

Kiss, T. and Strunk, J. (2006). Unsupervised Mul-
tilingual Sentence BoundaryDetection. Compu-
tational linguistics, 32(4):485–525.

Kukich, K. (1992). Techniques for Automatically
Correcting Words in Text. Acm Computing Sur-
veys (CSUR), 24(4):377–439.

Levenshtein, V. I. et al. (1966). Binary codes ca-
pable of correcting deletions, insertions, and re-
versals. In Soviet physics doklady, volume 10,
pages 707–710. Soviet Union.

Salavati, S. and Ahmadi, S. (2018). Building a
lemmatizer and a spell-checker for sorani kur-
dish. arXiv preprint arXiv:1809.10763.

Samanta, P. and Chaudhuri, B. B. (2013). A sim-
ple real-word error detection and correction us-
ing local word bigram and trigram. In Proceed-
ings of the 25th conference on computational
linguistics and speech processing (ROCLING
2013), pages 211–220.

Veisi, H., MohammadAmini, M., and Hosseini,
H. (2020). Toward Kurdish language process-
ing: Experiments in collecting and processing
the AsoSoft text corpus. Digital Scholarship in
the Humanities, 35(1):176–193.

Verberne, S. (2002). Context-sensitive
spellchecking based on word trigram probabili-
ties. Unpublished master’s thesis, University of
Nijmegen.

Walther, G. and Sagot, B. (2010). Developing a
Large-Scale Lexicon for a Less-Resourced Lan-
guage: General Methodology and Preliminary
Experiments on Sorani Kurdish. In Proceedings
of the 7th SaLTMiL Workshop on Creation and
use of basic lexical resources for less-resourced
languages (LREC 2010 Workshop).

	 Introduction
	Related Work
	 Methodology
	Developing the Language Model
	Ngram
	Smoothing

	Testing Environment - A Spell Checking Application
	Algorithm

	Testing Methods

	The Test Environment - RastNus Application
	User Interface
	Algorithm
	RastNus Testing Procedure

	Results
	Conclusion
	Acknowledgements
	Bibliographical References

