
Proceedings of the 4th Workshop on Computational Typology and Multilingual NLP (SIGTYP 2022), pages 70 - 79
July 14, 2022 ©2022 Association for Computational Linguistics

Mockingbird at the SIGTYP 2022 Shared Task: Two Types of Models for
the Prediction of Cognate Reflexes

Christo Kirov
Google Research, US
ckirov@google.com

Richard Sproat
Google Research, Japan

rws@google.com

Alexander Gutkin
Google Research, UK
agutkin@google.com

Abstract

The SIGTYP 2022 shared task concerns the
problem of word reflex generation in a tar-
get language, given cognate words from a
subset of related languages. We present two
systems to tackle this problem, covering two
very different modeling approaches. The
first model extends transformer-based encoder-
decoder sequence-to-sequence modeling, by
encoding all available input cognates in paral-
lel, and having the decoder attend to the result-
ing joint representation during inference. The
second approach takes inspiration from the
field of image restoration, where models are
tasked with recovering pixels in an image that
have been masked out. For reflex generation,
the missing reflexes are treated as “masked pix-
els” in an “image” which is a representation of
an entire cognate set across a language fam-
ily. As in the image restoration case, cognate
restoration is performed with a convolutional
network.

1 Introduction

The cognate reflex prediction task can be under-
stood by considering a simple example. English
dream is droom in Dutch and Traum in German.
English stream is stroom in Dutch and Strom in
German (so we can see that there is a bit of vari-
ation in how the cognate forms are realized). But
now consider English tree, which is boom in Dutch
and Baum in German. If there were a cognate in
English, what would it look like? On analogy in
particular with the dream example, one would ex-
pect the form to be beam—which is in fact cog-
nate with the Dutch and German forms, though the
meaning has shifted.

This study describes the two particular ap-
proaches to cognate reflex prediction code-named
Mockingbird.1 Both approaches use popular ma-
1The open-source implementation of both models: https:
//github.com/google-research/google-research/
tree/master/cognate_inpaint_neighbors

chine learning techniques adapted to the cognate
reflex prediction task.

The transformer-based approach popularized
by Vaswani et al. (2017) is a particular instance
of sequence-to-sequence (Seq2Seq) recurrent neu-
ral bipartite encoder-decoder architecture (Cho
et al., 2014; Sutskever et al., 2014) equipped with
multi-head attention mechanism. It has the advan-
tages inherent to Seq2Seq models. In particular
it can represent arbitrarily long-distance contex-
tual dependencies both within and across words.
This rich representational capacity comes at the
cost of high model complexity and need for com-
putational resources (Strubell et al., 2019; Liu
et al., 2019; Brown et al., 2020). Our particu-
lar transformer-based model was originally devel-
oped for place name pronunciation (Jones et al.,
2022), and models cognate sets as a neighborhood
where we are trying to predict the pronunciation of
a target feature given its neighbors.

The image inpainting model (Liu et al., 2018) re-
lies on a simple convolutional neural network, or
CNN (O’Shea and Nash, 2015), which trains fairly
quickly even on CPU. It treats cognate sets as
holistic objects (“images”), with individual convo-
lution filters representing partial joint alignments
between all languages at once. Unlike transform-
ers or RNN-based models, however, convolutional
models with finite kernel sizes cannot capture arbi-
trary amount of context. As an extreme example,
it would be difficult for a convolutional model to
learn that the first character in one language cog-
nate should always be aligned with the last char-
acter in another language’s cognate, especially if
long words are possible.

2 Related Work

The establishment of cognate correspondences
and the prediction of cognate forms has a long and
venerable history that dates at least to the original
work of William Jones that established the Indo-

70

https://github.com/google-research/google-research/tree/master/cognate_inpaint_neighbors
https://github.com/google-research/google-research/tree/master/cognate_inpaint_neighbors
https://github.com/google-research/google-research/tree/master/cognate_inpaint_neighbors


European language family (Jones, 1786), and later
the work of the Neo-Grammarians (Paul, 1880).

Prior computational work related to this prob-
lem includes early work by Covington (1996)
and Kondrak (2000) on methods for aligning cog-
nate pairs at the segment level, and more re-
cently work specifically on the prediction of cog-
nate forms (List, 2019a; Meloni et al., 2021).
The work of Meloni et al. (2021) in particular
is most similar to the current proposed methods
in that they use a neural character-level encoder-
decoder sequence-to-sequence model, and demon-
strate that this shows good performance on the
task of proto-form reconstruction for a fairly large
dataset of Romance languages.

3 Neighbors Transformer Model

3.1 General architecture

The “neighbors” transformer model was originally
developed for detecting inconsistencies in the read-
ings of Japanese place names in an industrial-scale
maps database (Jones et al., 2022). Japanese place
names are notoriously difficult to read even for
native speakers, since two different place names
that happen to be written with the same kanji se-
quence may have quite different pronunciations. A
famous example is日本橋, which in Tokyo is read
as Nihonbashi, but where the identically written
name in Osaka is read as Nipponbashi. While the
place names themselves are unlikely to be wrong
in the data, there are many named features in the
data set—buildings, establishments, and so forth—
which are named after the area—e.g. an apartment
building named Mezon (= Maison) Nipponbashi,
where the reading may be in error. The neighbors
model is designed to detect such errors by consid-
ering the reading of features in the area and de-
tecting if there is an apparent inconsistency. In
training the model is provided with the target fea-
ture’s written form and its reading (in hiragana),
and the written forms and readings of features that
are neighbors within a small geographic distance
from the target feature. Since inconsistencies in
such neighborhoods involve the minority of cases,
the model learns that the same spelled name within
a neighborhood usually agrees in terms of the read-
ing. The general architecture of the model as ap-
plied to Japanese place names is shown in Fig-
ure 1.

The cognate reconstruction problem is similar
in spirit to the place name problem just described.

In this case the “neighbor pronunciations” are re-
placed with the cognates in the set, with the “main
feature” being the cognate form to be predicted.
The spellings on the other hand are replaced by a
string representing the name of the language as-
sociated with the target and each of the neighbor-
ing cognates. This could be simply the language
name itself, but it is better to encode the name as
a unique identifier (e.g. a short sequence of arbi-
trary symbols, such as emoji), so that the model
does not learn spurious associations between the
name of the language and cognate forms.2

The model used here slightly differs from the
version used for geographic names in that the
language identifiers and cognate forms are inter-
leaved and then concatenated together into a sin-
gle one dimensional tensor, interleaved with ids
for each cognate in the set. This allows the model
to better attend to the individual cognate and to
copy the cognate as needed.

For the transformer model, the provided data
sets are far too small for the model to learn any-
thing. We therefore augmented the data in two
ways. First, since one cannot assume that in the
test set one will find cognate forms for all neighbor
languages for a given target language, we also aug-
mented the data by randomly removing neighbors,
thus making new neighborhoods for the same cog-
nate set, which lacked one or more of the neigh-
bor cognate examples. In our experiments we gen-
erated 500 such random subsets for each original
neighborhood, of which about half were randomly
copies of the original neighborhood.

Second, in addition to the actual provided cog-
nate groups, we synthesized similar cognates for
each of the “neighbor” languages and the target.
Two methods were used, the first being a sim-
ple pair unigram model and the second a bigram
model that we will briefly mention in Section 5.
For the unigram model, a Levenshtein-distance
alignment was computed between each pair of cog-
nates for all language pairs, and correspondences
between IPA symbols were counted. These uni-
gram counts were then used to randomly generate
new pairs of “cognates”. We generated ten random
neighborhoods of this kind for each real or sub-
set neighborhood as described above. For exam-
ple, for the English set in the LISTSAMPLESIZE

2For example, in the Northern Pakistan set, there are num-
ber of variants of Balti in the set, and we wish to avoid the
model learning to depend on the string Balti in making its
predictions. See Table 4 in Appendix A for an example.

71



Embedding

Encoder

日本橋

Embedding

Encoder

メゾン日本橋

めぞんにっぽんばし

日本橋東 にっぽんばしひがし

Embedding

Encoder

にっぽんばし

Embedding

Encoder

Embedding

めぞんにっぽんばし

Decoder

Neighbor names Neighbor prons

Feature name

Feature pron

Embedding

Encoder

日本橋西

Embedding

Encoder Encoder

Embedding

にっぽんばしにし

Concatenate

Dot Product Attention

Average Average LatLong Embedding

Figure 1: The transformer neighbors model, showing how the main feature and neighbor features are encoded.
Colors for the embeddings reflect the shared embedding structure for the Transformer model. Example shown is
メゾン日本橋 mezon nipponbashi, and some neighboring features 日本橋 nipponbashi, 日本橋西 nipponbashi
nishi and日本橋東 nipponbashi higashi.

data set, the original approximately 300 neighbor-
hoods was expanded into about 4.2 million neigh-
borhoods.

3.2 Model Details
The neighbors model is implemented using
Lingvo (Shen et al., 2019), which is a frame-
work for building neural networks in Tensor-
Flow (Abadi et al., 2016), particularly sequence
models. The core architecture of our transformer
model derives from the Lingvo implementation of
the neural machine translation system by Chen
et al. (2018).3

We use the compact transformer configuration
because the amount of data available for this task
even after data augmentation is small. In our con-
figuration, the encoders and decoders in Figure 1
use multi-head attention mechanism with two at-
tention heads (Vaswani et al., 2017). There are
three transformer layers, and the dimension of the
feed-forward layer as well as the embedding di-
mension are set to 32. Dropout is applied during
training with probability of 0.1 to residual layers,
attention weights, and each feed-forward layer of
the Transformer. Finally, we employ label smooth-
ing to the decoder outputs, where the probability
for correct class labels is reduced by the uncer-
tainty factor ϵ = 0.2 and for all other cases in-
3https://github.com/tensorflow/lingvo/tree/
master/lingvo/tasks/mt

creased by ϵ/K, where K is the size of the vocab-
ulary (Szegedy et al., 2016).

For training, we optimize sparse categorical
cross-entropy loss using Adam procedure with ini-
tial learning rate α = 0.001 and the parameters
β1 = 0.9, β2 = 0.98 and ϵ = 10−9 (Kingma
and Ba, 2015). We optimize the word error error
(WER) between the sequences of ground truth and
the predicted phonemes. The batch size is set to
32 examples. No development set was set aside
from the training data because we did not perform
any parameter tuning. The latest and not neces-
sarily best (according to the test set) checkpoints
were chosen after the training ran for a specified
number of steps. We employ beam search with the
beam width of 8 during inference.

3.3 Open-Source Implementation Notes

The code publicly released for the shared task is
mostly identical to our internal version used to pro-
duce the shared task results, but with some notable
differences. First, in the open-source verson we
do not encode the language names using unique
emojis. Second, we used the development ver-
sions of TensorFlow and Lingvo integrated with
XManager,4 a platform for managing distributed
machine learning experiments, for our internal ex-
periments. This implies that our main results may

4https://github.com/deepmind/xmanager

72

https://github.com/tensorflow/lingvo/tree/master/lingvo/tasks/mt
https://github.com/tensorflow/lingvo/tree/master/lingvo/tasks/mt
https://github.com/deepmind/xmanager


p1 p2 p3 p4 p5 . . .

l1 <S> /s/ /ɨ/ /n/ /d/ /e/ </S>

l2

l3 <S> /s/ /ɨ/ /n/ /e/ /ʔ/ </S>

lt

lk <S> /s/ /i/ /rː/ /e/ </S>

Pronunciation→
←

L
an

gu
ag

e

p1 p2 p3 p4 p5 . . .

l1 <S> /s/ /ɨ/ /n/ /d/ /e/ </S>

l2 <S> /s/ /ɨ/ /n/ /ə/ </S>

l3 <S> /s/ /ɨ/ /n/ /e/ /ʔ/ </S>

lt <S> /s/ /ɨ/ /n:/ /e/ /ʔ/ </S>

lk <S> /s/ /i/ /rː/ /e/ </S>

Pronunciation→

←
L

an
gu

ag
e

Figure 2: (Top) Cognate set input represented as an
“image”. The individual pixel coordinates (x, y) cor-
respond to (l, p), where li is a language and pj is a
phoneme. The pronunciations in this example are taken
from FELEKESEMITIC cognate set for cognate ID 638.
Short cognates are marked with padding. One or more
cognates may be masked out entirely. (Bottom) Equiva-
lent output image. Missing cognate “pixels” have been
restored.

not be exactly reproducible with the open-source
system, something that we discuss further in Sec-
tion 5.

4 Cognate Reconstruction as Image
Inpainting

The neighborhood model presented above casts
the reflex generation task as a straightforward ex-
tension of Seq2Seq modeling. Here, we take a dif-
ferent tack, noting that if we treat the entire set
of cognates as a unit (an “image”), then the task
of generating unknown cognates is analogous to
recovering missing/masked/corrupted parts of that
image. In the field of image reconstruction, this
is sometimes referred to as image inpainting (Qin
et al., 2021; Jam et al., 2021; Peng et al., 2021).
One of the popular state-of-the art methods em-
ploys convolutional neural networks (CNNs) to re-
cover missing pixel values. In this work we ap-
ply one such architecture by Liu et al. (2018) from
NVIDIA to cognate generation. As we see below,
cognate set “images” contain relatively few “pix-
els”, so we can get away with small networks with
a single pair or convolution and deconvolution lay-
ers that are fast to train and evaluate, even on CPU.

p1
p2

p3
p4

p5...

l1<S>/s//ɨ//n//d//e/</S>

l2

l3<S>/s//ɨ//n//e//ʔ/</S>

lt

lk<S>/s//i//rː//e/</S>

Pronunciation→

←

L

a

n

g

u

a

g

e

embedding

5 7

conv

dropout
non-
linearity

5 7

deconv

p1
p2

p3
p4

p5...

l1<S>/s//ɨ//n//d//e/</S>

l2<S>/s//ɨ//n//ə/</S>

l3<S>/s//ɨ//n//e//ʔ/</S>

lt<S>/s//ɨ//n://e//ʔ/</S>

lk<S>/s//i//rː//e/</S>

Pronunciation→

←

L

a

n

g

u

a

g

e

Figure 3: Simplified inpainting CNN architecture.

4.1 Model Details

The model’s input and output structure are shown
in Figure 2. Input cognates are book-ended with
start and end symbols, padded to a fixed length (20
in all our experiments), and stacked to form a grid.
Crucially some cognates may be masked out when
forming an input image, resulting in rows of noth-
ing but padding. Each symbol is embedded, result-
ing in a data structure with n embedding dimen-
sions per symbol, corresponding to the “channels”
in an image5. Optionally, this image may be scaled
by a constant factor equivalent to the total number
of languages divided by the number of languages
present. This ensures constant total “brightness”
no matter how many cognates are masked out.

The image is then processed by a 2D convolu-
tion layer, with kernel height fixed to the num-
ber of languages in the cognate set, and kernel
width determined by a hyperparameter. Convolu-
tion is followed by dropout and a nonlinearity, af-
ter which a deconvolution layer recovers logits at
each pixel position for the available character set.
The logits, in turn, can be used to predict the most
likely character at each position, or to calculate a
sparse categorical cross-entropy loss during train-
ing, given a target symbol. The simplified diagram
of the model is shown in Figure 3.

The convolution operation for a given kernel
with weights W is shown below, and mirrors that
used in NVIDIA’s paper (Liu et al., 2018). Here
X is the set of input pixels, which are multiplied
pointwise with a binary mask M , where missing
cognate positions are set to 0. The result is scaled

5If the input was a standard RGB image, these would be val-
ues for red, green, and blue color intensity. Here, embedding
dimensions don’t necessarily correspond to any real-world
scale.

73



by a factor equivalent to the sum of what the mask
would look like if all languages were present (all
values set to 1) divided by the sum of actual binary
mask:

x′ =

{
W T (X ⊙M) sum(1)

sum(M) , if sum(M) ≥ 1

0, otherwise

4.2 Training Regime
As one goal of the image inpainting approach was
to keep it as simple as possible, no synthetic data
augmentation was used during training — just the
base training data made available for the SIGTYP
shared task.

For each language family, the available train-
ing data was further broken down by a random
80%/20% split into a base cognate training set, and
a development set used for tuning. For the develop-
ment set, each group of cognates was broken down
into multiple dev samples by setting each available
cognate as the reconstruction target in turn (replac-
ing it with ‘?’). As the overall datasets available
are small, each dev set held out in this way will
only cover a few cognate groups, introducing sig-
nificant model bias when used for parameter tun-
ing. To counteract this, we generate ten different
train/dev splits at random, which were used for en-
sembling as described below.

Given a train/dev split, actual training pro-
ceeded as follows. For S training steps per epoch,
a random cognate group was drawn from the avail-
able training set, and a random subset of the cog-
nates present was masked out (at least one cognate
always remained present so the model would have
some information to work with). This masked
sample was fed as an image to the inpainting
model, whose task was to recover the entire cog-
nate group. For backpropagation, cross-entropy
loss was calculated only for rows of the image
where a cognate was present in the original cog-
nate group — all other positions contributed zero
loss since there was no target information avail-
able.

For each training step, parameter updates were
performed using the Adam procedure (Kingma
and Ba, 2015) with default TensorFlow parame-
ters. Training was run for a total of 150 epochs
consisting of 500 steps each. After each epoch, the
exact-match word error rate (WER) was calculated
for each sample in the dev set for each language,
and a macro average across of the per-language
WER values was taken. Checkpoints were saved

Name Type Alias

Mockingbird-I1 Inpainting I1
Mockingbird-N1-A Neighbors N1-A
Mockingbird-N1-B Neighbors N1-B
Mockingbird-N1-C Neighbors N1-C
Mockingbird-N2 Neighbors N2

Table 1: Five system configurations submitted to the
shared task. The third column contains a shorthand of
the full configuration name that we use in this paper.

only in cases where macro-WER performance on
the dev set improved.

For each train/dev split, a separate model
was prepared with its own set of tuned hyper-
parameters. Hyperparameter tuning was done
using Google’s Vizier smart grid search proce-
dure (Golovin et al., 2017),6 which optimized
macro-WER on the dev set for 100 total Vizier tri-
als, with at most 10 trials running in parallel at any
one time. The list of tunable model hyperparame-
ters is provided in Appendix B.

4.3 Open-Source Implementation Notes

The core CNN model implementation in Ten-
sorflow (Abadi et al., 2016) has been released
as is and can be used for training and infer-
ence. We are not releasing the scaffolding re-
quired for integration with Vizier hyperparame-
ter tuning because our internal implementation
is quite different from the publicly available ver-
sion. However, the tuned set of hyperparame-
ters (residing in hparams.json) for each model
have been released together with the results.
These hyperparameters can be used to train mod-
els that should perform similarly to those de-
scribed here.7 It is also possible to implement
an alternative smart grid search procedure using
Keras Tuner (Shawki et al., 2021)8 or any other
framework for hyper-parameter optimization and
neural architecture search that supports Tensor-
flow (Menghani, 2021).

5 Results and Discussion

The SIGTYP 2022 Shared Task was evaluated
over 20 language-family specific datasets taken
from the LexiBank repository (List et al., 2021).
6https://cloud.google.com/ai-platform/optimizer/
docs/overview

7Trained model checkpoints are also available upon request
— they were not included in the results package due to file
size considerations.

8https://keras.io/keras_tuner/

74

https://cloud.google.com/ai-platform/optimizer/docs/overview
https://cloud.google.com/ai-platform/optimizer/docs/overview
https://keras.io/keras_tuner/


Each dataset consisted of a series of cognate
groups presented in CLDF (Forkel et al., 2018) for-
mat, with each cognate form stored as an IPA pho-
netic transcription. 10 datasets were provided for
system development, and 10 “surprise” language
families were held aside for final evaluation. Fur-
thermore, each dataset was provided in five spar-
sity conditions (dropping 10%, 20%, 30%, 40%,
and 50% of the available cognate forms). For
brevity, we only discuss the 10% (“dense”) and
50% (“sparse”) conditions in this paper.9

We submitted five system configurations,
shown in Table 1, to the shared task.10 The
first configuration i1 is the inpainting CNN
approach described in Section 4, while the rest
of configurations are the Neighbors Transformer
models introduced in Section 3.

There are four Neighbors Transformer configu-
rations. The first three configurations (N1-A, N1-B
and N1-C) correspond to the models built using
our internal pipeline. The only difference between
these configurations is the number of training
steps: 25,000 (N1-A), 35,000 (N1-B), and 100,000
(N1-C). For these configurations we mapped the
language names to unique emojis during training
and inference.

The final Transformer configuration N2 corre-
sponds to the model trained using the released
open-source pipeline. The training regime has
some notable differences with the other Trans-
former configurations. First, as noted above, no
language name-to-emoji mapping was performed.
Second, when generating each random example
{(pt, lt), (pn, ln)} consisting of target t and neigh-
bor n pronunciation/language pairs, the neigh-
bor pronunciation pn is randomly generated us-
ing a first-order Markov chain trained from all
the bigrams constructed from the pronunciations
available for language ln, as opposed to uni-
grams used by the N1 systems. Also, the target
pronunciation pt is generated from pn by sam-
pling from the distribution obtained using sound
class-based pairwise alignment algorithm imple-
mentation from (List and Forkel, 2021) described
in (List et al., 2018). Finally, the stopping criterion
for the training process was rather ad-hoc: train-
ing for each language group was stopped after eye-
balling the training set loss. Unlike the rest of the

9Please see https://github.com/sigtyp/ST2022/tree/
main/results for all the available results.

10https://github.com/sigtyp/ST2022/tree/main/
systems

submitted systems, the N2 configuration was only
trained in the 10% (“dense”) sparsity condition.

For the inpainting model, results were produced
via a majority ensemble. For each language
family, ten models were trained using the proce-
dure described above corresponding to ten random
80%/20% train/dev splits of the available training
data. Predictions for each test sample were ob-
tained from each of the models, and the most com-
mon prediction across the set was retained.

Model results were evaluated according to four
metrics selected by the shared task organizers. The
first two are raw and normalized (divided by the
number of characters in the target form) Leven-
shtein edit distances (Levenshtein, 1966) between
the predicted and expected test cognate forms. For
these metrics, lower is better as it indicates a closer
match. The third metric, B-Cubed F-Scores, is
designed to avoid overly penalizing systematic er-
rors a system might make, discounting errors that
occur across multiple trials (List, 2019b). The
metric derives from the B-Cubed measure (Amigó
et al., 2009) frequently used in historical linguis-
tics to evaluate automatic cognate detection tech-
niques (Hauer and Kondrak, 2011). For this met-
ric, higher is better. Finally, standard BLEU scores
(Papineni et al., 2002) as used when evaluating ma-
chine translation (again, higher is better) were in-
cluded.

Tables 2 and 3 summarize the evaluation in the
dense and sparse data conditions. Overall, both
the Inpainting and Neighbor N1 models match or
improve upon the baseline method provided by
the Shared Task organizers. The Inpainting model
shows an overall advantage – its simplicity might
mitigate against overfitting in such small datasets,
but this isn’t universal across all language fami-
lies, and wanes as the task becomes more diffi-
cult moving from the dense to the sparse condi-
tion. In particular, the Neighbor models are very
effective in the FELEKESEMITIC language family
in the sparse data condition, while the Inpainting
model behaves at baseline level. This could be due
to the unique morphology of Semitic languages,
and the ability of the N1 models to use contextual
cues that the simpler model architectures aren’t
able to represent, but which compensate for data
sparsity to an extent. The condition may also ben-
efit more than most from the data augmentation
strategy used in training the Neighbor models.

In terms of overall results on the “surprise”

75

https://github.com/sigtyp/ST2022/tree/main/results
https://github.com/sigtyp/ST2022/tree/main/results
https://github.com/sigtyp/ST2022/tree/main/systems
https://github.com/sigtyp/ST2022/tree/main/systems


BL I1 N1-A N1-B N1-C N2

dev total 1.34 0.28 0.72 0.61 1.05 0.23 0.74 0.68 1.25 0.27 0.72 0.63 1.31 0.28 0.70 0.61 1.29 0.28 0.69 0.62 1.37 0.29 0.68 0.60

davletshinaztecan 2.07 0.33 0.64 0.52 1.87 0.30 0.66 0.56 2.04 0.33 0.63 0.53 2.20 0.36 0.62 0.49 1.94 0.32 0.64 0.56 2.28 0.38 0.59 0.45
felekesemitic 1.46 0.27 0.69 0.59 1.29 0.24 0.72 0.65 1.68 0.31 0.64 0.55 1.76 0.33 0.63 0.52 1.92 0.36 0.60 0.48 1.88 0.36 0.59 0.49
hantganbangime 1.31 0.33 0.62 0.54 1.12 0.29 0.64 0.58 1.28 0.33 0.61 0.54 1.32 0.34 0.60 0.53 1.47 0.37 0.56 0.49 1.57 0.38 0.54 0.47
hattorijaponic 0.91 0.19 0.80 0.73 0.71 0.16 0.83 0.78 0.94 0.20 0.80 0.72 0.92 0.20 0.78 0.74 0.88 0.19 0.79 0.75 1.12 0.21 0.75 0.72
listsamplesize 3.34 0.62 0.41 0.22 2.35 0.46 0.50 0.40 2.80 0.54 0.50 0.33 2.79 0.55 0.49 0.32 2.54 0.52 0.49 0.34 2.59 0.50 0.48 0.37
backstromnorthernpakistan 0.89 0.18 0.86 0.72 0.60 0.12 0.87 0.80 0.83 0.17 0.82 0.72 0.83 0.18 0.83 0.72 0.81 0.17 0.82 0.73 0.79 0.16 0.83 0.76
mannburmish 1.98 0.52 0.51 0.32 1.55 0.42 0.57 0.43 1.74 0.47 0.53 0.39 1.89 0.50 0.52 0.36 1.93 0.50 0.52 0.35 1.95 0.52 0.51 0.31
castrosui 0.16 0.04 0.95 0.94 0.14 0.03 0.95 0.95 0.16 0.04 0.95 0.94 0.15 0.03 0.95 0.95 0.20 0.05 0.93 0.92 0.29 0.07 0.91 0.89
allenbai 0.72 0.23 0.77 0.68 0.55 0.18 0.80 0.75 0.58 0.19 0.79 0.74 0.64 0.21 0.78 0.71 0.70 0.23 0.73 0.69 0.67 0.22 0.77 0.70
abrahammonpa 0.55 0.12 0.90 0.81 0.34 0.06 0.91 0.90 0.47 0.09 0.87 0.86 0.55 0.11 0.84 0.83 0.51 0.09 0.86 0.85 0.53 0.10 0.86 0.84

surprise total 1.21 0.31 0.72 0.57 0.92 0.24 0.77 0.66 1.02 0.26 0.76 0.65 1.04 0.26 0.76 0.64 1.13 0.29 0.73 0.61 1.21 0.31 0.71 0.57

beidazihui 1.10 0.30 0.73 0.58 0.50 0.14 0.84 0.80 0.48 0.13 0.86 0.81 0.40 0.11 0.87 0.84 0.45 0.12 0.86 0.83 1.13 0.29 0.70 0.60
hillburmish 1.18 0.32 0.66 0.57 1.06 0.29 0.68 0.61 1.13 0.30 0.66 0.60 1.13 0.30 0.66 0.60 1.37 0.37 0.62 0.53 1.50 0.39 0.59 0.48
bodtkhobwa 0.49 0.20 0.76 0.72 0.39 0.16 0.80 0.78 0.25 0.11 0.88 0.85 0.26 0.11 0.87 0.85 0.42 0.18 0.77 0.77 0.68 0.28 0.67 0.62
bantubvd 1.12 0.26 0.79 0.62 0.89 0.22 0.80 0.68 1.01 0.25 0.82 0.63 1.03 0.26 0.82 0.62 0.98 0.25 0.81 0.63 1.10 0.27 0.77 0.60
bremerberta 1.72 0.32 0.71 0.51 1.16 0.21 0.77 0.66 1.35 0.25 0.74 0.61 1.35 0.25 0.74 0.61 1.47 0.27 0.71 0.58 1.26 0.23 0.75 0.66
deepadungpalaung 1.07 0.42 0.76 0.44 0.55 0.22 0.89 0.70 0.73 0.27 0.85 0.63 0.88 0.32 0.82 0.57 0.92 0.34 0.80 0.54 0.86 0.31 0.83 0.58
luangthongkumkaren 0.38 0.10 0.91 0.84 0.36 0.09 0.90 0.86 0.26 0.07 0.92 0.89 0.29 0.08 0.91 0.88 0.33 0.09 0.89 0.87 0.35 0.10 0.90 0.85
birchallchapacuran 1.63 0.31 0.65 0.54 1.57 0.30 0.65 0.56 2.04 0.37 0.57 0.47 2.01 0.36 0.58 0.48 2.01 0.37 0.58 0.48 2.01 0.39 0.57 0.45
wangbai 0.62 0.18 0.80 0.73 0.49 0.14 0.83 0.79 0.48 0.14 0.83 0.80 0.53 0.16 0.81 0.77 0.61 0.18 0.78 0.74 0.62 0.18 0.80 0.74
kesslersignificance 2.77 0.70 0.47 0.17 2.23 0.67 0.51 0.20 2.49 0.67 0.49 0.18 2.55 0.68 0.50 0.18 2.69 0.69 0.47 0.17 2.60 0.71 0.47 0.16

Table 2: Results by model for the 0.10 data condition (BL=Baseline, I1=Inpainting, N*=Neighborhood model),
averaged by language group. The four values per entry cover the four metrics used in the shared task (black=edit
distance, olive=normalized edit distance, red=B-Cubed F-Score, blue=BLEU).

BL I1 N1-A N1-B N1-C

dev total 1.75 0.37 0.60 0.50 1.40 0.31 0.63 0.58 1.60 0.34 0.59 0.54 1.61 0.34 0.58 0.53 1.63 0.35 0.57 0.52

davletshinaztecan 2.09 0.36 0.59 0.48 1.69 0.30 0.63 0.56 2.29 0.38 0.54 0.46 2.44 0.40 0.51 0.44 2.21 0.37 0.54 0.48
felekesemitic 2.90 0.53 0.45 0.28 2.85 0.53 0.41 0.31 2.33 0.41 0.49 0.42 2.27 0.41 0.49 0.42 2.19 0.40 0.50 0.44
hantganbangime 1.98 0.48 0.44 0.36 1.38 0.36 0.53 0.50 1.65 0.42 0.48 0.43 1.65 0.42 0.47 0.43 1.86 0.47 0.44 0.37
hattorijaponic 1.50 0.30 0.65 0.58 1.33 0.27 0.69 0.63 1.66 0.32 0.60 0.57 1.57 0.31 0.61 0.59 1.50 0.30 0.63 0.60
listsamplesize 3.68 0.69 0.37 0.17 2.43 0.51 0.42 0.35 2.72 0.53 0.41 0.31 2.71 0.54 0.41 0.30 2.81 0.54 0.40 0.30
backstromnorthernpakistan 0.97 0.22 0.77 0.66 0.73 0.17 0.79 0.74 1.00 0.21 0.72 0.67 1.03 0.22 0.71 0.65 0.93 0.21 0.73 0.68
mannburmish 2.33 0.60 0.36 0.25 2.02 0.55 0.39 0.30 2.41 0.62 0.34 0.24 2.32 0.62 0.34 0.25 2.38 0.62 0.33 0.25
castrosui 0.39 0.10 0.88 0.84 0.29 0.07 0.90 0.88 0.32 0.08 0.89 0.87 0.34 0.08 0.88 0.87 0.41 0.10 0.85 0.84
allenbai 0.76 0.25 0.71 0.66 0.64 0.21 0.75 0.71 0.78 0.25 0.68 0.65 0.84 0.27 0.66 0.64 0.99 0.32 0.59 0.57
abrahammonpa 0.94 0.18 0.76 0.72 0.66 0.12 0.80 0.80 0.87 0.16 0.74 0.74 0.95 0.18 0.72 0.72 1.03 0.20 0.70 0.70

surprise total 1.89 0.44 0.56 0.43 1.42 0.35 0.61 0.53 1.55 0.38 0.60 0.49 1.51 0.37 0.59 0.50 1.58 0.40 0.56 0.47

bremerberta 2.49 0.46 0.53 0.35 1.58 0.30 0.62 0.56 1.99 0.38 0.56 0.46 1.85 0.35 0.58 0.49 2.05 0.39 0.55 0.44
wangbai 1.02 0.29 0.66 0.58 0.97 0.28 0.66 0.60 1.05 0.31 0.63 0.58 1.06 0.31 0.62 0.57 1.15 0.34 0.59 0.54
luangthongkumkaren 0.66 0.17 0.81 0.73 0.55 0.15 0.80 0.78 0.56 0.15 0.80 0.77 0.62 0.17 0.78 0.75 0.77 0.21 0.73 0.69
hillburmish 2.10 0.54 0.47 0.34 1.64 0.44 0.51 0.45 2.66 0.68 0.44 0.17 1.87 0.49 0.48 0.38 1.80 0.47 0.46 0.39
birchallchapacuran 3.17 0.47 0.48 0.32 2.81 0.47 0.44 0.35 2.80 0.47 0.44 0.34 2.80 0.47 0.45 0.33 2.83 0.48 0.44 0.33
bantubvd 1.99 0.45 0.56 0.39 1.53 0.36 0.61 0.50 1.29 0.31 0.69 0.55 1.43 0.34 0.65 0.51 1.45 0.35 0.64 0.50
kesslersignificance 4.06 0.89 0.29 0.04 2.85 0.73 0.30 0.15 2.77 0.67 0.34 0.17 2.81 0.68 0.34 0.16 2.95 0.71 0.33 0.14
bodtkhobwa 0.63 0.27 0.66 0.65 0.53 0.22 0.70 0.71 0.56 0.23 0.68 0.69 0.66 0.27 0.63 0.64 0.77 0.32 0.57 0.59
beidazihui 1.15 0.32 0.67 0.56 0.48 0.13 0.80 0.80 0.45 0.13 0.82 0.82 0.48 0.13 0.80 0.81 0.57 0.16 0.77 0.77
deepadungpalaung 1.63 0.58 0.50 0.30 1.23 0.44 0.60 0.43 1.39 0.48 0.57 0.39 1.49 0.52 0.54 0.36 1.47 0.52 0.53 0.35

Table 3: Results by model for the 0.50 data condition (BL=Baseline, I1=Inpainting, N*=Neighborhood model),
averaged by language group. The four values per entry cover the four metrics used in the shared task (black=edit
distance, olive=normalized edit distance, red=B-Cubed F-Scores, blue=BLEU).

76



sets, the worst performing configuration is the N2
model. It performs significantly worse than the
N1 Neighbor and the Inpainting configurations us-
ing the edit distance-based metrics and decidely
worse than the Inpainting method using B-Cubed
F-Scores and BLEU. We hypothesize the existence
of two confounding factors that may be affecting
the model’s performance. First, we trained it us-
ing significantly smaller (compared to N1 systems)
amounts of augmented data. In addition, stop-
ping the training process after a random number of
steps may have resulted in under-training. Analy-
sis of N2 model’s results on individual language
groups displays the uneven performance of this
model. On the BREMERBERTA and DEEPADUNG-
PALAUNG sets, the model strongly outperforms
the baseline and improves upon one of the N1 con-
figurations, while at the same time being signifi-
cantly worse than the baseline on the HILLBUR-
MISH set.

6 Conclusions

We presented two approaches to the problem of
cognate reflex prediction, one based on the trans-
former Seq2Seq architecture, and one based on
convolutional networks. Both approaches stem
from natural, intuitive interpretations of the prob-
lem. The “neighbors” transformer approach treats
the problem as one of reconstructing the phonetic
form of a cognate by considering all the other cog-
nates in the set, on analogy to the problem of re-
constructing the reading of a geographical feature
on the basis of the pronunciation of names of geo-
graphic neighbors. The inpainting approach treats
the problem as being similar to filling in missing
pixels in an image on the basis of the surrounding
context pixels. We submitted 5 system variants (1
convolutional model and 4 transformer models) to
the SIGTYP 2022 Shared Task, where they per-
formed well relative to the provided baseline and
other submissions.

Supplementary Material

The implementation of the Inpainting CNN and
the Neighbors transformer models described
in this work is available in Google Research
repository on GitHub (https://github.com/
google-research/google-research/tree/
59f02a3cb447f381a7450c89f37dda042819216e/
cognate_inpaint_neighbors). The results for
these systems are curated on GitHub (https:

//github.com/sigtyp/ST2022) along with the
results of the other systems submitted to the
shared task, and have been archived with Zenodo
(https://doi.org/10.5281/zenodo.6538626).

Acknowledgements

We would like to thank Llion Jones who developed
the Transformer version of the neighbors model
for the geographic names task described in Sec-
tion 3.1. We also thank Brian Roark for useful
feedback on an earlier version of this paper.

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, Xiaoqiang Zheng, et al. 2016.
TensorFlow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, Savannah, GA, USA.

Enrique Amigó, Julio Gonzalo, Javier Artiles, and
Felisa Verdejo. 2009. A comparison of extrinsic
clustering evaluation metrics based on formal con-
straints. Information retrieval, 12(4):461–486.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser,
Zhifeng Chen, Yonghui Wu, and Macduff Hughes.
2018. The best of both worlds: Combining recent
advances in neural machine translation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 76–86, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning

77

https://github.com/google-research/google-research/tree/59f02a3cb447f381a7450c89f37dda042819216e/cognate_inpaint_neighbors
https://github.com/google-research/google-research/tree/59f02a3cb447f381a7450c89f37dda042819216e/cognate_inpaint_neighbors
https://github.com/google-research/google-research/tree/59f02a3cb447f381a7450c89f37dda042819216e/cognate_inpaint_neighbors
https://github.com/google-research/google-research/tree/59f02a3cb447f381a7450c89f37dda042819216e/cognate_inpaint_neighbors
https://github.com/sigtyp/ST2022
https://github.com/sigtyp/ST2022
https://doi.org/10.5281/zenodo.6538626
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.3115/v1/D14-1179


phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Michael Covington. 1996. An algorithm to align words
for historical comparison. Computational Linguis-
tics, 22(4):481–496.

Robert Forkel, Johann-Mattis List, Simon J Green-
hill, Christoph Rzymski, Sebastian Bank, Michael
Cysouw, Harald Hammarström, Martin Haspelmath,
Gereon A Kaiping, and Russell D Gray. 2018.
Cross-linguistic data formats, advancing data shar-
ing and re-use in comparative linguistics. Scientific
data, 5(1):1–10.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Karro, and David Sculley.
2017. Google Vizier: A service for black-box opti-
mization. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining (KDD ’17), pages 1487–1495, Hal-
ifax, NS, Canada.

Bradley Hauer and Grzegorz Kondrak. 2011. Clus-
tering semantically equivalent words into cognate
sets in multilingual lists. In Proceedings of 5th In-
ternational Joint Conference on Natural Language
Processing, pages 865–873, Chiang Mai, Thailand.
Asian Federation of Natural Language Processing.

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhut-
dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

Jireh Jam, Connah Kendrick, Kevin Walker, Vincent
Drouard, Jison Gee-Sern Hsu, and Moi Hoon Yap.
2021. A comprehensive review of past and present
image inpainting methods. Computer Vision and Im-
age Understanding, 203:103147.

Llion Jones, Richard Sproat, and Haruko Ishikawa.
2022. Helpful neighbors: Leveraging geographic
neighbors to aid in placename pronunciation. In
preparation.

William Jones. 1786. Third anniversary discourse to
the Asiatic Society, Calcutta.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations
(ICLR), San Diego, CA, USA.

Grzegorz Kondrak. 2000. A new algorithm for the
alignment of phonetic sequences. In Proceedings
of the North American Chapter of the Association
for Computational Linguistics, pages 288–295, San
Francisco, CA. ACL, Morgan Kaufmann.

Vladimir I. Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. So-
viet Physics — Doklady, 10(8):707–710.

Johann-Mattis List. 2019a. Automatic inference of
sound correspondence patterns across multiple lan-
guages. Computational Linguistics, 45(1):137–161.

Johann-Mattis List. 2019b. Beyond edit distances:
Comparing linguistic reconstruction systems. The-
oretical Linguistics, 45(3-4):247–258.

Johann-Mattis List and Robert Forkel. 2021. LingPy.
A Python library for historical linguistics. July, ver-
sion 2.6.8, https://github.com/lingpy/lingpy.

Johann-Mattis List, Robert Forkel, Simon J Greenhill,
Christoph Rzymski, Johannes Englisch, and Rus-
sell D Gray. 2021. Lexibank: A public repository
of standardized wordlists with computed phonologi-
cal and lexical features. Scientific Data. To appear.

Johann-Mattis List, Mary Walworth, Simon J. Green-
hill, Tiago Tresoldi, and Robert Forkel. 2018. Se-
quence comparison in computational historical lin-
guistics. Journal of Language Evolution, 3(2):130–
144.

Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun
Wang, Andrew Tao, and Bryan Catanzaro. 2018. Im-
age inpainting for irregular holes using partial convo-
lutions. In Proceedings of the 15th European Con-
ference on Computer Vision (ECCV 2018), pages
89–105, Munich, Germany. Springer International
Publishing. Preprint.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y.
Ng. 2013. Rectifier nonlinearities improve neural
network acoustic models. In Proceedings of the
30th International Conference on Machine Learning
(ICML), volume 28, Atlanta, Georgia, USA.

Carlo Meloni, Shauli Ravfogel, and Yoav Goldberg.
2021. Ab antiquo: Neural proto-language recon-
struction. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4460–4473, Online. Association for
Computational Linguistics.

Gaurav Menghani. 2021. Efficient deep learning: A
survey on making deep learning models smaller,
faster, and better. arXiv preprint arXiv:2106.08962.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted Boltzmann machines.
In Proceedings of the 27th International Confer-
ence on Machine Learning (ICML), pages 807–814,
Haifa, Israel. Association for Computing Machinery
(ACM).

78

https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1145/3097983
https://doi.org/10.1145/3097983
https://aclanthology.org/I11-1097
https://aclanthology.org/I11-1097
https://aclanthology.org/I11-1097
https://doi.org/10.48550/arXiv.1207.0580
https://doi.org/10.48550/arXiv.1207.0580
https://doi.org/10.1016/j.cviu.2020.103147
https://doi.org/10.1016/j.cviu.2020.103147
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1162/coli_a_00344
https://doi.org/10.1162/coli_a_00344
https://doi.org/10.1162/coli_a_00344
https://doi.org/10.5281/zenodo.5144474
https://doi.org/10.5281/zenodo.5144474
https://github.com/lingpy/lingpy
https://doi.org/10.21203/rs.3.rs-870835/v1
https://doi.org/10.21203/rs.3.rs-870835/v1
https://doi.org/10.21203/rs.3.rs-870835/v1
https://doi.org/10.1093/jole/lzy006
https://doi.org/10.1093/jole/lzy006
https://doi.org/10.1093/jole/lzy006
https://doi.org/10.1007/978-3-030-01252-6_6
https://doi.org/10.1007/978-3-030-01252-6_6
https://doi.org/10.1007/978-3-030-01252-6_6
https://arxiv.org/pdf/1804.07723.pdf
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://doi.org/10.18653/v1/2021.naacl-main.353
https://doi.org/10.18653/v1/2021.naacl-main.353
https://doi.org/10.48550/arXiv.2106.08962
https://doi.org/10.48550/arXiv.2106.08962
https://doi.org/10.48550/arXiv.2106.08962
https://doi.org/10.5555/3104322.3104425
https://doi.org/10.5555/3104322.3104425


Keiron O’Shea and Ryan Nash. 2015. An introduction
to convolutional neural networks. arXiv preprint
arXiv:1511.08458.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Hermann Paul. 1880. Prinzipien der Sprachgeschichte.
Max Niemeyer, Halle.

Jialun Peng, Dong Liu, Songcen Xu, and Houqiang
Li. 2021. Generating diverse structure for image
inpainting with hierarchical VQ-VAE. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 10775–
10784, Nashville, TN, USA. IEEE.

Zhen Qin, Qingliang Zeng, Yixin Zong, and Fan Xu.
2021. Image inpainting based on deep learning: A
review. Displays, 69:102028.

N. Shawki, R. Rodriguez Nunez, I. Obeid, and
J. Picone. 2021. On automating hyperparameter
optimization for deep learning applications. In
Proceedings of 2021 IEEE Signal Processing in
Medicine and Biology Symposium (SPMB), pages 1–
7, Philadelphia, PA, USA. IEEE.

Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng
Chen, Mia X. Chen, Ye Jia, Anjuli Kannan, Tara
Sainath, Yuan Cao, Chung-Cheng Chiu, Yanzhang
He, Jan Chorowski, Smit Hinsu, Stella Laurenzo,
James Qin, Orhan Firat, Wolfgang Macherey, Suyog
Gupta, Ankur Bapna, Shuyuan Zhang, Ruoming
Pang, Ron J. Weiss, Rohit Prabhavalkar, Qiao Liang,
Benoit Jacob, Bowen Liang, HyoukJoong Lee,
Ciprian Chelba, et al. 2019. LINGVO: A modular
and scalable framework for sequence-to-sequence
modeling. arXiv preprint arXiv:1902.08295.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3645–3650, Florence, Italy.
Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems
(NIPS’14), pages 3104–3112. MIT Press.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the Inception architecture for computer vision. In
Proceedings of the 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
2818–2826, Las Vegas, USA. IEEE.

Language Name Emoji

ChorbatBalti
KhapaluBalti
KharmangBalti
RonduBalti
ShigarBalti
SkarduBalti
SkarduPurki

Table 4: The one-to-one mapping between the names of
languages in BACKSTROMNORTHERNPAKISTAN lan-
guage group and the corresponding Unicode emojis.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st Conference
on Neural Information Processing Systems (NIPS
2017), pages 5998–6008, Long Beach, CA. Curran
Associates Inc.

A Language Name Emoji Mapping

The mapping between names of the Northern Pak-
istan languages as encoded in the shared task data
for the BACKSTROMNORTHERNPAKISTAN lan-
guage group and the emojis is shown in Table 4.
The mapping takes place during the generation of
the training data. The inverse mapping is applied
during decoding at the inference stage to map the
emojis back to language names.

B Tuning the Inpainting Model

For the cognate inpainting model there are six tun-
able hyperparameters:
• The symbol embedding dimension.
• The width w of the 2D convolution kernel
(h,w), where h is the number of languages and
w corresponds window of characters processed
processed by each convolution and deconvolu-
tion operation.

• The number of convolution filters for the 2D
convolution layer.

• Probability for the dropout layer that follows the
convolution layer (Hinton et al., 2012).

• The nonlinearity activation applied to the con-
volved inputs after the dropout. This choice is
between rectified linear units (ReLU) (Nair and
Hinton, 2010), Leaky ReLU (Maas et al., 2013)
and the hyperbolic tangent function.

• Whether to scale the embeddings, the outputs of
the convolution layer or not to apply the scaling
at all.

79

https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1109/CVPR46437.2021.01063
https://doi.org/10.1109/CVPR46437.2021.01063
https://doi.org/10.1016/j.displa.2021.102028
https://doi.org/10.1016/j.displa.2021.102028
https://doi.org/10.1109/SPMB52430.2021.9672266
https://doi.org/10.1109/SPMB52430.2021.9672266
https://arxiv.org/abs/1902.08295
https://arxiv.org/abs/1902.08295
https://arxiv.org/abs/1902.08295
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308

